Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Nat Med ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942994

RESUMEN

There are more than 10,000 individual rare diseases and most are without therapy. Personalized genetic therapy represents one promising approach for their treatment. We present a road map for individualized treatment of an ultra-rare disease by establishing a gene replacement therapy developed for a single patient with hereditary spastic paraplegia type 50 (SPG50). Through a multicenter collaboration, an adeno-associated virus-based gene therapy product carrying the AP4M1 gene was created and successfully administered intrathecally to a 4-year-old patient within 3 years of diagnosis as part of a single-patient phase 1 trial. Primary endpoints were safety and tolerability, and secondary endpoints evaluated efficacy. At 12 months after dosing, the therapy was well tolerated. No serious adverse events were observed, with minor events, including transient neutropenia and Clostridioides difficile gastroenteritis, experienced but resolved. Preliminary efficacy measures suggest a stabilization of the disease course. Longer follow-up is needed to confirm the safety and provide additional insights on the efficacy of the therapy. Overall, this report supports the safety of gene therapy for SPG50 and provides insights into precision therapy development for rare diseases. Clinical trial registration: NCT06069687 .

2.
Neuromuscul Disord ; 39: 19-23, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38691940

RESUMEN

LAMA2-related muscular dystrophy is caused by pathogenic variants of the alpha2 subunit of Laminin. This common form of muscular dystrophy is characterized by elevated CK >1000IU/L, dystrophic changes on muscle biopsy, complete or partial absence of merosin staining, and both central and peripheral nervous system involvement. Advancements in genomic testing using NGS and wider application of RNA sequencing has expanded our knowledge of novel non-coding pathogenic variants in LAMA2. RNA sequencing is an increasingly utilized technique to directly analyze the transcriptome, through creation of a complementary DNA (cDNA) from the transcript within a tissue sample. Here we describe a homozygous deep intronic variant that produces a novel splice junction in LAMA2 identified by RNA sequencing analysis in a patient with a clinical phenotype in keeping with LAMA2-related muscular dystrophy. Furthermore, in this case merosin staining was retained suggestive of a functional deficit.


Asunto(s)
Intrones , Laminina , Distrofias Musculares , Análisis de Secuencia de ARN , Humanos , Laminina/genética , Intrones/genética , Distrofias Musculares/genética , Distrofias Musculares/patología , Distrofias Musculares/diagnóstico , Masculino , Fenotipo , Mutación , Femenino
3.
EBioMedicine ; 99: 104894, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38086156

RESUMEN

BACKGROUND: X-linked myotubular myopathy (XLMTM) is a rare, life-threatening congenital muscle disease caused by mutations in the MTM1 gene that result in profound muscle weakness, significant respiratory insufficiency, and high infant mortality. There is no approved disease-modifying therapy for XLMTM. Resamirigene bilparvovec (AT132; rAAV8-Des-hMTM1) is an investigational adeno-associated virus (AAV8)-mediated gene replacement therapy designed to deliver MTM1 to skeletal muscle cells and achieve long-term correction of XLMTM-related muscle pathology. The clinical trial ASPIRO (NCT03199469) investigating resamirigene bilparvovec in XLMTM is currently paused while the risk:benefit balance associated with this gene therapy is further investigated. METHODS: Muscle biopsies were taken before treatment and 24 and 48 weeks after treatment from ten boys with XLMTM in a clinical trial of resamirigene bilparvovec (ASPIRO; NCT03199469). Comprehensive histopathological analysis was performed. FINDINGS: Baseline biopsies uniformly showed findings characteristic of XLMTM, including small myofibres, increased internal or central nucleation, and central aggregates of organelles. Biopsies taken at 24 weeks post-treatment showed marked improvement of organelle localisation, without apparent increases in myofibre size in most participants. Biopsies taken at 48 weeks, however, did show statistically significant increases in myofibre size in all nine biopsies evaluated at this timepoint. Histopathological endpoints that did not demonstrate statistically significant changes with treatment included the degree of internal/central nucleation, numbers of triad structures, fibre type distributions, and numbers of satellite cells. Limited (predominantly mild) treatment-associated inflammatory changes were seen in biopsy specimens from five participants. INTERPRETATION: Muscle biopsies from individuals with XLMTM treated with resamirigene bilparvovec display statistically significant improvement in organelle localisation and myofibre size during a period of substantial improvements in muscle strength and respiratory function. This study identifies valuable histological endpoints for tracking treatment-related gains with resamirigene bilparvovec, as well as endpoints that did not show strong correlation with clinical improvement in this human study. FUNDING: Astellas Gene Therapies (formerly Audentes Therapeutics, Inc.).


Asunto(s)
Músculo Esquelético , Miopatías Estructurales Congénitas , Masculino , Lactante , Humanos , Músculo Esquelético/patología , Terapia Genética/efectos adversos , Terapia Genética/métodos , Debilidad Muscular , Fuerza Muscular , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/terapia , Miopatías Estructurales Congénitas/patología
4.
Lancet Neurol ; 22(12): 1125-1139, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37977713

RESUMEN

BACKGROUND: X-linked myotubular myopathy is a rare, life-threatening, congenital muscle disease observed mostly in males, which is caused by mutations in MTM1. No therapies are approved for this disease. We aimed to assess the safety and efficacy of resamirigene bilparvovec, which is an adeno-associated viral vector serotype 8 delivering human MTM1. METHODS: ASPIRO is an open-label, dose-escalation trial at seven academic medical centres in Canada, France, Germany, and the USA. We included boys younger than 5 years with X-linked myotubular myopathy who required mechanical ventilator support. The trial was initially in two parts. Part 1 was planned as a safety and dose-escalation phase in which participants were randomly allocated (2:1) to either the first dose level (1·3 × 1014 vector genomes [vg]/kg bodyweight) of resamirigene bilparvovec or delayed treatment, then, for later participants, to either a higher dose (3·5 × 1014 vg/kg bodyweight) of resamirigene bilparvovec or delayed treatment. Part 2 was intended to confirm the dose selected in part 1. Resamirigene bilparvovec was administered as a single intravenous infusion. An untreated control group comprised boys who participated in a run-in study (INCEPTUS; NCT02704273) or those in the delayed treatment cohort who did not receive any dose. The primary efficacy outcome was the change from baseline to week 24 in hours of daily ventilator support. After three unexpected deaths, dosing at the higher dose was stopped and the two-part feature of the study design was eliminated. Because of changes to the study design during its implementation, analyses were done on an as-treated basis and are deemed exploratory. All treated and control participants were included in the safety analysis. The trial is registered with ClinicalTrials.gov, NCT03199469. Outcomes are reported as of Feb 28, 2022. ASPIRO is currently paused while deaths in dosed participants are investigated. FINDINGS: Between Aug 3, 2017 and June 1, 2021, 30 participants were screened for eligibility, of whom 26 were enrolled; six were allocated to the lower dose, 13 to the higher dose, and seven to delayed treatment. Of the seven children whose treatment was delayed, four later received the higher dose (n=17 total in the higher dose cohort), one received the lower dose (n=7 total in the lower dose cohort), and two received no dose and joined the control group (n=14 total, including 12 children from INCEPTUS). Median age at dosing or enrolment was 12·1 months (IQR 10·0-30·9; range 9·5-49·7) in the lower dose cohort, 31·1 months (16·0-64·7; 6·8-72·7) in the higher dose cohort, and 18·7 months (10·1-31·5; 5·9-39·3) in the control cohort. Median follow-up was 46·1 months (IQR 41·0-49·5; range 2·1-54·7) for lower dose participants, 27·6 months (24·6-29·1; 3·4-41·0) for higher dose participants, and 28·3 months (9·7-46·9; 5·7-32·7) for control participants. At week 24, lower dose participants had an estimated 77·7 percentage point (95% CI 40·22 to 115·24) greater reduction in least squares mean hours per day of ventilator support from baseline versus controls (p=0·0002), and higher dose participants had a 22·8 percentage point (6·15 to 39·37) greater reduction from baseline versus controls (p=0·0077). One participant in the lower dose cohort and three in the higher dose cohort died; at the time of death, all children had cholestatic liver failure following gene therapy (immediate causes of death were sepsis; hepatopathy, severe immune dysfunction, and pseudomonal sepsis; gastrointestinal haemorrhage; and septic shock). Three individuals in the control group died (haemorrhage presumed related to hepatic peliosis; aspiration pneumonia; and cardiopulmonary failure). INTERPRETATION: Most children with X-linked myotubular myopathy who received MTM1 gene replacement therapy had important improvements in ventilator dependence and motor function, with more than half of dosed participants achieving ventilator independence and some attaining the ability to walk independently. Investigations into the risk for underlying hepatobiliary disease in X-linked myotubular myopathy, and the need for monitoring of liver function before gene replacement therapy, are ongoing. FUNDING: Astellas Gene Therapies.


Asunto(s)
Miopatías Estructurales Congénitas , Sepsis , Masculino , Niño , Humanos , Lactante , Preescolar , Francia , Terapia Genética/efectos adversos , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/terapia , Alemania , Resultado del Tratamiento
5.
HGG Adv ; 4(3): 100213, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37457373

RESUMEN

Contraction of the human sarcomere is the result of interactions between myosin cross-bridges and actin filaments. Pathogenic variants in genes such as MYH7, TPM1, and TNNI3 that encode parts of the cardiac sarcomere cause muscle diseases that affect the heart, such as dilated cardiomyopathy and hypertrophic cardiomyopathy. In contrast, pathogenic variants in homologous genes such as MYH2, TPM2, and TNNI2 that encode parts of the skeletal muscle sarcomere cause muscle diseases affecting skeletal muscle, such as distal arthrogryposis (DA) syndromes and skeletal myopathies. To date, there have been few reports of genes (e.g., MYH7) encoding sarcomeric proteins in which the same pathogenic variant affects skeletal and cardiac muscle. Moreover, none of the known genes underlying DA have been found to contain pathogenic variants that also cause cardiac abnormalities. We report five families with DA because of heterozygous missense variants in the gene actin, alpha, cardiac muscle 1 (ACTC1). ACTC1 encodes a highly conserved actin that binds to myosin in cardiac and skeletal muscle. Pathogenic variants in ACTC1 have been found previously to underlie atrial septal defect, dilated cardiomyopathy, hypertrophic cardiomyopathy, and left ventricular noncompaction. Our discovery delineates a new DA condition because of variants in ACTC1 and suggests that some functions of ACTC1 are shared in cardiac and skeletal muscle.


Asunto(s)
Artrogriposis , Cardiomiopatías , Cardiomiopatía Dilatada , Cardiomiopatía Hipertrófica , Cardiopatías Congénitas , Enfermedades Musculares , Humanos , Artrogriposis/genética , Actinas/genética , Cardiopatías Congénitas/complicaciones , Cardiomiopatías/etiología , Cardiomiopatía Dilatada/complicaciones , Enfermedades Musculares/complicaciones , Miosinas , Cardiomiopatía Hipertrófica/complicaciones
6.
Neuromuscul Disord ; 33(7): 605-609, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37393749

RESUMEN

Titin-related myopathy is an emerging genetic neuromuscular disorder with a wide spectrum of clinical phenotypes. To date, there have not been reports of patients with this disease that presented with extraocular muscle involvement. Here we discuss a 19-year-old male with congenital weakness, complete ophthalmoplegia, thoracolumbar scoliosis, and obstructive sleep apnea. Muscle magnetic resonance imaging revealed severe involvement of the gluteal and anterior compartment muscles, and clear adductor sparing, while muscle biopsy of the right vastus lateralis showed distinctive cap-like structures. Trio Whole Exome Sequencing (WES) showed compound heterozygous likely pathologic variants in the TTN gene. (c.82541_82544dup (p.Arg27515Serfs*2) in exon 327 (NM_001267550.2) and c.31846+1G>A (p.?) in exon 123 (NM_001267550.2). To our knowledge, this is the first report of a TTN-related disorder associated with ophthalmoplegia.


Asunto(s)
Enfermedades Musculares , Enfermedades Neuromusculares , Oftalmoplejía , Humanos , Masculino , Adulto Joven , Conectina/genética , Músculo Esquelético/patología , Enfermedades Musculares/genética , Enfermedades Musculares/patología , Mutación , Enfermedades Neuromusculares/patología , Oftalmoplejía/genética , Oftalmoplejía/patología , Fenotipo
7.
Genet Med ; 25(8): 100863, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37125634

RESUMEN

PURPOSE: Bone morphogenic proteins (BMPs) regulate gene expression that is related to many critical developmental processes, including osteogenesis for which they are named. In addition, BMP2 is widely expressed in cells of mesenchymal origin, including bone, cartilage, skeletal and cardiac muscle, and adipose tissue. It also participates in neurodevelopment by inducing differentiation of neural stem cells. In humans, BMP2 variants result in a multiple congenital anomaly syndrome through a haploinsufficiency mechanism. We sought to expand the phenotypic spectrum and highlight phenotypes of patients harboring monoallelic missense variants in BMP2. METHODS: We used retrospective chart review to examine phenotypes from an international cohort of 18 individuals and compared these with published cases. Patient-derived missense variants were modeled in zebrafish to examine their effect on the ability of bmp2b to promote embryonic ventralization. RESULTS: The presented cases recapitulated existing descriptions of BMP2-related disorders, including craniofacial, cardiac, and skeletal anomalies and exhibit a wide phenotypic spectrum. We also identified patients with neural tube defects, structural brain anomalies, and endocrinopathies. Missense variants modeled in zebrafish resulted in loss of protein function. CONCLUSION: We use this expansion of reported phenotypes to suggest multidisciplinary medical monitoring and management of patients with BMP2-related skeletal dysplasia spectrum.


Asunto(s)
Osteocondrodisplasias , Pez Cebra , Animales , Humanos , Pez Cebra/genética , Estudios Retrospectivos , Diferenciación Celular , Osteogénesis/genética , Proteínas Morfogenéticas Óseas , Proteína Morfogenética Ósea 2/genética
8.
Nat Commun ; 13(1): 3403, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35697689

RESUMEN

Exertional heat illness (EHI) and malignant hyperthermia (MH) are life threatening conditions associated with muscle breakdown in the setting of triggering factors including volatile anesthetics, exercise, and high environmental temperature. To identify new genetic variants that predispose to EHI and/or MH, we performed genomic sequencing on a cohort with EHI/MH and/or abnormal caffeine-halothane contracture test. In five individuals, we identified rare, pathogenic heterozygous variants in ASPH, a gene encoding junctin, a regulator of excitation-contraction coupling. We validated the pathogenicity of these variants using orthogonal pre-clinical models, CRISPR-edited C2C12 myotubes and transgenic zebrafish. In total, we demonstrate that ASPH variants represent a new cause of EHI and MH susceptibility.


Asunto(s)
Trastornos de Estrés por Calor , Hipertermia Maligna , Animales , Cafeína/farmacología , Proteínas de Unión al Calcio , Humanos , Hipertermia Maligna/genética , Proteínas de la Membrana , Oxigenasas de Función Mixta , Contracción Muscular , Fibras Musculares Esqueléticas , Proteínas Musculares , Pez Cebra/genética
9.
Am J Hum Genet ; 109(4): 601-617, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35395208

RESUMEN

Neurodevelopmental disorders are highly heterogenous conditions resulting from abnormalities of brain architecture and/or function. FBXW7 (F-box and WD-repeat-domain-containing 7), a recognized developmental regulator and tumor suppressor, has been shown to regulate cell-cycle progression and cell growth and survival by targeting substrates including CYCLIN E1/2 and NOTCH for degradation via the ubiquitin proteasome system. We used a genotype-first approach and global data-sharing platforms to identify 35 individuals harboring de novo and inherited FBXW7 germline monoallelic chromosomal deletions and nonsense, frameshift, splice-site, and missense variants associated with a neurodevelopmental syndrome. The FBXW7 neurodevelopmental syndrome is distinguished by global developmental delay, borderline to severe intellectual disability, hypotonia, and gastrointestinal issues. Brain imaging detailed variable underlying structural abnormalities affecting the cerebellum, corpus collosum, and white matter. A crystal-structure model of FBXW7 predicted that missense variants were clustered at the substrate-binding surface of the WD40 domain and that these might reduce FBXW7 substrate binding affinity. Expression of recombinant FBXW7 missense variants in cultured cells demonstrated impaired CYCLIN E1 and CYCLIN E2 turnover. Pan-neuronal knockdown of the Drosophila ortholog, archipelago, impaired learning and neuronal function. Collectively, the data presented herein provide compelling evidence of an F-Box protein-related, phenotypically variable neurodevelopmental disorder associated with monoallelic variants in FBXW7.


Asunto(s)
Proteína 7 que Contiene Repeticiones F-Box-WD , Trastornos del Neurodesarrollo , Ubiquitinación , Proteína 7 que Contiene Repeticiones F-Box-WD/química , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Células Germinativas , Mutación de Línea Germinal , Humanos , Trastornos del Neurodesarrollo/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
10.
Neuromuscul Disord ; 32(3): 206-212, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35216880

RESUMEN

Transition in paediatric health care refers to the planned process of shifting to an adult model of care and is highly individualised, patient focussed and requires a coordinated effort from different health care professionals. Through this retrospective study, we describe the spectrum of neuromuscular diseases evaluated through a paediatric to adult neuromuscular transition program in a tertiary academic centre in Canada, and also the speciality supports needed for these patients. 126 patients were transitioned during the study period. The most common clinical diagnosis was muscle disease (44.4%), followed by neuropathy (27.8%), neuromuscular junction disorders (15.9%) and motor neuron disease (MND) (10.3%). The majority of cases were inherited neuromuscular disorders (66.6%); 58.3% had a genetically confirmed diagnosis. Cardiac and respiratory abnormalities were encountered in 8.7% and 27.7% and transitioning was required for 39.8% and 35.7% respectively. Scoliosis was seen in 30.2% of patients; 9.5% underwent spine surgery. Patients with MND had maximum requirements for self-care (46.2% of MND) and a mobility device for ambulation was required in 69.2% of MND. We observed a wide range of systemic issues requiring the services of endocrinology, gastroenterology, speech and language pathology and psychiatry. A multidisciplinary clinical care model may provide optimal care for patients transitioning from paediatric to adult care health systems.


Asunto(s)
Enfermedad de la Neurona Motora , Enfermedades Neuromusculares , Escoliosis , Transición a la Atención de Adultos , Adulto , Niño , Humanos , Enfermedades Neuromusculares/terapia , Estudios Retrospectivos , Escoliosis/terapia
11.
Neuromuscul Disord ; 31(10): 1004-1012, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34736623

RESUMEN

X-linked myotubular myopathy (XLMTM) is a severe congenital muscle disease caused by mutation in the MTM1 gene. MTM1 encodes myotubularin (MTM1), an endosomal phosphatase that acts to dephosphorylate key second messenger lipids PI3P and PI3,5P2. XLMTM is clinically characterized by profound muscle weakness and associated with multiple disabilities (including ventilator and wheelchair dependence) and early death in most affected individuals. The disease is classically defined by characteristic changes observed on muscle biopsy, including centrally located nuclei, myofiber hypotrophy, and organelle disorganization. In this review, we highlight the clinical and pathologic features of the disease, present concepts related to disease pathomechanisms, and present recent advances in therapy development.


Asunto(s)
Miopatías Estructurales Congénitas/diagnóstico , Femenino , Humanos , Masculino , Debilidad Muscular/patología , Músculo Esquelético/patología , Mutación , Fenotipo , Proteínas Tirosina Fosfatasas no Receptoras
12.
Nat Commun ; 12(1): 4496, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34301934

RESUMEN

Leiomyosarcomas (LMS) are genetically heterogeneous tumors differentiating along smooth muscle lines. Currently, LMS treatment is not informed by molecular subtyping and is associated with highly variable survival. While disease site continues to dictate clinical management, the contribution of genetic factors to LMS subtype, origins, and timing are unknown. Here we analyze 70 genomes and 130 transcriptomes of LMS, including multiple tumor regions and paired metastases. Molecular profiling highlight the very early origins of LMS. We uncover three specific subtypes of LMS that likely develop from distinct lineages of smooth muscle cells. Of these, dedifferentiated LMS with high immune infiltration and tumors primarily of gynecological origin harbor genomic dystrophin deletions and/or loss of dystrophin expression, acquire the highest burden of genomic mutation, and are associated with worse survival. Homologous recombination defects lead to genome-wide mutational signatures, and a corresponding sensitivity to PARP trappers and other DNA damage response inhibitors, suggesting a promising therapeutic strategy for LMS. Finally, by phylogenetic reconstruction, we present evidence that clones seeding lethal metastases arise decades prior to LMS diagnosis.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad/genética , Genómica/métodos , Leiomiosarcoma/genética , Músculo Liso/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Evolución Clonal , Estudios de Cohortes , Femenino , Humanos , Leiomiosarcoma/clasificación , Leiomiosarcoma/diagnóstico , Masculino , Persona de Mediana Edad , Músculo Liso/patología , Mutación , RNA-Seq/métodos , Análisis de Supervivencia
14.
Skelet Muscle ; 10(1): 32, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-33190635

RESUMEN

The RYR1 gene, which encodes the sarcoplasmic reticulum calcium release channel or type 1 ryanodine receptor (RyR1) of skeletal muscle, was sequenced in 1988 and RYR1 variations that impair calcium homeostasis and increase susceptibility to malignant hyperthermia were first identified in 1991. Since then, RYR1-related myopathies (RYR1-RM) have been described as rare, histopathologically and clinically heterogeneous, and slowly progressive neuromuscular disorders. RYR1 variants can lead to dysfunctional RyR1-mediated calcium release, malignant hyperthermia susceptibility, elevated oxidative stress, deleterious post-translational modifications, and decreased RyR1 expression. RYR1-RM-affected individuals can present with delayed motor milestones, contractures, scoliosis, ophthalmoplegia, and respiratory insufficiency.Historically, RYR1-RM-affected individuals were diagnosed based on morphologic features observed in muscle biopsies including central cores, cores and rods, central nuclei, fiber type disproportion, and multi-minicores. However, these histopathologic features are not always specific to RYR1-RM and often change over time. As additional phenotypes were associated with RYR1 variations (including King-Denborough syndrome, exercise-induced rhabdomyolysis, lethal multiple pterygium syndrome, adult-onset distal myopathy, atypical periodic paralysis with or without myalgia, mild calf-predominant myopathy, and dusty core disease) the overlap among diagnostic categories is ever increasing. With the continuing emergence of new clinical subtypes along the RYR1 disease spectrum and reports of adult-onset phenotypes, nuanced nomenclatures have been reported (RYR1- [related, related congenital, congenital] myopathies). In this narrative review, we provide historical highlights of RYR1 research, accounts of the main diagnostic disease subtypes and propose RYR1-related disorders (RYR1-RD) as a unified nomenclature to describe this complex and evolving disease spectrum.


Asunto(s)
Enfermedades Neuromusculares/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Humanos , Enfermedades Neuromusculares/genética , Enfermedades Neuromusculares/patología , Fenotipo , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/normas , Terminología como Asunto
15.
Orphanet J Rare Dis ; 15(1): 113, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32381029

RESUMEN

BACKGROUND: Pathogenic variations in the gene encoding the skeletal muscle ryanodine receptor (RyR1) are associated with malignant hyperthermia (MH) susceptibility, a life-threatening hypermetabolic condition and RYR1-related myopathies (RYR1-RM), a spectrum of rare neuromuscular disorders. In RYR1-RM, intracellular calcium dysregulation, post-translational modifications, and decreased protein expression lead to a heterogenous clinical presentation including proximal muscle weakness, contractures, scoliosis, respiratory insufficiency, and ophthalmoplegia. Preclinical model systems of RYR1-RM and MH have been developed to better understand underlying pathomechanisms and test potential therapeutics. METHODS: We conducted a comprehensive scoping review of scientific literature pertaining to RYR1-RM and MH preclinical model systems in accordance with the PRISMA Scoping Reviews Checklist and the framework proposed by Arksey and O'Malley. Two major electronic databases (PubMed and EMBASE) were searched without language restriction for articles and abstracts published between January 1, 1990 and July 3, 2019. RESULTS: Our search yielded 5049 publications from which 262 were included in this review. A majority of variants tested in RYR1 preclinical models were localized to established MH/central core disease (MH/CCD) hot spots. A total of 250 unique RYR1 variations were reported in human/rodent/porcine models with 95% being missense substitutions. The most frequently reported RYR1 variant was R614C/R615C (human/porcine total n = 39), followed by Y523S/Y524S (rabbit/mouse total n = 30), I4898T/I4897T/I4895T (human/rabbit/mouse total n = 20), and R163C/R165C (human/mouse total n = 18). The dyspedic mouse was utilized by 47% of publications in the rodent category and its RyR1-null (1B5) myotubes were transfected in 23% of publications in the cellular model category. In studies of transfected HEK-293 cells, 57% of RYR1 variations affected the RyR1 channel and activation core domain. A total of 15 RYR1 mutant mouse strains were identified of which ten were heterozygous, three were compound heterozygous, and a further two were knockout. Porcine, avian, zebrafish, C. elegans, canine, equine, and drosophila model systems were also reported. CONCLUSIONS: Over the past 30 years, there were 262 publications on MH and RYR1-RM preclinical model systems featuring more than 200 unique RYR1 variations tested in a broad range of species. Findings from these studies have set the foundation for therapeutic development for MH and RYR1-RM.


Asunto(s)
Hipertermia Maligna , Enfermedades Musculares , Animales , Caenorhabditis elegans , Perros , Células HEK293 , Caballos , Humanos , Hipertermia , Hipertermia Maligna/genética , Ratones , Enfermedades Musculares/genética , Mutación , Conejos , Canal Liberador de Calcio Receptor de Rianodina/genética , Porcinos , Pez Cebra
16.
Neurology ; 94(13): e1434-e1444, 2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-31941795

RESUMEN

OBJECTIVE: To investigate the efficacy of N-acetylcysteine (NAC) for decreasing elevated oxidative stress and increasing physical endurance in individuals with ryanodine receptor 1-related myopathies (RYR1-RM). METHODS: In this 6-month natural history assessment (n = 37) followed by a randomized, double-blinded, placebo-controlled trial, 33 eligible participants were block-randomized (1:1) to receive NAC (n = 16) or placebo (n = 17), orally for 6 months (adult dose 2,700 mg/d; pediatric dose 30 mg/kg/d). The primary endpoint was urine 15-F2t isoprostane concentration and the clinically meaningful co-primary endpoint was 6-minute walk test (6MWT) distance. RESULTS: When compared to the general population, participants had elevated baseline 15-F2t isoprostane concentrations and most had a decreased 6MWT distance (mean ± SD 3.2 ± 1.5 vs 1.1 ± 1.7 ng/mg creatinine and 468 ± 134 vs 600 ± 58 m, respectively, both p < 0.001). 15-F2t isoprostane concentration and 6MWT distance did not change over the 6-month natural history assessment (p = 0.98 and p = 0.61, respectively). NAC treatment did not improve 15-F2t isoprostane concentration (least squares means difference 0.1 [95% confidence interval [CI] -1.4 to 1.6] ng/mg creatinine, p = 0.88) or 6MWT distance (least squares means difference 24 [95% CI -5.5 to 53.4] m, p = 0.11). NAC was safe and well-tolerated at the doses administered in this study. CONCLUSION: In ambulatory RYR1-RM-affected individuals, we observed stable disease course, and corroborated preclinical reports of elevated oxidative stress and decreased physical endurance. NAC treatment did not decrease elevated oxidative stress, as measured by 15-F2t isoprostane. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that, for people with RYR1-RM, treatment with oral NAC does not decrease oxidative stress as measured by 15-F2t isoprostane. CLINICALTRIALSGOV IDENTIFIER: NCT02362425.


Asunto(s)
Acetilcisteína/uso terapéutico , Depuradores de Radicales Libres/uso terapéutico , Enfermedades Musculares/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Adolescente , Adulto , Niño , Dinoprost/análogos & derivados , Dinoprost/orina , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedades Musculares/genética , Enfermedades Musculares/orina , Canal Liberador de Calcio Receptor de Rianodina/genética , Resultado del Tratamiento , Prueba de Paso , Adulto Joven
17.
Gastroenterology ; 158(4): 1000-1015, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31743734

RESUMEN

BACKGROUND & AIMS: Mutations in the tetratricopeptide repeat domain 7A gene (TTC7A) cause intestinal epithelial and immune defects. Patients can become immune deficient and develop apoptotic enterocolitis, multiple intestinal atresia, and recurrent intestinal stenosis. The intestinal disease in patients with TTC7A deficiency is severe and untreatable, and it recurs despite resection or allogeneic hematopoietic stem cell transplant. We screened drugs for those that prevent apoptosis of in cells with TTC7A deficiency and tested their effects in an animal model of the disease. METHODS: We developed a high-throughput screen to identify compounds approved by the US Food and Drug Administration that reduce activity of caspases 3 and 7 in TTC7A-knockout (TTC7A-KO) HAP1 (human haploid) cells and reduce the susceptibility to apoptosis. We validated the effects of identified agents in HeLa cells that stably express TTC7A with point mutations found in patients. Signaling pathways in cells were analyzed by immunoblots. We tested the effects of identified agents in zebrafish with disruption of ttc7a, which develop intestinal defects, and colonoids derived from biopsy samples of patients with and without mutations in TTC7A. We performed real-time imaging of intestinal peristalsis in zebrafish and histologic analyses of intestinal tissues from patients and zebrafish. Colonoids were analyzed by immunofluorescence and for ion transport. RESULTS: TTC7A-KO HAP1 cells have abnormal morphology and undergo apoptosis, due to increased levels of active caspases 3 and 7. We identified drugs that increased cell viability; leflunomide (used to treat patients with inflammatory conditions) reduced caspase 3 and 7 activity in cells by 96%. TTC7A-KO cells contained cleaved caspase 3 and had reduced levels of phosphorylated AKT and X-linked inhibitor of apoptosis (XIAP); incubation of these cells with leflunomide increased levels of phosphorylated AKT and XIAP and reduced levels of cleaved caspase 3. Administration of leflunomide to ttc7a-/- zebrafish increased gut motility, reduced intestinal tract narrowing, increased intestinal cell survival, increased sizes of intestinal luminal spaces, and restored villi and goblet cell morphology. Exposure of patient-derived colonoids to leflunomide increased cell survival, polarity, and transport function. CONCLUSIONS: In a drug screen, we identified leflunomide as an agent that reduces apoptosis and activates AKT signaling in TTC7A-KO cells. In zebrafish with disruption of ttc7a, leflunomide restores gut motility, reduces intestinal tract narrowing, and increases intestinal cell survival. This drug might be repurposed for treatment of TTC7A deficiency.


Asunto(s)
Apoptosis/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Leflunamida/farmacología , Proteínas/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Colon/citología , Técnicas de Inactivación de Genes , Haploidia , Humanos , Enfermedades Inflamatorias del Intestino/genética , Fosforilación/efectos de los fármacos , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo
18.
Neurology ; 92(16): e1852-e1867, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30902907

RESUMEN

OBJECTIVES: Because X-linked myotubular myopathy (XLMTM) is a rare neuromuscular disease caused by mutations in the MTM1 gene with a large phenotypic heterogeneity, to ensure clinical trial readiness, it was mandatory to better quantify disease burden and determine best outcome measures. METHODS: We designed an international prospective and longitudinal natural history study in patients with XLMTM and assessed muscle strength and motor and respiratory functions over the first year of follow-up. The humoral immunity against adeno-associated virus serotype 8 was also monitored. RESULTS: Forty-five male patients aged 3.5 months to 56.8 years were enrolled between May 2014 and May 2017. Thirteen patients had a mild phenotype (no ventilation support), 7 had an intermediate phenotype (ventilation support less than 12 hours a day), and 25 had a severe phenotype (ventilation support 12 or more hours a day). Most strength and motor function assessments could be performed even in very weak patients. Motor Function Measure 32 total score, grip and pinch strengths, and forced vital capacity, forced expiratory volume in the first second of exhalation, and peak cough flow measures discriminated the 3 groups of patients. Disease history revealed motor milestone loss in several patients. Longitudinal data on 37 patients showed that the Motor Function Measure 32 total score significantly decreased by 2%. Of the 38 patients evaluated, anti-adeno-associated virus type 8 neutralizing activity was detected in 26% with 2 patients having an inhibitory titer >1:10. CONCLUSIONS: Our data confirm that XLMTM is slowly progressive for male survivors regardless of their phenotype and provide outcome validation and natural history data that can support clinical development in this population. CLINICALTRIALSGOV IDENTIFIER: NCT02057705.


Asunto(s)
Miopatías Estructurales Congénitas/epidemiología , Adolescente , Adulto , Niño , Preescolar , Progresión de la Enfermedad , Estudios de Seguimiento , Humanos , Lactante , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/fisiopatología , Miopatías Estructurales Congénitas/terapia , Fenotipo , Estudios Prospectivos , Adulto Joven
19.
Nat Commun ; 9(1): 4849, 2018 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-30451841

RESUMEN

Myotubular myopathy (MTM) is a severe X-linked disease without existing therapies. Here, we show that tamoxifen ameliorates MTM-related histopathological and functional abnormalities in mice, and nearly doubles survival. The beneficial effects of tamoxifen are mediated primarily via estrogen receptor signaling, as demonstrated through in vitro studies and in vivo phenotypic rescue with estradiol. RNA sequencing and protein expression analyses revealed that rescue is mediated in part through post-transcriptional reduction of dynamin-2, a known MTM modifier. These findings demonstrate an unexpected ability of tamoxifen to improve the murine MTM phenotype, providing preclinical evidence to support clinical translation.


Asunto(s)
Dinamina II/genética , Músculo Esquelético/efectos de los fármacos , Miopatías Estructurales Congénitas/tratamiento farmacológico , Sustancias Protectoras/farmacología , Proteínas Tirosina Fosfatasas no Receptoras/genética , Receptores de Estrógenos/genética , Tamoxifeno/farmacología , Animales , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Dinamina II/metabolismo , Estradiol/metabolismo , Estradiol/farmacología , Acoplamiento Excitación-Contracción/efectos de los fármacos , Femenino , Expresión Génica/efectos de los fármacos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Longevidad/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Miofibrillas/efectos de los fármacos , Miofibrillas/metabolismo , Miofibrillas/ultraestructura , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/metabolismo , Miopatías Estructurales Congénitas/patología , Proteínas Tirosina Fosfatasas no Receptoras/deficiencia , Receptores de Estrógenos/metabolismo
20.
Neuromuscul Disord ; 28(7): 592-596, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29759639

RESUMEN

Mutations in POMT2 are most commonly associated with Walker-Warburg syndrome and Muscle-Eye-Brain disease, but can also cause limb girdle muscular dystrophy (LGMD2N). We report a case of LGMD due to a novel mutation in POMT2 unmasked by uniparental isodisomy. The patient experienced proximal muscle weakness from three years of age with minimal progression. She developed progressive contractures and underwent unilateral Achilles tenotomy. By age 11, she had borderline low left ventricular ejection fraction and mild restrictive lung disease. Muscle biopsy showed mild dystrophic changes with selective reduction in α-dystroglycan immunostaining. Sequencing of POMT2 showed a novel homozygous c.1502A>C variant that was predicted to be probably pathogenic. Fibroblast complementation studies showed lack of functional glycosylation rescued by wild-type POMT2 expression. Chromosomal microarray showed a single 15 Mb copy number neutral loss of heterozygosity on chromosome 14 encompassing POMT2. RNAseq verified homozygosity at this locus. Together, our findings indicate maternal uniparental isodisomy causing LGMD2N.


Asunto(s)
Manosiltransferasas/genética , Distrofia Muscular de Cinturas/genética , Mutación , Disomía Uniparental , Adolescente , Distroglicanos/metabolismo , Femenino , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA