Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
bioRxiv ; 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37333318

RESUMEN

SUMMARY: Zoledronic acid (ZA) prevents muscle weakness in mice with bone metastases; however, its role in muscle weakness in non-tumor-associated metabolic bone diseases and as an effective treatment modality for the prevention of muscle weakness associated with bone disorders, is unknown. We demonstrate the role of ZA-treatment on bone and muscle using a mouse model of accelerated bone remodeling, which represents the clinical manifestation of non-tumor associated metabolic bone disease. ZA increased bone mass and strength and rescued osteocyte lacunocanalicular organization. Short-term ZA treatment increased muscle mass, whereas prolonged, preventive treatment improved muscle mass and function. In these mice, muscle fiber-type shifted from oxidative to glycolytic and ZA restored normal muscle fiber distribution. By blocking TGFß release from bone, ZA improved muscle function, promoted myoblast differentiation and stabilized Ryanodine Receptor-1 calcium channel. These data demonstrate the beneficial effects of ZA in maintaining bone health and preserving muscle mass and function in a model of metabolic bone disease. Context and significance: TGFß is a bone regulatory molecule which is stored in bone matrix, released during bone remodeling, and must be maintained at an optimal level for the good health of the bone. Excess TGFß causes several bone disorders and skeletal muscle weakness. Reducing excess TGFß release from bone using zoledronic acid in mice not only improved bone volume and strength but also increased muscle mass, and muscle function. Progressive muscle weakness coexists with bone disorders, decreasing quality of life and increasing morbidity and mortality. Currently, there is a critical need for treatments improving muscle mass and function in patients with debilitating weakness. Zoledronic acid's benefit extends beyond bone and could also be useful in treating muscle weakness associated with bone disorders.

2.
J Biol Chem ; 291(41): 21717-21728, 2016 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-27551048

RESUMEN

Serum glucocorticoids play a critical role in synchronizing circadian rhythm in peripheral tissues, and multiple mechanisms regulate tissue sensitivity to glucocorticoids. In the skeleton, circadian rhythm helps coordinate bone formation and resorption. Circadian rhythm is regulated through transcriptional and post-transcriptional feedback loops that include microRNAs. How microRNAs regulate circadian rhythm in bone is unexplored. We show that in mouse calvaria, miR-433 displays robust circadian rhythm, peaking just after dark. In C3H/10T1/2 cells synchronized with a pulse of dexamethasone, inhibition of miR-433 using a tough decoy altered the period and amplitude of Per2 gene expression, suggesting that miR-433 regulates rhythm. Although miR-433 does not directly target the Per2 3'-UTR, it does target two rhythmically expressed genes in calvaria, Igf1 and Hif1α. miR-433 can target the glucocorticoid receptor; however, glucocorticoid receptor protein abundance was unaffected in miR-433 decoy cells. Rather, miR-433 inhibition dramatically enhanced glucocorticoid signaling due to increased nuclear receptor translocation, activating glucocorticoid receptor transcriptional targets. Last, in calvaria of transgenic mice expressing a miR-433 decoy in osteoblastic cells (Col3.6 promoter), the amplitude of Per2 and Bmal1 mRNA rhythm was increased, confirming that miR-433 regulates circadian rhythm. miR-433 was previously shown to target Runx2, and mRNA for Runx2 and its downstream target, osteocalcin, were also increased in miR-433 decoy mouse calvaria. We hypothesize that miR-433 helps maintain circadian rhythm in osteoblasts by regulating sensitivity to glucocorticoid receptor signaling.


Asunto(s)
Ritmo Circadiano/fisiología , Regulación de la Expresión Génica/fisiología , MicroARNs/biosíntesis , Osteoblastos/metabolismo , Receptores de Glucocorticoides/metabolismo , Transducción de Señal/fisiología , Regiones no Traducidas 3'/fisiología , Animales , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/biosíntesis , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Factor I del Crecimiento Similar a la Insulina/biosíntesis , Factor I del Crecimiento Similar a la Insulina/genética , Masculino , Ratones , Ratones Transgénicos , MicroARNs/genética , Osteoblastos/citología , Osteocalcina/biosíntesis , Osteocalcina/genética , Proteínas Circadianas Period/biosíntesis , Proteínas Circadianas Period/genética , Receptores de Glucocorticoides/genética , Cráneo/citología , Cráneo/metabolismo
3.
J Bone Miner Res ; 30(4): 723-32, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25262637

RESUMEN

Osteonectin/SPARC is one of the most abundant noncollagenous extracellular matrix proteins in bone, regulating collagen fiber assembly and promoting osteoblast differentiation. Osteonectin-null and haploinsufficient mice have low-turnover osteopenia, indicating that osteonectin contributes to normal bone formation. In male idiopathic osteoporosis patients, osteonectin 3' untranslated region (UTR) single-nucleotide polymorphism (SNP) haplotypes that differed only at SNP1599 (rs1054204) were previously associated with bone mass. Haplotype A (containing SNP1599G) was more frequent in severely affected patients, whereas haplotype B (containing SNP1599C) was more frequent in less affected patients and healthy controls. We hypothesized that SNP1599 contributes to variability in bone mass by modulating osteonectin levels. Osteonectin 3' UTR reporter constructs demonstrated that haplotype A has a repressive effect on gene expression compared with B. We found that SNP1599G contributed to an miR-433 binding site, and miR-433 inhibitor relieved repression of the haplotype A, but not B, 3' UTR reporter construct. We tested our hypothesis in vivo, using a knock-in approach to replace the mouse osteonectin 3' UTR with human haplotype A or B 3' UTR. Compared with haplotype A mice, bone osteonectin levels were higher in haplotype B mice. B mice displayed higher bone formation rate and gained more trabecular bone with age. When parathyroid hormone was administered intermittently, haplotype B mice gained more cortical bone area than A mice. Cultured marrow stromal cells from B mice deposited more mineralized matrix and had higher osteocalcin mRNA compared with A mice, demonstrating a cell-autonomous effect on differentiation. Altogether, SNP1599 differentially regulates osteonectin expression and contributes to variability in bone mass, by a mechanism that may involve differential targeting by miR-433. This work validates the findings of the previous candidate gene study, and it assigns a physiological function to a common osteonectin allele, providing support for its role in the complex trait of skeletal phenotype. © 2014 American Society for Bone and Mineral Research.


Asunto(s)
Regiones no Traducidas 3' , Desarrollo Óseo/genética , MicroARNs/genética , Tamaño de los Órganos , Osteonectina/genética , Polimorfismo de Nucleótido Simple , Animales , Haplotipos , Humanos , Ratones , Ratones Transgénicos
4.
PLoS One ; 9(9): e107262, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25222202

RESUMEN

To design novel therapeutics against bone loss, understanding the molecular mechanisms regulating osteoclastogenesis is critical. Osteoclast formation and function are tightly regulated by transcriptional, post-transcriptional and post-translational mechanisms. This stringent regulation is crucial to prevent excessive or insufficient bone resorption and to maintain bone homeostasis. microRNAs (miRNAs) are key post-transcriptional regulators that repress expression of target mRNAs controlling osteoclast proliferation, differentiation, and apoptosis. Disruption of miRNA-mediated regulation alters osteoclast formation and bone resorption. Prior studies profiled miRNA expression in murine osteoclast precursors treated with RANKL for 24 hours. However, a more complete miRNA signature, encompassing early, mid and late stages of osteoclastogenesis, is wanting. An Agilent microarray platform was used to analyze expression of mature miRNAs in an enriched population of murine bone marrow osteoclast precursors (depleted of B220+ and CD3+ cells) undergoing 1, 3, or 5 days of RANKL-driven differentiation. Expression of 93 miRNAs, changed by >2 fold during early, mid, and late stages of osteoclastogenesis, were identified and sorted into 7 clusters. We validated the function and expression of miR-365, miR-451, and miR-99b, which were found in distinct clusters. Inhibition of miR-365 increased osteoclast number but decreased osteoclast size, while miR-99b inhibition decreased both osteoclast number and size. In contrast, overexpression of miR-451 had no effect. Computational analyses predicted mTOR, PI3 kinase/AKT, cell-matrix interactions, actin cytoskeleton organization, focal adhesion, and axon guidance pathways to be top targets of several miRNA clusters. This suggests that many miRNA clusters differentially expressed during osteoclastogenesis converge on some key functional pathways. Overall, our study is unique in that we identified miRNAs differentially expressed during early, mid, and late osteoclastogenesis in a population of primary mouse bone marrow cells enriched for osteoclast progenitors. This novel data set contributes to our understanding of the molecular mechanisms regulating the complex process of osteoclast differentiation.


Asunto(s)
MicroARNs/genética , Osteoclastos/citología , Osteoclastos/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Células Cultivadas , Masculino , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción NFATC/metabolismo , Osteoclastos/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ligando RANK/farmacología , Serina-Treonina Quinasas TOR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA