Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Eur Heart J ; 45(14): 1224-1240, 2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38441940

RESUMEN

Heart failure (HF) patients have a significantly higher risk of new-onset cancer and cancer-associated mortality, compared to subjects free of HF. While both the prevention and treatment of new-onset HF in patients with cancer have been investigated extensively, less is known about the prevention and treatment of new-onset cancer in patients with HF, and whether and how guideline-directed medical therapy (GDMT) for HF should be modified when cancer is diagnosed in HF patients. The purpose of this review is to elaborate and discuss the effects of pillar HF pharmacotherapies, as well as digoxin and diuretics on cancer, and to identify areas for further research and novel therapeutic strategies. To this end, in this review, (i) proposed effects and mechanisms of action of guideline-directed HF drugs on cancer derived from pre-clinical data will be described, (ii) the evidence from both observational studies and randomized controlled trials on the effects of guideline-directed medical therapy on cancer incidence and cancer-related outcomes, as synthetized by meta-analyses will be reviewed, and (iii) considerations for future pre-clinical and clinical investigations will be provided.


Asunto(s)
Insuficiencia Cardíaca , Neoplasias , Humanos , Insuficiencia Cardíaca/tratamiento farmacológico , Neoplasias/epidemiología
2.
Eur Heart J Cardiovasc Pharmacother ; 10(3): 219-244, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38379024

RESUMEN

Although cardiovascular diseases (CVDs) are the leading cause of death worldwide, their pharmacotherapy remains suboptimal. Thus, there is a clear unmet need to develop more effective and safer pharmacological strategies. In this review, we summarize the most relevant advances in cardiovascular pharmacology in 2023, including the approval of first-in-class drugs that open new avenues for the treatment of atherosclerotic CVD and heart failure (HF). The new indications of drugs already marketed (repurposing) for the treatment of obstructive hypertrophic cardiomyopathy, hypercholesterolaemia, type 2 diabetes, obesity, and HF; the impact of polypharmacy on guideline-directed drug use is highlighted as well as results from negative clinical trials. Finally, we end with a summary of the most important phase 2 and 3 clinical trials assessing the efficacy and safety of cardiovascular drugs under development for the prevention and treatment of CVDs.


Asunto(s)
Fármacos Cardiovasculares , Enfermedades Cardiovasculares , Humanos , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/prevención & control , Fármacos Cardiovasculares/uso terapéutico , Fármacos Cardiovasculares/efectos adversos , Resultado del Tratamiento , Animales , Reposicionamiento de Medicamentos , Desarrollo de Medicamentos
3.
Cells ; 13(2)2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38247800

RESUMEN

High-protein diets (HPDs) offer health benefits, such as weight management and improved metabolic profiles. The effects of HPD on cardiac arrhythmogenesis remain unclear. Atrial fibrillation (AF), the most common arrhythmia, is associated with inflammasome activation. The role of the Absent-in-Melanoma 2 (AIM2) inflammasome in AF pathogenesis remains unexplored. In this study, we discovered that HPD increased susceptibility to AF. To demonstrate the involvement of AIM2 signaling in the pathogenesis of HPD-induced AF, wildtype (WT) and Aim2-/- mice were fed normal-chow (NC) and HPD, respectively. Four weeks later, inflammasome activity was upregulated in the atria of WT-HPD mice, but not in the Aim2-/--HPD mice. The increased AF vulnerability in WT-HPD mice was associated with abnormal sarcoplasmic reticulum (SR) Ca2+-release events in atrial myocytes. HPD increased the cytoplasmic double-strand (ds) DNA level, causing AIM2 activation. Genetic inhibition of AIM2 in Aim2-/- mice reduced susceptibility to AF, cytoplasmic dsDNA level, mitochondrial ROS production, and abnormal SR Ca2+-release in atrial myocytes. These data suggest that HPD creates a substrate conducive to AF development by activating the AIM2-inflammasome, which is associated with mitochondrial oxidative stress along with proarrhythmic SR Ca2+-release. Our data imply that targeting the AIM2 inflammasome might constitute a novel anti-AF strategy in certain patient subpopulations.


Asunto(s)
Fibrilación Atrial , Dieta Rica en Proteínas , Animales , Ratones , Fibrilación Atrial/etiología , Fibrilación Atrial/metabolismo , Citoplasma , Dieta Rica en Proteínas/efectos adversos , Proteínas de Unión al ADN/metabolismo , Inflamasomas
4.
Cardiovasc Res ; 120(5): 506-518, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38181429

RESUMEN

AIMS: Cellular senescence is a stress-related or aging response believed to contribute to many cardiac conditions; however, its role in atrial fibrillation (AF) is unknown. Age is the single most important determinant of the risk of AF. The present study was designed to (i) evaluate AF susceptibility and senescence marker expression in rat models of aging and myocardial infarction (MI), (ii) study the effect of reducing senescent-cell burden with senolytic therapy on the atrial substrate in MI rats, and (iii) assess senescence markers in human atrial tissue as a function of age and the presence of AF. METHODS AND RESULTS: AF susceptibility was studied with programmed electrical stimulation. Gene and protein expression was evaluated by immunoblot or immunofluorescence (protein) and digital polymerase chain reaction (PCR) or reverse transcriptase quantitative PCR (messenger RNA). A previously validated senolytic combination, dasatinib and quercetin, (D+Q; or corresponding vehicle) was administered from the time of sham or MI surgery through 28 days later. Experiments were performed blinded to treatment assignment. Burst pacing-induced AF was seen in 100% of aged (18-month old) rats, 87.5% of young MI rats, and 10% of young control (3-month old) rats (P ≤ 0.001 vs. each). Conduction velocity was slower in aged [both left atrium (LA) and right atrium (RA)] and young MI (LA) rats vs. young control rats (P ≤ 0.001 vs. each). Atrial fibrosis was greater in aged (LA and RA) and young MI (LA) vs. young control rats (P < 0.05 for each). Senolytic therapy reduced AF inducibility in MI rats (from 8/9 rats, 89% in MI vehicle, to 0/9 rats, 0% in MI D + Q, P < 0.001) and attenuated LA fibrosis. Double staining suggested that D + Q acts by clearing senescent myofibroblasts and endothelial cells. In human atria, senescence markers were upregulated in older (≥70 years) and long-standing AF patients vs. individuals ≤60 and sinus rhythm controls, respectively. CONCLUSION: Our results point to a potentially significant role of cellular senescence in AF pathophysiology. Modulating cell senescence might provide a basis for novel therapeutic approaches to AF.


Asunto(s)
Fibrilación Atrial , Remodelación Atrial , Senescencia Celular , Modelos Animales de Enfermedad , Fibrosis , Atrios Cardíacos , Infarto del Miocardio , Animales , Fibrilación Atrial/fisiopatología , Fibrilación Atrial/metabolismo , Fibrilación Atrial/patología , Fibrilación Atrial/genética , Humanos , Atrios Cardíacos/metabolismo , Atrios Cardíacos/fisiopatología , Atrios Cardíacos/patología , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/genética , Masculino , Quercetina/farmacología , Senoterapéuticos/farmacología , Factores de Edad , Femenino , Anciano , Persona de Mediana Edad , Estimulación Cardíaca Artificial
5.
Cardiovasc Res ; 120(4): 345-359, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38091977

RESUMEN

AIMS: Recent studies suggest that bioactive mediators called resolvins promote an active resolution of inflammation. Inflammatory signalling is involved in the development of the substrate for atrial fibrillation (AF). The aim of this study is to evaluate the effects of resolvin-D1 on atrial arrhythmogenic remodelling resulting from left ventricular (LV) dysfunction induced by myocardial infarction (MI) in rats. METHODS AND RESULTS: MI was produced by left anterior descending coronary artery ligation. Intervention groups received daily intraperitoneal resolvin-D1, beginning before MI surgery (early-RvD1) or Day 7 post-MI (late-RvD1) and continued until Day 21 post-MI. AF vulnerability was evaluated by performing an electrophysiological study. Atrial conduction was analysed by using optical mapping. Fibrosis was quantified by Masson's trichrome staining and gene expression by quantitative polymerase chain reaction and RNA sequencing. Investigators were blinded to group identity. Early-RvD1 significantly reduced MI size (17 ± 6%, vs. 39 ± 6% in vehicle-MI) and preserved LV ejection fraction; these were unaffected by late-RvD1. Transoesophageal pacing induced atrial tachyarrhythmia in 2/18 (11%) sham-operated rats, vs. 18/18 (100%) MI-only rats, in 5/18 (28%, P < 0.001 vs. MI) early-RvD1 MI rats, and in 7/12 (58%, P < 0.01) late-RvD1 MI rats. Atrial conduction velocity significantly decreased post-MI, an effect suppressed by RvD1 treatment. Both early-RvD1 and late-RvD1 limited MI-induced atrial fibrosis and prevented MI-induced increases in the atrial expression of inflammation-related and fibrosis-related biomarkers and pathways. CONCLUSIONS: RvD1 suppressed MI-related atrial arrhythmogenic remodelling. Early-RvD1 had MI sparing and atrial remodelling suppressant effects, whereas late-RvD1 attenuated atrial remodelling and AF promotion without ventricular protection, revealing atrial-protective actions unrelated to ventricular function changes. These results point to inflammation resolution-promoting compounds as novel cardio-protective interventions with a particular interest in attenuating AF substrate development.


Asunto(s)
Fibrilación Atrial , Remodelación Atrial , Cardiomiopatías , Infarto del Miocardio , Disfunción Ventricular Izquierda , Ratas , Animales , Fibrilación Atrial/genética , Fibrilación Atrial/prevención & control , Infarto del Miocardio/metabolismo , Inflamación/prevención & control , Inflamación/complicaciones , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/prevención & control , Fibrosis
6.
J Clin Invest ; 133(19)2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37581942

RESUMEN

Chronic kidney disease (CKD) is associated with a higher risk of atrial fibrillation (AF). The mechanistic link between CKD and AF remains elusive. IL-1ß, a main effector of NLR family pyrin domain-containing 3 (NLRP3) inflammasome activation, is a key modulator of conditions associated with inflammation, such as AF and CKD. Circulating IL-1ß levels were elevated in patients with CKD who had AF (versus patients with CKD in sinus rhythm). Moreover, NLRP3 activity was enhanced in atria of patients with CKD. To elucidate the role of NLRP3/IL-1ß signaling in the pathogenesis of CKD-induced AF, Nlrp3-/- and WT mice were subjected to a 2-stage subtotal nephrectomy protocol to induce CKD. Four weeks after surgery, IL-1ß levels in serum and atrial tissue were increased in WT CKD (WT-CKD) mice versus sham-operated WT (WT-sham) mice. The increased susceptibility to pacing-induced AF and the longer AF duration in WT-CKD mice were associated with an abbreviated atrial effective refractory period, enlarged atria, and atrial fibrosis. Genetic inhibition of NLRP3 in Nlrp3-/- mice or neutralizing anti-IL-1ß antibodies effectively reduced IL-1ß levels, normalized left atrial dimensions, and reduced fibrosis and the incidence of AF. These data suggest that CKD creates a substrate for AF development by activating the NLRP3 inflammasome in atria, which is associated with structural and electrical remodeling. Neutralizing IL-1ß antibodies may be beneficial in preventing CKD-induced AF.


Asunto(s)
Fibrilación Atrial , Insuficiencia Renal Crónica , Humanos , Ratones , Animales , Inflamasomas/metabolismo , Fibrilación Atrial/genética , Fibrilación Atrial/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/metabolismo , Atrios Cardíacos/metabolismo , Interleucina-1beta/metabolismo
7.
bioRxiv ; 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37292708

RESUMEN

Background: Recent work has shown that the NLR-family-pyrin-domain-containing 3 (NLRP3) inflammasome is expressed in cardiomyocytes and when specifically activated causes atrial electrical remodeling and arrhythmogenicity. Whether the NLRP3-inflammasome system is functionally important in cardiac fibroblasts (FBs) remains controversial. In this study, we sought to uncover the potential contribution of FB NLRP3-inflammasome signaling to the control of cardiac function and arrhythmogenesis. Methods: Digital-PCR was performed to determine the expression of NLRP3-pathway components in FBs isolated from human biopsy samples of AF and sinus rhythm patients. NLRP3-system protein expression was determined by immunoblotting in atria of canines with electrically maintained AF. Using the inducible, resident fibroblast (FB)-specific Tcf21-promoter-Cre system (Tcf21iCre as control), we established a FB-specific knockin (FB-KI) mouse model with FB-restricted expression of constitutively active NLRP3. Cardiac function and arrhythmia susceptibility in mice were assessed by echocardiography, programmed electrical stimulation, and optical mapping studies. Results: NLRP3 and IL1B were upregulated in atrial FBs of patients with persistent AF. Protein levels of NLRP3, ASC, and pro-Interleukin-1ß were increased in atrial FBs of a canine AF model. Compared with the control mice, FB-KI mice exhibited enlarged left atria (LA) and reduced LA contractility, a common determinant of AF. The FBs from FB-KI mice were more transdifferentiated, migratory, and proliferative compared to the FBs from control mice. FB-KI mice showed increased cardiac fibrosis, atrial gap junction remodeling, and reduced conduction velocity, along with increased AF susceptibility. These phenotypic changes were supported by single nuclei (sn)RNA-seq analysis, which revealed enhanced extracellular matrix remodeling, impaired communication among cardiomyocytes, and altered metabolic pathways across multiple cell types. Conclusions: Our results show that the FB-restricted activation of the NLRP3-inflammasome system leads to fibrosis, atrial cardiomyopathy, and AF. Activation of NLRP3-inflammasome in resident FBs exhibits cell-autonomous function by increasing the activity of cardiac FBs, fibrosis, and connexin remodeling. This study establishes the NLRP3-inflammasome as a novel FB-signaling pathway contributing to AF pathogenesis.

8.
Artículo en Inglés | MEDLINE | ID: mdl-37169875

RESUMEN

Cardiovascular diseases (CVD) remain the leading cause of death worldwide and pharmacotherapy of most of them is suboptimal. Thus, there is a clear unmet clinical need to develop new pharmacological strategies with greater efficacy and better safety profiles. In this review, we summarize the most relevant advances in cardiovascular pharmacology in 2022 including the approval of first-in-class drugs that open new avenues for the treatment of obstructive hypertrophic cardiomyopathy (mavacamten), type 2 diabetes mellitus (tirzepatide), and heart failure (HF) independent of left ventricular ejection fraction (sodium-glucose cotransporter 2 inhibitors). We also dealt with fixed dose combination therapies repurposing different formulations of "old" drugs with well-known efficacy and safety for the treatment of patients with acute decompensated HF (acetazolamide plus loop diuretics), atherosclerotic cardiovascular disease (moderate-dose statin plus ezetimibe), Marfan syndrome (angiotensin receptor blockers plus ß-blockers), and secondary cardiovascular prevention (i.e. low-dose aspirin, ramipril and atorvastatin), thereby filling existing gaps in knowledge, and opening new avenues for the treatment of CVD. Clinical trials confirming the role of dapagliflozin in patients with HF and mildly reduced or preserved ejection fraction, long-term evolocumab to reduce the risk of cardiovascular events, vitamin K antagonists for stroke prevention in patients with rheumatic heart disease-associated atrial fibrillation, antibiotic prophylaxis in patients at high risk for infective endocarditis before invasive dental procedures, and vutrisiran for the treatment of hereditary transthyretin-related amyloidosis with polyneuropathy were also reviewed. Finally, we briefly discuss recent clinical trials suggesting that FXIa inhibitors may have the potential to uncouple thrombosis from hemostasis and attenuate/prevent thromboembolic events with minimal disruption of hemostasis.

9.
J Physiol ; 601(13): 2711-2731, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36752166

RESUMEN

Cardiac electrophysiology is regulated by continuous trafficking and internalization of ion channels occurring over minutes to hours. Kv 11.1 (also known as hERG) underlies the rapidly activating delayed-rectifier K+ current (IKr ), which plays a major role in cardiac ventricular repolarization. Experimental characterization of the distinct temporal effects of genetic and acquired modulators on channel trafficking and gating is challenging. Computer models are instrumental in elucidating these effects, but no currently available model incorporates ion-channel trafficking. Here, we present a novel computational model that reproduces the experimentally observed production, forward trafficking, internalization, recycling and degradation of Kv 11.1 channels, as well as their modulation by temperature, pentamidine, dofetilide and extracellular K+ . The acute effects of these modulators on channel gating were also incorporated and integrated with the trafficking model in the O'Hara-Rudy human ventricular cardiomyocyte model. Supraphysiological dofetilide concentrations substantially increased Kv 11.1 membrane levels while also producing a significant channel block. However, clinically relevant concentrations did not affect trafficking. Similarly, severe hypokalaemia reduced Kv 11.1 membrane levels based on long-term culture data, but had limited effect based on short-term data. By contrast, clinically relevant elevations in temperature acutely increased IKr due to faster kinetics, while after 24 h, IKr was decreased due to reduced Kv 11.1 membrane levels. The opposite was true for lower temperatures. Taken together, our model reveals a complex temporal regulation of cardiac electrophysiology by temperature, hypokalaemia, and dofetilide through competing effects on channel gating and trafficking, and provides a framework for future studies assessing the role of impaired trafficking in cardiac arrhythmias. KEY POINTS: Kv 11.1 channels underlying the rapidly activating delayed-rectifier K+ current are important for ventricular repolarization and are continuously shuttled from the cytoplasm to the plasma membrane and back over minutes to hours. Kv 11.1 gating and trafficking are modulated by temperature, drugs and extracellular K+ concentration but experimental characterization of their combined effects is challenging. Computer models may facilitate these analyses, but no currently available model incorporates ion-channel trafficking. We introduce a new two-state ion-channel trafficking model able to reproduce a wide range of experimental data, along with the effects of modulators of Kv 11.1 channel functioning and trafficking. The model reveals complex dynamic regulation of ventricular repolarization by temperature, extracellular K+ concentration and dofetilide through opposing acute (millisecond) effects on Kv 11.1 gating and long-term (hours) modulation of Kv 11.1 trafficking. This in silico trafficking framework provides a tool to investigate the roles of acute and long-term processes on arrhythmia promotion and maintenance.


Asunto(s)
Antiarrítmicos , Hipopotasemia , Humanos , Antiarrítmicos/farmacología , Hipopotasemia/metabolismo , Técnicas Electrofisiológicas Cardíacas , Canales Iónicos/metabolismo , Arritmias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Canales de Potasio Éter-A-Go-Go/metabolismo
10.
Artículo en Inglés | MEDLINE | ID: mdl-36337729

RESUMEN

Introduction: Postoperative atrial fibrillation (POAF), characterized as AF that arises 1-3 days after surgery, occurs after 30%-40% of cardiac and 10%-20% of non-cardiac surgeries, and is thought to arise due to transient surgery-induced triggers acting on a preexisting vulnerable atrial substrate often associated with inflammation and autonomic nervous system dysfunction. Current experimental studies often rely on human atrial tissue samples, collected during surgery prior to arrhythmia development, or animal models such as sterile pericarditis and atriotomy, which have not been robustly characterized. Aim: To characterize the demographic, electrophysiologic, and inflammatory properties of a POAF mouse model. Methods and Results: A total of 131 wild-type C57BL/6J mice were included in this study. A total of 86 (65.6%) mice underwent cardiothoracic surgery (THOR), which consisted of bi-atrial pericardiectomy with 20 s of aortic cross-clamping; 45 (34.3%) mice underwent a sham procedure consisting of dissection down to but not into the thoracic cavity. Intracardiac pacing, performed 72 h after surgery, was used to assess AF inducibility. THOR mice showed greater AF inducibility (38.4%) compared to Sham mice (17.8%, P = 0.027). Stratifying the cohort by tertiles of age showed that the greatest risk of POAF after THOR compared to Sham occurred in the 12-19-week age group. Stratifying by sex showed that cardiothoracic (CT) surgery increased POAF risk in females but had no significant effect in males. Quantitative polymerase chain reaction of atrial samples revealed upregulation of transforming growth factor beta 1 (TGF-ß1) and interleukin 6 (IL6) and 18 (IL18) expression in THOR compared to Sham mice. Conclusion: Here, we demonstrate that the increased POAF risk associated with CT surgery is most pronounced in female and 12-19-week-old mice, and that the expression of inflammatory cytokines is upregulated in the atria of THOR mice prone to inducible AF.

12.
Nat Biomed Eng ; 6(4): 389-402, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34992271

RESUMEN

The lack of a scalable and robust source of well-differentiated human atrial myocytes constrains the development of in vitro models of atrial fibrillation (AF). Here we show that fully functional atrial myocytes can be generated and expanded one-quadrillion-fold via a conditional cell-immortalization method relying on lentiviral vectors and the doxycycline-controlled expression of a recombinant viral oncogene in human foetal atrial myocytes, and that the immortalized cells can be used to generate in vitro models of AF. The method generated 15 monoclonal cell lines with molecular, cellular and electrophysiological properties resembling those of primary atrial myocytes. Multicellular in vitro models of AF generated using the immortalized atrial myocytes displayed fibrillatory activity (with activation frequencies of 6-8 Hz, consistent with the clinical manifestation of AF), which could be terminated by the administration of clinically approved antiarrhythmic drugs. The conditional cell-immortalization method could be used to generate functional cell lines from other human parenchymal cells, for the development of in vitro models of human disease.


Asunto(s)
Fibrilación Atrial , Antiarrítmicos/metabolismo , Antiarrítmicos/uso terapéutico , Atrios Cardíacos , Humanos , Miocitos Cardíacos/metabolismo
13.
Eur Heart J Cardiovasc Pharmacother ; 8(4): 406-419, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35092425

RESUMEN

Population ageing has resulted in an increasing number of older people living with chronic diseases (multimorbidity) requiring five or more medications daily (polypharmacy). Ageing produces important changes in the cardiovascular system and represents the most potent single cardiovascular risk factor. Cardiovascular diseases (CVDs) constitute the greatest burden for older people, their caregivers, and healthcare systems. Cardiovascular pharmacotherapy in older people is complex because age-related changes in body composition, organ function, homeostatic mechanisms, and comorbidities modify the pharmacokinetic and pharmacodynamic properties of many commonly used cardiovascular and non-cardiovascular drugs. Additionally, polypharmacy increases the risk of adverse drug reactions and drug interactions, which in turn can lead to increased morbi-mortality and healthcare costs. Unfortunately, evidence of drug efficacy and safety in older people with multimorbidity and polypharmacy is limited because these individuals are frequently underrepresented/excluded from clinical trials. Moreover, clinical guidelines are largely written with a single-disease focus and only occasionally address the issue of coordination of care, when and how to discontinue treatments, if required, or how to prioritize recommendations for patients with multimorbidity and polypharmacy. This review analyses the main challenges confronting healthcare professionals when prescribing in older people with CVD, multimorbidity, and polypharmacy. Our goal is to provide information that can contribute to improving drug prescribing, efficacy, and safety, as well as drug adherence and clinical outcomes.


Asunto(s)
Cardiología , Enfermedades Cardiovasculares , Sistema Cardiovascular , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Anciano , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/epidemiología , Humanos , Polifarmacia
16.
Int J Mol Sci ; 22(16)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34445698

RESUMEN

The renin-angiotensin-aldosterone system (RAAS) plays a major role in cardiovascular health and disease. Short-term RAAS activation controls water and salt retention and causes vasoconstriction, which are beneficial for maintaining cardiac output in low blood pressure and early stage heart failure. However, prolonged RAAS activation is detrimental, leading to structural remodeling and cardiac dysfunction. Natriuretic peptides (NPs) are activated to counterbalance the effect of RAAS and sympathetic nervous system by facilitating water and salt excretion and causing vasodilation. Neprilysin is a major NP-degrading enzyme that degrades multiple vaso-modulatory substances. Although the inhibition of neprilysin alone is not sufficient to counterbalance RAAS activation in cardiovascular diseases (e.g., hypertension and heart failure), a combination of angiotensin receptor blocker and neprilysin inhibitor (ARNI) was highly effective in several clinical trials and may modulate the risk of atrial and ventricular arrhythmias. This review summarizes the possible link between ARNI and cardiac arrhythmias and discusses potential underlying mechanisms, providing novel insights about the therapeutic role and safety profile of ARNI in the cardiovascular system.


Asunto(s)
Antagonistas de Receptores de Angiotensina/uso terapéutico , Arritmias Cardíacas/fisiopatología , Neprilisina/antagonistas & inhibidores , Antagonistas de Receptores de Angiotensina/metabolismo , Antihipertensivos/farmacología , Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/metabolismo , Enfermedades Cardiovasculares/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Humanos , Hipertensión/tratamiento farmacológico , Péptidos Natriuréticos/metabolismo , Péptidos Natriuréticos/fisiología , Receptores de Angiotensina/metabolismo , Sistema Renina-Angiotensina/efectos de los fármacos , Sistema Renina-Angiotensina/fisiología , Sistema Nervioso Simpático/fisiopatología , Tetrazoles/farmacología
17.
Int J Mol Sci ; 22(9)2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34062838

RESUMEN

BACKGROUND: Phosphodiesterases (PDE) critically regulate myocardial cAMP and cGMP levels. PDE2 is stimulated by cGMP to hydrolyze cAMP, mediating a negative crosstalk between both pathways. PDE2 upregulation in heart failure contributes to desensitization to ß-adrenergic overstimulation. After isoprenaline (ISO) injections, PDE2 overexpressing mice (PDE2 OE) were protected against ventricular arrhythmia. Here, we investigate the mechanisms underlying the effects of PDE2 OE on susceptibility to arrhythmias. METHODS: Cellular arrhythmia, ion currents, and Ca2+-sparks were assessed in ventricular cardiomyocytes from PDE2 OE and WT littermates. RESULTS: Under basal conditions, action potential (AP) morphology were similar in PDE2 OE and WT. ISO stimulation significantly increased the incidence of afterdepolarizations and spontaneous APs in WT, which was markedly reduced in PDE2 OE. The ISO-induced increase in ICaL seen in WT was prevented in PDE2 OE. Moreover, the ISO-induced, Epac- and CaMKII-dependent increase in INaL and Ca2+-spark frequency was blunted in PDE2 OE, while the effect of direct Epac activation was similar in both groups. Finally, PDE2 inhibition facilitated arrhythmic events in ex vivo perfused WT hearts after reperfusion injury. CONCLUSION: Higher PDE2 abundance protects against ISO-induced cardiac arrhythmia by preventing the Epac- and CaMKII-mediated increases of cellular triggers. Thus, activating myocardial PDE2 may represent a novel intracellular anti-arrhythmic therapeutic strategy in HF.


Asunto(s)
Arritmias Cardíacas/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/genética , Factores de Intercambio de Guanina Nucleótido/genética , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Animales , Antiarrítmicos/farmacología , Arritmias Cardíacas/inducido químicamente , Arritmias Cardíacas/patología , Calcio/metabolismo , AMP Cíclico/genética , GMP Cíclico/genética , Regulación de la Expresión Génica/genética , Corazón/fisiopatología , Humanos , Isoproterenol/toxicidad , Ratones , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo
18.
J Mol Cell Cardiol ; 155: 10-20, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33631188

RESUMEN

AIM: To obtain a quantitative expression profile of the main genes involved in the cAMP-signaling cascade in human control atria and in different cardiac pathologies. METHODS AND RESULTS: Expression of 48 target genes playing a relevant role in the cAMP-signaling cascade was assessed by RT-qPCR. 113 samples were obtained from right atrial appendages (RAA) of patients in sinus rhythm (SR) with or without atrium dilation, paroxysmal atrial fibrillation (AF), persistent AF or heart failure (HF); and left atrial appendages (LAA) from patients in SR or with AF. Our results show that right and left atrial appendages in donor hearts or from SR patients have similar expression values except for AC7 and PDE2A. Despite the enormous chamber-dependent variability in the gene-expression changes between pathologies, several distinguishable patterns could be identified. PDE8A, PI3Kγ and EPAC2 were upregulated in AF. Different phosphodiesterase (PDE) families showed specific pathology-dependent changes. CONCLUSION: By comparing mRNA-expression patterns of the cAMP-signaling cascade related genes in right and left atrial appendages of human hearts and across different pathologies, we show that 1) gene expression is not significantly affected by cardioplegic solution content, 2) it is appropriate to use SR atrial samples as controls, and 3) many genes in the cAMP-signaling cascade are affected in AF and HF but only few of them appear to be chamber (right or left) specific. TOPIC: Genetic changes in human diseased atria. TRANSLATIONAL PERSPECTIVE: The cyclic AMP signaling pathway is important for atrial function. However, expression patterns of the genes involved in the atria of healthy and diseased hearts are still unclear. We give here a general overview of how different pathologies affect the expression of key genes in the cAMP signaling pathway in human right and left atria appendages. Our study may help identifying new genes of interest as potential therapeutic targets or clinical biomarkers for these pathologies and could serve as a guide in future gene therapy studies.


Asunto(s)
AMP Cíclico/metabolismo , Variación Genética , Atrios Cardíacos/metabolismo , Sistemas de Mensajero Secundario/genética , Anciano , Alelos , Apéndice Atrial/metabolismo , Fibrilación Atrial/complicaciones , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/genética , Fibrilación Atrial/fisiopatología , Biomarcadores , Susceptibilidad a Enfermedades , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/etiología , Humanos , Masculino , Persona de Mediana Edad , Proteoma , Proteómica/métodos
20.
Card Electrophysiol Clin ; 13(1): 123-132, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33516390

RESUMEN

Advances in atrial fibrillation (AF) management, perioperative medicine, and surgical techniques have reignited an interest in postoperative AF (POAF). POAF results from the interaction among subclinical atrial substrate, surgery-induced substrate, and transient postoperative factors. Prophylaxis for POAF after cardiac surgery is well established but the indications for preoperative treatment in noncardiac surgery need further investigation. A rate-control strategy is adequate for most asymptomatic patients with POAF and anticoagulation should be initiated for POAF more than 48 to 72 hours postsurgery. Research is needed to improve evidence-based management of POAF and guide long-term management in view of the substantial late recurrence-rate.


Asunto(s)
Fibrilación Atrial , Complicaciones Posoperatorias , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Procedimientos Quirúrgicos Operativos/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA