Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Exp Ther Med ; 27(3): 95, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38313582

RESUMEN

Circular RNAs (circRNAs) serve an essential role in the occurrence and development of cholangiocarcinoma, but the expression and function of circRNA in biliary atresia (BA) is not clear. In the present study, circRNA expression profiles were investigated in the liver tissues of patients with BA as well as in the choledochal cyst (CC) tissues of control patients using RNA sequencing. A total of 78 differentially expressed circRNAs (DECs) were identified between the BA and CC tissues. The expression levels of eight circRNAs (hsa_circ_0006137, hsa_circ_0079422, hsa_circ_0007375, hsa_circ_0005597, hsa_circ_0006961, hsa_circ_0081171, hsa_circ_0084665 and hsa_circ_0075828) in the liver tissues of the BA group and control group were measured using reverse transcription-quantitative polymerase chain reaction. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis demonstrated that the identified DECs are involved in a variety of biological processes, including apoptosis and metabolism. In addition, based on the GO and KEGG pathway enrichment analyses, it was revealed that target genes that can be affected by circRNAs regulatory network were enriched in the TGF-ß signaling pathway, EGFR tyrosine kinase inhibitor resistance pathway and transcription factor regulation pathway as well as other pathways that may be associated with the pathogenesis of BA. The present study revealed that circRNAs are potentially implicated in the pathogenesis of BA and could help to find promising targets and biomarkers for BA.

2.
Biology (Basel) ; 12(1)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36671800

RESUMEN

The Chinese razor clam (Sinonovacula constricta) is an important for Chinese aquaculture marine bivalve that naturally occurs across intertidal and estuarine areas subjected to significant changes in salinity level. However, the information on the molecular mechanisms related to high salinity stress in the species remain limited. In this study, nine gill samples of S. constricta treated with 20, 30, and 40 ppt salinity for 24 h were used for whole-transcriptome RNA sequencing, and a regulatory network of competing endogenous RNAs (ceRNAs) was constructed to better understand the mechanisms responsible for adaptation of the species to high salinity. A total of 83,262 lncRNAs, 52,422 mRNAs, 2890 circRNAs, and 498 miRNAs were identified, and 4175 of them displayed differential expression pattern among the three groups examined. The KEGG analyses of differentially expressed RNAs evidenced that amino acid synthesis and membrane transport were the dominant factors involved in the adaptation of the Chinese razor clam to acute salinity increase, while lipid metabolism and signaling played only a supporting role. In addition, lncRNA/circRNA-miRNA-mRNA regulatory networks (ceRNA network) showed clearly regulatory relationships among different RNAs. Moreover, the expression of four candidate genes, including tyrosine aminotransferase (TAT), hyaluronidase 4 (HYAL4), cysteine sulfinic acid decarboxylase (CSAD), and ∆1-pyrroline-5-carboxylate synthase (P5CS) at different challenge time were detected by qRT-PCR. The expression trend of TAT and HYAL4 was consistent with that of the ceRNA network, supporting the reliability of established network. The expression of TAT, CSAD, and P5CS were upregulated in response to increased salinity. This might be associated with increased amino acid synthesis rate, which seems to play an essential role in adaptation of the species to high salinity stress. In contrast, the expression level of HYAL4 gene decreased in response to elevated salinity level, which is associated with reduction Hyaluronan hydrolysis to help maintain water in the cell. Our findings provide a very rich reference for understanding the important role of ncRNAs in the salinity adaptation of shellfish. Moreover, the acquired information may be useful for optimization of the artificial breeding of the Chinese razor clam under aquaculture conditions.

3.
Eur J Radiol ; 144: 109991, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34638081

RESUMEN

PURPOSE: This systematic review and meta-analysis aimed to evaluate the diagnostic performance of ultrasound elastography in the differentiation of benign and malignant breast non-mass lesions (NMLs). METHODS: PubMed, Cochrane Library, and Embase databases were searched for eligible studies up to end of June 2021. The diagnostic performance of elastography for NMLs was investigated using pooled sensitivity and specificity, likelihood ratio, diagnostic odds ratio (DOR), post-test probability, and the area under hierarchical summary receiver operating characteristic curve (HSROC). RESULTS: Eleven studies involving 812 NMLs (malignant 414) were included. The pooled sensitivity, specificity, DOR, positive likelihood ratio, and negative likelihood of elastography for the differentiation of benign and malignant breast NMLs were 79% (95 %CI: 71-85), 86% (95 %CI: 79-91), 23.32 (95 %CI: 13.38-40.66), 5.67 (95 %CI: 3.79-8.47), and 0.24 (95 %CI: 0.17-0.34), respectively. No significant publication bias existed. The area under the HSROC curve was 90% (95 %CI: 87-92). Fagan plots demonstrated good clinical utility. However, substantial heterogeneity existed. Country, measurement index, and number of lesions served as potential sources of heterogeneity. CONCLUSIONS: The results of this study suggest that elastography has high diagnostic accuracy in differentiating between malignant and benign NMLs. Elastography can be a feasible and non-invasive tool for breast NMLs.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Diagnóstico Diferencial , Humanos , Curva ROC , Sensibilidad y Especificidad
4.
Mol Biol Rep ; 47(12): 9579-9593, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33245503

RESUMEN

High ammonia can inhibit the survival and growth, and even cause mortality of razor clam (S. constricta). The accumulation of ammonia to lethal concentrations in some invertebrates may be partially prevented by converting some of the ammonia into glutamine (Gln). Glutamine dehydrogenase (GDH) and glutamine synthetase (GS) have been widely implicated a central role in response to ammonia stress. However, the molecular and physiological response of GDH and GS to ammonia alterations has not yet been determined in clams. To investigate the possible participatory role of GDH and GS genes in altered ammonia conditions, we have cloned their gene sequences and examined the mRNA expression and western blotting under ammonia exposure in S. constricta (ScGDH and ScGS), and detected the levels of GS and GDH, and the content of glutamate (Glu) and Gln. The full-length cDNA of ScGDH was 3924 bp, with a 1629 bp open reading frame (ORF) encoding a 542 amino-acid polypeptide. The complete cDNA sequence for ScGS had 2739 bp with an ORF of 1110 bp encoding 369 amino acids. To investigate ammonia detoxification strategies, the clams were exposed to ammonia for 96 h at four different concentrations (0, 100, 140, and 180 mg/L). Exposure to ammonia resulted in a significant increase of glutamate concentration and Gln in the haemocytes. GDH activity, GDH relative mRNA and protein expression, GS activity, GS relative mRNA and protein expression increased significantly and showed a pronounced time and dosage interaction in the liver. The results suggested that the protective strategies of Gln formation existed in S. constricta, which could convert ammonia to non- or less toxic nitrogenous compounds on the exposure of ammonia. Glutamate content in the haemocytes increased significantly, which is to ensure sufficient Glu to meet the needs for GS to catalyze the conversion of ammonia to Gln. We proposed that the induction of Glu synthesis-related genes and the subsequent formation of the active protein occurred in preparation for the increased capacity of the body to convert ammonia, into Gln. The results of this study suggested that GDH and GS play an important role in the synthesis of Gln, emphasizing, the protective strategies of Gln formation in S. constricta convert ammonia to nontoxic or less toxic nitrogenous compounds upon exposure to ammonia.


Asunto(s)
Amoníaco/metabolismo , Bivalvos/enzimología , Glutamato-Amoníaco Ligasa/metabolismo , Glutamina/metabolismo , Inactivación Metabólica/genética , Oxidorreductasas/metabolismo , Secuencia de Aminoácidos , Animales , Bivalvos/genética , Clonación Molecular , Pruebas de Enzimas , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Glutamato-Amoníaco Ligasa/genética , Hemocitos/citología , Hemocitos/enzimología , Hígado/citología , Hígado/enzimología , Sistemas de Lectura Abierta , Oxidorreductasas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
5.
Bioresour Technol ; 300: 122665, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31918303

RESUMEN

Microalgae bio-oil production is related to the sustainable use of world energy in the future. In the present work, catalytic pyrolysis and liquefaction behavior of microalgae for bio-oil production were investigated. The results show that the rare earth compounds as catalysts contributed to significantly accelerating the pyrolysis of microalgae via reducing the activation energy of pyrolysis process. Ce(II)/HZSM-5 presented the optimal catalytic pyrolysis and liquefaction effects by helping cut the microalgae molecule chains. The maximum bio-oil yield amounted to 49.71 wt% at the catalyst concentration of 5 wt%. The chemical components of the Spirulina bio-oil were composed of carboxylic acids, ketones, olefins, amides, ethers, esters, and partially cyclic N-containing compounds. Although the combustion performances of the Spirulina bio-oil are worse than those of the diesel fuel, it is superior to the reported rice husk bio-oil, suggesting a promising potential application prospect.


Asunto(s)
Microalgas , Biocombustibles , Catálisis , Calor , Aceites de Plantas , Polifenoles , Pirólisis
6.
Int J Mol Sci ; 20(18)2019 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-31489906

RESUMEN

Effector proteins secreted by plant pathogens play important roles in promoting colonization. Blumeria effector candidate (BEC) 1019, a highly conserved metalloprotease of Blumeria graminis f. sp. hordei (Bgh), is essential for fungal haustorium formation, and silencing BEC1019 significantly reduces Bgh virulence. In this study, we found that BEC1019 homologs in B. graminis f. sp. tritici (Bgt) and Gaeumannomyces graminis var. tritici (Ggt) have complete sequence identity with those in Bgh, prompting us to investigate their functions. Transcript levels of BEC1019 were abundantly induced concomitant with haustorium formation in Bgt and necrosis development in Ggt-infected plants. BEC1019 overexpression considerably increased wheat susceptibility to Bgt and Ggt, whereas silencing this gene using host-induced gene silencing significantly enhanced wheat resistance to Bgt and Ggt, which was associated with hydrogen peroxide accumulation, cell death, and pathogenesis-related gene expression. Additionally, we found that the full and partial sequences of BEC1019 can trigger cell death in Nicotiana benthamiana leaves. These results indicate that Bgt and Ggt can utilize BEC1019 as a virulence effector to promote plant colonization, and thus these genes represent promising new targets in breeding wheat cultivars with broad-spectrum resistance.


Asunto(s)
Predisposición Genética a la Enfermedad , Hordeum/genética , Hordeum/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Secuencia de Bases , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Fenotipo
7.
Cell Biol Int ; 42(11): 1564-1574, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30136751

RESUMEN

Ovarian cancer is one of the most common gyneacologic malignancies, with high morbidity and high mortality. Hsa-miR-122-5p (miR-122) has been reported with tumor-suppressing roles in various cancers. In this study, miR-122 was overexpressed in ovarian cancer cells, and phenotypic experiments demonstrated that miR-122 inhibited migration and invasion in SKOV3 and OVCAR3 cells. MiR-122 also suppressed epithelial mesenchymal transition (EMT), evidenced by expression changes of E-cadherin, vimentin, matrix metalloproteinase (MMP)2, and MMP14. Prolyl-4-hydroxylase subunit alpha-1 (P4HA1) was identified as a target of miR-122, and downregulated by miR-122. MiR-122-induced the elevation of migration, invasion, and EMT were recovered by P4HA1. Additionally, miR-122 restrained the tumor metastasis of SKOV3 cells in peritoneal cavity of nude mice. In summary, we demonstrated that miR-122 inhibited migration, invasion, EMT, and metastasis in peritoneal cavity of ovarian cancer cells by targeting P4HA1 for the first time, which shed lights on the discovery of miR-122 and P4HA1 as possible potential diagnostic markers and therapeutic targets for ovarian cancer.


Asunto(s)
Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , MicroARNs/metabolismo , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Procolágeno-Prolina Dioxigenasa/genética , Animales , Secuencia de Bases , Línea Celular Tumoral , Movimiento Celular/genética , Regulación hacia Abajo/genética , Femenino , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , Invasividad Neoplásica , Metástasis de la Neoplasia , Neoplasias Peritoneales/patología , Neoplasias Peritoneales/secundario , Fenotipo , Procolágeno-Prolina Dioxigenasa/metabolismo
8.
Fish Shellfish Immunol ; 75: 149-157, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29427715

RESUMEN

Protease inhibitors play critical roles in numerous biological processes including host defense in all multicellular organisms. Eighty three evolutionary families of protease inhibitors are currently accommodated in the MEROPS database and the I84 family currently consists of 3 novel serine protease inhibitors from the eastern oyster Crassostrea virginica. In this study, we identified 2 new I84 family members from the Chinese razor clam Sinonovacula constricta, scSI-1 and scSI-2, using cDNA cloning and sequencing. The scSI-1 cDNA consisted of 494 bp with a 282 bp ORF encoding a 93-amino acid polypeptide that was predicted to have a 19-amino acid signal peptide and a 74-residue mature protein with a calculated molecular mass of 8248.5 Da. The scSI-2 cDNA was 490 bp long with a 273 bp ORF encoding a 90-amino acid polypeptide that was predicted to have an 18-amino acid signal peptide and a 72-residue nature protein with a calculated molecular mass of 7528.4 Da. ScSI-1 and scSI-2 shared high sequence similarity with the 3 known members of I84 family and both expressed primarily in the clam digestive glands. Protease inhibitory activity in the clam plasma also exhibited the signature kinetic characteristics of the I84 members from the oyster. In addition, levels of scSI-1 and scSI-2 gene expression in digestive glands and the protease inhibitory activity in plasma elevated significantly in clams challenged by bacterial injections and Vibrio harveyi was more effective than Staphylococcus epidermidis in inducing the gene expression and plasma protease inhibitory activity. Moreover, drastic changes of salinity and temperature also caused significant changes in the gene expression and plasma activity. These results indicated that scSI-1 and scSI-2 represented 2 new members of the I84 family and they likely play a role in clam host defense against infections and in reactions against physiochemical stressors.


Asunto(s)
Bivalvos/genética , Bivalvos/inmunología , Expresión Génica , Inmunidad Innata/genética , Inhibidores de Proteasas , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , ADN Complementario , Perfilación de la Expresión Génica , Inhibidores de Proteasas/química , Inhibidores de Proteasas/inmunología , Inhibidores de Proteasas/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN
9.
Dev Comp Immunol ; 59: 15-24, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26724973

RESUMEN

Ferritin, the principle cytosolic iron storage protein in the majority of living organisms, has important roles during immune process in invertebrates. Detailed information about ferritin in the ark shell Scapharca broughtonii, however, has been very limited. In this study, full-length ferritin (termed SbFer) was cloned by the rapid amplication of cDNA ends (RACE) method based upon the sequence from the transcriptome library. The cDNA contained a 182 bp 5'-untranslated region, a 519 bp open reading frame encoding a polypeptide of 172 amino acids, a 229 bp 3'-untranslated region, and three introns (902, 373 and 402 bp) embedded in four exons. There was an iron response element (IRE) in the 5'-untranslated region. The deduced amino acid sequence of SbFer possessed many characteristics of vertebrate H type ferritin, shared 63%-91% identity with mollusks and greater identity with vertebrate H type ferritin compared to the L type. The SbFer gene expression pattern examined by quantitative real-time PCR showed ferritin mRNA was expressed in all ark shell tissues examined. The highest levels of expression were found in hemocytes with decreasing levels of expression in foot, mantle, gill, adductor muscle and hepatopancreas. A challenge with Vibrio anguillarum resulted in time-dependent significant upregulation of SbFer mRNA, indicating SbFer participated actively in the bacterial defense process. Further analysis of the antibacterial activity indicated recombinant SbFer could function as an immune antibacterial agent to both Gram-positive and Gram-negative bacteria. Taken together, these results suggested strongly that ferritin of the ark shell is involved in immune defense against microbial infection and it is a constitutive and inducible acute-phase protein.


Asunto(s)
Ferritinas/genética , Ferritinas/inmunología , Scapharca/inmunología , Vibrio/inmunología , Proteínas de Fase Aguda/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , ADN Complementario/genética , Ferritinas/metabolismo , Ferritinas/farmacocinética , Proteínas Reguladoras del Hierro/genética , Scapharca/genética , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA