Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 860
Filtrar
1.
World J Gastrointest Surg ; 16(9): 3065-3073, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39351550

RESUMEN

BACKGROUND: Primary lung cancer is the leading cause of cancer-related death worldwide. Common metastatic sites include the brain, liver, bones, and adrenal glands. However, gastric metastases from lung cancer are rare. This case may be the first report of a combined gastroscopic and laparoscopic resection for gastric metastatic adenosquamous carcinoma (ASC). CASE SUMMARY: We report a case of gastric metastasis from lung cancer. The patient was a 61-year-old Han Chinese female who first attended our hospital complaining of a persistent cough, leading to the diagnosis of advanced-stage lung adenocarcinoma. After more than four years of chemotherapy, the patient began to experience epigastric pain. Endoscopy was performed, and pathological examination of biopsy specimens confirmed that the gastric lesion was a metastasis from lung cancer. The lesion was successfully resected by combined gastroscopy and laparoscopy. Histopathological examination of the resected gastric specimen revealed ASC. CONCLUSION: Gastric metastases from lung cancer are rare. Endoscopy, histological and immunohistochemical staining are useful for diagnosing metastatic lesions. Surgical management may provide extended survival in appropriately selected patients.

3.
Cell Signal ; 124: 111406, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39270916

RESUMEN

Cystathionine ß-synthase (CBS) occupies a key position as the initiating and rate-limiting enzyme in the sulfur transfer pathway and plays a vital role in health and disease. CBS is responsible for regulating the metabolism of cysteine, the precursor of glutathione (GSH), an important antioxidant in the body. Additionally, CBS is one of the three enzymes that produce hydrogen sulfide (H2S) in mammals through a variety of mechanisms. The dysregulation of CBS expression in cancer cells affects H2S production through direct or indirect pathways, thereby influencing cancer growth and metastasis by inducing angiogenesis, facilitating proliferation, migration, and invasion, modulating cellular energy metabolism, promoting cell cycle progression, and inhibiting apoptosis. It is noteworthy that CBS expression exhibits complex changes in different cancer models. In this paper, we focus on the CBS synthesis and metabolism, tissue distribution, potential mechanisms influencing tumor growth, and relevant signaling pathways. We also discuss the impact of pharmacological CBS inhibitors and silencing CBS in preclinical cancer models, supporting their potential as targeted cancer therapies.

4.
Artículo en Inglés | MEDLINE | ID: mdl-39323204

RESUMEN

Endoscopic nasopharyngectomy represents a significant intervention for recurrent nasopharyngeal carcinoma (NPC). Various surgical techniques, including transnasal and transoral approaches, are employed. However, the impact of these procedures on nasal airflow dynamics is not well understood. This computational fluid dynamics (CFD) study aimed to investigate alterations in nasal airflow and air conditioning following endoscopic nasopharyngectomy. A 55-year-old male patient with recurrent NPC was selected, whose CT data were utilized for image reconstruction. A preoperative model and two postoperative models, including the transnasal and transoral approach models, were established. The airflow patterns and various CFD parameters were analyzed. In the postoperative models, the high-speed airflow went along the soft palate and into the nasopharyngeal outlet, and there was the low-speed turbulence in the expanded nasopharyngeal cavity. Compared to the preoperative model, the postoperative models exhibited reductions in surface-to-volume ratio, nasal resistance, airflow velocity and proportion of high wall shear stress regions in nasopharynx. The changing trends of nasopharyngeal air temperature and humidity in the preoperative and transoral models were consistent. The heating and humidification efficiency decreased in the transnasal model compared to the transoral model. The endoscopic nasopharyngectomy for recurrent NPC affects the nasal airflow and warming and humidification function. The transoral approach has less influence on aerodynamics of the upper airway compared to the transnasal approach. From a CFD perspective, the endoscopic nasopharyngectomy does not increase the risk of postoperative complications, including the empty nose syndrome and the carotid blowout syndrome.

5.
Artículo en Inglés | MEDLINE | ID: mdl-39276087

RESUMEN

Significance: Musculoskeletal diseases seriously affect global health, but their importance is greatly underestimated. These diseases often afflict the elderly, leading to disability, paralysis, and other complications. Hydrogen sulfide (H2S) plays an important role in the occurrence and development of musculoskeletal diseases, which may have potential therapeutic significance for these diseases. Recent Advances: Recently, it has been found that many musculoskeletal diseases, such as osteoporosis, periodontitis, muscle atrophy, muscle ischemia-reperfusion injury, muscle contraction under high fever, arthritis, and disc herniation, can be alleviated by treatment with H2S. H2S may be conducive to the development of multiple myeloma. The mechanism of action of H2S in the musculoskeletal system has been partly elucidated. A variety of H2S donors and nano-delivery systems provide promising prospects for H2S-based therapies. Critical Issues: Related research remains at the level of cell or animal experiments, but clinical research is lacking. The roles of H2S in more musculoskeletal disorders remain largely unknown. The serious consequences of musculoskeletal diseases have not been widely concerned. Targeted delivery of H2S remains a challenging task in musculoskeletal diseases. Future Directions: Develop therapeutic drugs for musculoskeletal diseases based on H2S and test their safety, efficacy, and tolerance. Explore the combination of current drugs for musculoskeletal diseases with H2S-releasing components to improve the therapeutic efficacy and avoid side effects. Carry out relevant clinical trials to verify the possibility of its widespread use. Antioxid. Redox Signal. 00, 000-000.

6.
World J Diabetes ; 15(9): 1932-1941, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39280178

RESUMEN

BACKGROUND: Diabetes mellitus type 2 (T2DM) is formed by defective insulin secretion with the addition of peripheral tissue resistance of insulin action. It has been affecting over 400 million people all over the world. AIM: To explore the pathogenesis of T2DM and to develop and implement new prevention and treatment strategies for T2DM. METHODS: Receiver operating characteristic (ROC) curve analysis was used to conduct diagnostic markers. The expression level of genes was determined by reverse transcription-PCR as well as Western blot. Cell proliferation assays were performed by cell counting kit-8 (CCK-8) tests. At last, T2DM mice underwent Roux-en-Y gastric bypass surgery. RESULTS: We found that NPAS2 was significantly up-regulated in islet ß cell apoptosis of T2DM. The ROC curve revealed that NPAS2 was capable of accurately diagnosing T2DM. NPAS2 overexpression did increase the level of KANK1. In addition, the CCK-8 test revealed knocking down NPAS2 and KANK1 increased the proliferation of MIN6 cells. At last, we found that gastric bypass may treat type 2 diabetes by down-regulating NPAS2 and KANK1. CONCLUSION: This study demonstrated that NPAS2 induced ß cell dysfunction by regulating KANK1 expression in type 2 diabetes, and it may be an underlying therapy target of T2DM.

7.
Front Immunol ; 15: 1450998, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39281670

RESUMEN

Programmed cell death (PCD) is a fundamental biological process for maintaining cellular equilibrium and regulating development, health, and disease across all living organisms. Among the various types of PCD, apoptosis plays a pivotal role in numerous diseases, notably cancer. Cancer cells frequently develop mechanisms to evade apoptosis, increasing resistance to standard chemotherapy treatments. This resistance has prompted extensive research into alternative mechanisms of programmed cell death. One such pathway is oncosis, characterized by significant energy consumption, cell swelling, dilation of the endoplasmic reticulum, mitochondrial swelling, and nuclear chromatin aggregation. Recent research suggests that oncosis can impact conditions such as chemotherapeutic cardiotoxicity, myocardial ischemic injury, stroke, and cancer, mediated by specific oncosis-related proteins. In this review, we provide a detailed examination of the morphological and molecular features of oncosis and discuss various natural or small molecule compounds that can induce this type of cell death. Additionally, we summarize the current understanding of the molecular mechanisms underlying oncosis and its role in both normal physiology and pathological conditions. These insights aim to illuminate future research directions and propose innovative strategies for leveraging oncosis as a therapeutic tool against human diseases and cancer resistance.


Asunto(s)
Apoptosis , Neoplasias , Humanos , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Animales , Transducción de Señal , Muerte Celular , Mitocondrias/metabolismo
8.
Ear Nose Throat J ; : 1455613241271635, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39331956

RESUMEN

Objectives: To explore the risk factors of early postoperative taste disturbance (EPTD) after type I endoscopic tympanoplasty and operative modification strategies to improve taste disturbance. Methods: This was a controlled study. One hundred and twenty-four patients who underwent type I endoscopic tympanoplasty with tragal cartilage graft were separated evenly into control and modified groups. The full-thickness tragus cartilage graft was placed close to the bony annulus to ensure drum integrity in the control group, and in the modified group, the cartilage graft was not in contact with the posterior-superior bony annulus, and the inferior-posterior of the scutum. Univariate and multivariate models were used to analyze the possible factors affecting EPTD and the prognosis of taste recovery. Results: The incidence of EPTD was significantly lower in the modification group (24.19%) than in the control group (56.45%) (OR: 4.24, 95% CI: 1.93-9.33, P < .001). Surgical manipulation of the chorda tympani nerve resulted in a higher incidence of EPTD (OR: 2.43; 95% CI: 1.06-5.57, P = .035). The size of the graft did not affect taste disturbance. No difference in the taste recovery rate was observed between the control and test groups (Z = -1.57, P = .116) after 3 months. The recovery rate of patients with manipulated chorda tympani nerves was still lower than that of patients without at 3 months (Z = -2.74, P = .006). Conclusion: Modified surgery and reduced manipulation of the chorda tympani nerve effectively reduce EPTD. Manipulated chorda tympani nerves may have a persistent effect on taste recovery.

9.
J Cancer ; 15(16): 5218-5229, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39247592

RESUMEN

Few robust biomarkers are available for distant metastatic colorectal cancer (CRC) patients. Aberrant high expression of CDH3 has been reported in advanced CRC patients, but the value of CDH3 as a biomarker for the diagnosis and prognosis of distant metastatic CRC patients remains to be evaluated. In this study, we explored the serum levels of CDH3 in different stages of CRC patients and sought to determine whether serum CDH3 serves as an independent biomarker for distant metastatic CRC patients. We analyzed the serum CDH3 levels by ELISA in a cohort of CRCs (n=96) and normal controls (n=28). We compared the serum CDH3 levels between normal controls and different stages of CRCs. As a potential diagnostic marker of distant metastatic CRC, the specificity and sensitivity of serum CDH3 were evaluated. Multivariate analysis was also performed to determine whether serum CDH3 was an independent risk factor. Moreover, the changes of serum CDH3 levels were monitored and analyzed before and after palliative chemotherapy. Serum levels of CDH3, CA24-2, CA19-9, CA72-4, and CEA were significantly elevated in distant metastatic CRCs. CA24-2 (r=0.24, P=0.01), CA19-9 (r=0.20, P=0.03), CA72-4 (r=0.64, P<0.0001), and CEA (r=0.31, P=0.0012) all had a certain correlation with CDH3. After three cycles of palliative chemotherapy, levels of CDH3, CA24-2, CA19-9, CA72-4, and CEA of partial response CRCs were reduced to 38.8% (95% confidence interval [CI]: 30.95%-53.77%), 57.73% (95% CI: 2.085%-73.83%), 50.33% (95% CI: 9.935%-79.42%), 74.74% (95% CI: 25.21%-88.00%), and 59.16% (95% CI: 12.65%-83.56%) of baseline, respectively. The areas under the receiver operating characteristic curves of CDH3, CA24-2, CA19-9, CA72-4, and CEA with chemotherapy response were 0.900, 0.597, 0.635, 0.608, and 0.507, respectively. Serum CDH3 is an effective serum biomarker for the diagnosis of distant metastatic CRCs and monitoring response to palliative chemotherapy in distant metastatic CRCs.

10.
Clin Case Rep ; 12(9): e9412, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39238508

RESUMEN

We report a rare case of thyroid diffuse large B-cell lymphoma with a BRAF V600E mutation, which mimics poorly differentiated thyroid cancer in fine needle aspiration cytology.

11.
Chem Biol Interact ; 403: 111226, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39237072

RESUMEN

Hydrogen sulfide (H2S), an endogenous gasotransmitter, plays a key role in several critical physiological and pathological processes in vivo, including vasodilation, anti-infection, anti-tumor, anti-inflammation, and angiogenesis. In colorectal cancer (CRC), aberrant overexpression of H2S-producing enzymes has been observed. Due to the important role of H2S in the proliferation, growth, and death of cancer cells, H2S can serve as a potential target for cancer therapy. In this review, we thoroughly analyzed the underlying mechanism of action of H2S in CRC from the following aspects: the synthesis and catabolism of H2S in CRC cells and its effect on cell signal transduction pathways; the inhibition effects of exogenous H2S donors with different concentrations on the growth of CRC cells and the underlying mechanism of H2S in garlic and other natural products. Furthermore, we elucidate the expression characteristics of H2S in CRC and construct a comprehensive H2S-related signaling pathway network, which has important basic and practical significance for promoting the clinical research of H2S-related drugs.

12.
Nitric Oxide ; 152: 19-30, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39260562

RESUMEN

The mutual regulation between hydrogen sulfide (H2S) and microRNA (miRNA) is involved in the development of many diseases, including cancer, cardiovascular disease, inflammatory disease, and high-risk pregnancy. Abnormal expressions of endogenous H2S-producing enzyme and miRNA in tissues and cells often indicate the occurrence of diseases, so the maintenance of their normal levels in the body can mitigate damages caused by various factors. Many studies have found that H2S can promote the migration, invasion, and proliferation of cancer cells by regulating the expression of miRNA, while many H2S donors can inhibit cancer progression by interfering with the proliferation, apoptosis, cell cycle, metastasis, and angiogenesis of cancer cells. Furthermore, the mutual regulation between H2S and miRNA can also prevent cell injury in cardiovascular disease and inflammatory disease through anti-inflammation, anti-oxidation, anti-apoptosis, and pro-autophagy. In addition, H2S can promote angiogenesis and relieve vasoconstriction by regulating the expression of miRNA, thereby improving fetal growth in high-risk pregnancy. In this review, we discuss the mechanism of mutual regulation between H2S and miRNA in various diseases, which may provide reliable therapeutic targets for these diseases.

13.
J Cardiovasc Pharmacol ; 84(4): 468-478, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39115898

RESUMEN

ABSTRACT: The hypothalamic paraventricular nucleus (PVN) plays a central role in regulating cardiovascular activity and blood pressure. We administered hydroxylamine hydrochloride (HA), a cystathionine-ß-synthase inhibitor, into the PVN to suppress endogenous hydrogen sulfide and investigate its effects on the mitogen-activated protein kinase (MAPK) pathway in high salt (HS)-induced hypertension. We randomly divided 40 male Dahl salt-sensitive rats into 4 groups: the normal salt (NS) + PVN vehicle group, the NS + PVN HA group, the HS + PVN vehicle group, and the HS + PVN HA group, with 10 rats in each group. The rats in the NS groups were fed a NS diet containing 0.3% NaCl, while the HS groups were fed a HS diet containing 8% NaCl. The mean arterial pressure was calculated after noninvasive measurement using an automatic sphygmomanometer to occlude the tail cuff once a week. HA or vehicle was infused into the bilateral PVN using Alzet osmotic mini pumps for 6 weeks after the hypertension model was successfully established. We measured the levels of H 2 S in the PVN and plasma norepinephrine using enzyme linked immunosorbent assay. In addition, we assessed the parameters of the MAPK pathway, inflammation, and oxidative stress through western blotting, immunohistochemical analysis, or real-time polymerase chain reaction. In this study, we discovered that decreased levels of endogenous hydrogen sulfide in the PVN contributed to the onset of HS-induced hypertension. This was linked to the activation of the MAPK signaling pathway, proinflammatory cytokines, and oxidative stress in the PVN, as well as the activation of the sympathetic nervous system.


Asunto(s)
Modelos Animales de Enfermedad , Sulfuro de Hidrógeno , Hipertensión , Núcleo Hipotalámico Paraventricular , Ratas Endogámicas Dahl , Cloruro de Sodio Dietético , Animales , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/metabolismo , Núcleo Hipotalámico Paraventricular/enzimología , Núcleo Hipotalámico Paraventricular/fisiopatología , Masculino , Sulfuro de Hidrógeno/metabolismo , Hipertensión/inducido químicamente , Hipertensión/fisiopatología , Hipertensión/metabolismo , Norepinefrina/metabolismo , Hidroxilamina/farmacología , Presión Arterial/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratas , Estrés Oxidativo/efectos de los fármacos , Inhibidores Enzimáticos/farmacología
14.
Cell Death Differ ; 31(9): 1184-1201, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39103535

RESUMEN

Ferroptosis holds significant potential for application in cancer therapy. However, ferroptosis inducers are not cell-specific and can cause phospholipid peroxidation in both tumor and non-tumor cells. This limitation greatly restricts the use of ferroptosis therapy as a safe and effective anticancer strategy. Our previous study demonstrated that macrophages can engulf ferroptotic cells through Toll-like receptor 2 (TLR2). Despite this advancement, the precise mechanism by which phospholipid peroxidation in macrophages affects their phagocytotic capability during treatment of tumors with ferroptotic agents is still unknown. Here, we utilized flow sorting combined with redox phospholipidomics to determine that phospholipid peroxidation in tumor microenvironment (TME) macrophages impaired the macrophages ability to eliminate ferroptotic tumor cells by phagocytosis, ultimately fostering tumor resistance to ferroptosis therapy. Mechanistically, the accumulation of phospholipid peroxidation in the macrophage endoplasmic reticulum (ER) repressed TLR2 trafficking to the plasma membrane and caused its retention in the ER by disrupting the interaction between TLR2 and its chaperone CNPY3. Subsequently, this ER-retained TLR2 recruited E3 ligase MARCH6 and initiated the proteasome-dependent degradation. Using redox phospholipidomics, we identified 1-steaoryl-2-15-HpETE-sn-glycero-3-phosphatidylethanolamine (SAPE-OOH) as the crucial mediator of these effects. Conclusively, our discovery elucidates a novel molecular mechanism underlying macrophage phospholipid peroxidation-induced tumor resistance to ferroptosis therapy and highlights the TLR2-MARCH6 axis as a potential therapeutic target for cancer therapy.


Asunto(s)
Ferroptosis , Peroxidación de Lípido , Macrófagos , Fagocitosis , Fosfolípidos , Fosfolípidos/metabolismo , Macrófagos/metabolismo , Animales , Ratones , Humanos , Receptor Toll-Like 2/metabolismo , Microambiente Tumoral , Línea Celular Tumoral , Ratones Endogámicos C57BL , Neoplasias/metabolismo , Neoplasias/patología , Células RAW 264.7
15.
Bioorg Chem ; 151: 107701, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39154520

RESUMEN

Four new diterpenoid tropolones, salvirrddones A-D (1-4), and four new icetexanes, salvirrddices A-D (9-12), along with thirteen new 11,12-seco-norabietane diterpenoids, salvirrddnor A-M (14-24, 31, 32) and sixteen known compounds (5-8, 13, 25-30, 33-37), were isolated from the roots and rhizomes of Salvia castanea Diels f. tomentosa Stib. Their structures were elucidated by comprehensive spectroscopic analyses, quantum chemical calculations, and X-ray crystallography. Structurally, compounds 1-8 represent a class of rare natural products featuring a unique cyclohepta-2,4,6-trienone moiety with diterpenoid skeletons. Bioassays showed that only diterpenoid tropolones 3, 5, 6, and 7 exhibited significant activity against several human cancer cell lines with IC50 values ranging from 3.01 to 11.63 µM. Additionally, 3 was shown to inhibit Hep3B cell proliferation, block the G0/G1 phase of the cell cycle, induce mitochondrial dysfunction and oxidative stress, promote apoptosis, as well as inhibit migration and invasion in vitro. Meanwhile, 3 demonstrated anti-proliferative, pro-apoptotic, and migration-inhibitory effects in the Hep3B xenograft zebrafish model in vivo. Network pharmacological analysis and molecular docking results suggested that 3 may treat hepatocellular carcinoma (HCC) through the PI3K-Akt signaling pathway, as well as by binding PARP1 and CDK2 targets. Overall, the present results extremely expand the repertoire of diterpenoids from natural products and may provide a novel chemical scaffold for the discovery of new antitumor drugs.


Asunto(s)
Antineoplásicos Fitogénicos , Apoptosis , Proliferación Celular , Diterpenos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Salvia , Pez Cebra , Humanos , Salvia/química , Proliferación Celular/efectos de los fármacos , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Relación Estructura-Actividad , Animales , Estructura Molecular , Diterpenos/farmacología , Diterpenos/química , Diterpenos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Línea Celular Tumoral
16.
J Exp Med ; 221(10)2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39167075

RESUMEN

Changes in mechanosensitive ion channels following radiation have seldom been linked to therapeutic sensitivity or specific factors involved in antitumor immunity. Here, in this study, we found that the mechanical force sensor, Piezo2, was significantly upregulated in tumor cells after radiation, and Piezo2 knockout in tumor cells enhanced tumor growth suppression by radiotherapy. Specifically, loss of Piezo2 in tumor cells induced their IL-15 expression via unleashing JAK2/STAT1/IRF-1 axis after radiation. This increase in IL-15 activates IL-15Rα on tumor-infiltrating CD8+ T cells, thereby leading to their augmented effector and stem cell-like properties, along with reduced terminal exhausted feature. Importantly, Piezo2 expression was negatively correlated with CD8 infiltration, as well as with radiosensitivity of patients with rectum adenocarcinoma receiving radiotherapy treatment. Together, our findings reveal that tumor cell-intrinsic Piezo2 induces radioresistance by dampening the IRF-1/IL-15 axis, thus leading to impaired CD8+ T cell-dependent antitumor responses, providing insights into the further development of combination strategies to treat radioresistant cancers.


Asunto(s)
Linfocitos T CD8-positivos , Interleucina-15 , Canales Iónicos , Tolerancia a Radiación , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Animales , Humanos , Canales Iónicos/metabolismo , Canales Iónicos/genética , Tolerancia a Radiación/genética , Ratones , Interleucina-15/metabolismo , Interleucina-15/genética , Línea Celular Tumoral , Janus Quinasa 2/metabolismo , Janus Quinasa 2/genética , Factor 1 Regulador del Interferón/metabolismo , Factor 1 Regulador del Interferón/genética , Ratones Endogámicos C57BL , Femenino , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Masculino , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT1/genética , Transducción de Señal
17.
MedComm (2020) ; 5(9): e661, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39156767

RESUMEN

In the past, hydrogen sulfide (H2S) was recognized as a toxic and dangerous gas; in recent years, with increased research, we have discovered that H2S can act as an endogenous regulatory transmitter. In mammals, H2S-catalyzing enzymes, such as cystathionine-ß-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase, are differentially expressed in a variety of tissues and affect a variety of biological functions, such as transcriptional and posttranslational modification of genes, activation of signaling pathways in the cell, and metabolic processes in tissues, by producing H2S. Various preclinical studies have shown that H2S affects physiological and pathological processes in the body. However, a detailed systematic summary of these roles in health and disease is lacking. Therefore, this review provides a thorough overview of the physiological roles of H2S in different systems and the diseases associated with disorders of H2S metabolism, such as ischemia-reperfusion injury, hypertension, neurodegenerative diseases, inflammatory bowel disease, and cancer. Meanwhile, this paper also introduces H2S donors and novel release modes, as well as the latest preclinical experimental results, aiming to provide researchers with new ideas to discover new diagnostic targets and therapeutic options.

18.
Ear Nose Throat J ; : 1455613241266492, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39183573

RESUMEN

Objectives: To avoid postoperatively acquired cholesteatoma, whether there was any squamous epithelial tissues residue around the tip of the malleus handle, and the need to remove these tissues were explored. Methods: This prospective study enrolled 197 patients who underwent endoscopic tympanoplasty. A postoperative pathological evaluation of the tissue around the tip of the malleus handle was performed to determine the presence of squamous epithelium. Analyzed correlation of epithelial remnants with exposure of malleus handle and microbial infection of middle ear. Results: The detection rate of squamous epithelial retention around the tip of the malleus handle differed significantly among patients with adhesive otitis media (AdOM), acquired cholesteatoma, and chronic suppurative otitis media (CSOM). The detection rate was significantly higher in the acquired cholesteatoma group than in the AdOM and CSOM groups (P < .001). The rate of squamous epithelial retention around the tip of the malleus handle was not significantly associated with microbial infection of the middle ear, the surgical side (P = .672), dry or wet ear status (P = .702), or exposure of the malleus handle (P = .06). Conclusions: In patients with acquired cholesteatoma, AdOM, or COM with severe tympanic sclerosis, the tissue around the tip of the malleus handle should be removed completely. For patients with simple COM, that is, without tympanic sclerosis or keratinizing stratified squamous epithelium at the edge of the perforation, the tissue can be retained.

19.
Neuropharmacology ; 260: 110129, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39179173

RESUMEN

Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis during chronic stress is essential for the pathogenesis of depression, and increased activity of cAMP response element binding protein (CREB)-regulated transcription co-activator 1 (CRTC1) in the paraventricular nucleus (PVN) plays a critical role. As a well-investigated microRNA (miRNA), miR-184 has two forms, miR-184-3p and miR-184-5p. Recently, miRNAs target genes predictive analysis and dual-luciferase reporter assays identified an inhibitory role of miR-184-3p on CRTC1 expression. Therefore, we speculated that miR-184-3p regulation was responsible for the effects of chronic stress on CRTC1 in the PVN. Various methods, including the chronic social defeat stress (CSDS) model of depression, behavioral tests, Western blotting, co-immunoprecipitation (Co-IP), quantitative real-time reverse transcription PCR (qRT-PCR), immunofluorescence, and adeno-associated virus (AAV)-mediated gene transfer, were used. CSDS evidently downregulated the level of miR-184-3p, but not miR-184-5p, in the PVN. Genetic knockdown and pharmacological inhibition of miR-184-3p in the PVN induced various depressive-like symptoms (e.g., abnormal behaviors, HPA hyperactivity, enhanced CRTC1 function in PVN neurons, downregulation of hippocampal neurogenesis, and decreased brain-derived neurotrophic factor (BDNF) signaling) in naïve male C57BL/6J mice. In contrast, genetic overexpression and pharmacological activation of miR-184-3p in the PVN produced significant beneficial effects against CSDS. MiR-184-3p in the PVN was necessary for the antidepressant actions of two well-known SSRIs, fluoxetine and paroxetine. Collectively. miR-184-3p was also implicated in the neurobiology of depression and may be a viable target for novel antidepressants.


Asunto(s)
Depresión , Sistema Hipotálamo-Hipofisario , Ratones Endogámicos C57BL , MicroARNs , Núcleo Hipotalámico Paraventricular , Sistema Hipófiso-Suprarrenal , Estrés Psicológico , Animales , MicroARNs/metabolismo , MicroARNs/genética , Núcleo Hipotalámico Paraventricular/metabolismo , Masculino , Ratones , Sistema Hipotálamo-Hipofisario/metabolismo , Depresión/metabolismo , Depresión/genética , Sistema Hipófiso-Suprarrenal/metabolismo , Estrés Psicológico/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Derrota Social
20.
Artículo en Inglés | MEDLINE | ID: mdl-38995769

RESUMEN

OBJECTIVE: This study aimed to evaluate the clinical characteristics and features of conventional ultrasound (CUS) and contrast-enhanced ultrasound (CEUS) in differentiating between renal urothelial carcinomas (RUC) and endophytic clear cell renal cell carcinomas (EccRCC). METHODS: A total of 72 RUCs and 120 EccRCCs confirmed by pathology were assessed retrospectively. Both CUS and CEUS were performed within 4 weeks before the surgery. Logistic regression analyses were used to select statistically significant variables of clinical, CUS, and CEUS features for the differentiation of RUC and EccRCC. Sensitivity (SEN), specificity (SPE), and the area under the receiver-operating characteristic curve (AUC) were assessed for diagnostic performance. Inter- and intra-observer agreements of CUS and CEUS features were evaluated using the intra-class correlation coefficient(ICC). RESULTS: Multiple logistic regression analysis demonstrated that clinical (age >50 years old and hematuria), CUS (size <4.0 cm, hypo-echogenicity, irregular shape, hydronephrosis) and CEUS (absence of non-enhancement area, iso- /hypo-enhancement in cortical phase and absence of rim-like enhancement) features were independent factors for RUC diagnosis. When combining clinical characters with CUS and CEUS features into an integrated diagnostic criterion, the AUC reached 0.917 (95% CI 0.873-0.961), with a sensitivity of 95.8% and specificity of 87.5%. ICC ranged from 0.756 to 0.907 for inter-observer agreement and 0.791 to 0.934 for intra-observer agreement for CUS and CEUSfeatures. CONCLUSIONS: The combination of clinical features of age and hematuria with imaging features of CUS and CEUS can be useful for the differentiation between RUC and EccRCC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA