Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Front Mol Neurosci ; 12: 41, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30906251

RESUMEN

Luteolin, a polyphenolic plant flavonoid, has been attributed with numerous beneficial properties like anti-cancer, antioxidant, and anti-inflammatory action. Luteolin has been reported earlier to be neuroprotective in models of spinal cord injury and traumatic brain injury and also induces neurite outgrowth in PC12 cells. However, the effect of luteolin on early differentiation, which might be important for its beneficial effects, is unknown. In this report, we show that luteolin negatively affects early differentiation of embryonic stem cells, hampering the formation of embryoid bodies. At later stages of differentiation, luteolin specifically inhibits neuronal differentiation, where the expression of early neuronal markers is suppressed, whereas luteolin treatment does not inhibit expression of meso- and endodermal markers. Further, in a developing zebrafish model, luteolin treatment leads to fewer numbers of mitotic cells in the brain. These specific effects of luteolin on neuronal differentiation could possibly be due to its ability to inhibit the lysine acetyltransferase, p300, since the structurally closely related p300 non-inhibitor flavonoid, apigenin, does not inhibit neuronal differentiation. These results show that luteolin perturbs neuronal differentiation of embryonic stem cells.

2.
Epilepsia ; 59(11): 2061-2074, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30324621

RESUMEN

OBJECTIVE: In humans, mutations of the γ-aminobutyric acid receptor subunit 1 (GABRA1) cause either mild or severe generalized epilepsy. Although these epilepsy-causing mutations have been shown to disrupt the receptor activity in vitro, their in vivo consequences on brain development and activity are not known. Here, we aim at unraveling the epileptogenesis mechanisms of GABRA1 loss of function. METHODS: We generated a gabra1-/- zebrafish mutant line displaying highly penetrant epileptic seizures. We sought to identify the underlying molecular mechanisms through unbiased whole transcriptomic assay of gabra1-/- larval brains. RESULTS: Interestingly, mutant fish show fully penetrant seizures at juvenile stages that accurately mimic tonic-clonic generalized seizures observed in patients. Moreover, highly penetrant seizures can be induced by light stimulation, thus providing us with the first zebrafish model in which evident epileptic seizures can be induced by nonchemical agents. Our transcriptomic assay identified misregulated genes in several pathways essential for correct brain development. More specifically, we show that the early development of the brain inhibitory network is specifically affected. Although the number of GABAergic neurons is not altered, we observed a drastic reduction in the number of inhibitory synapses and a decreased complexity of the GABAergic network. This is consistent with the disruption in expression of many genes involved in axon guidance and synapse formation. SIGNIFICANCE: Together with the role of GABA in neurodevelopment, our data identify a novel aspect of epileptogenesis, suggesting that the substratum of GABRA1-deficiency epilepsy is a consequence of early brain neurodevelopmental defects, in particular at the level of inhibitory network wiring.


Asunto(s)
Epilepsia Generalizada/genética , Expresión Génica/genética , Trastornos del Neurodesarrollo/etiología , Receptores de GABA-A/deficiencia , Receptores de GABA-A/genética , Animales , Animales Modificados Genéticamente , Anticonvulsivantes/uso terapéutico , Encéfalo/efectos de los fármacos , Encéfalo/embriología , Encéfalo/metabolismo , Encéfalo/patología , Clonazepam/uso terapéutico , Modelos Animales de Enfermedad , Embrión no Mamífero , Epilepsia Generalizada/tratamiento farmacológico , Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/genética , Glutamato Descarboxilasa/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Larva , Luz/efectos adversos , Mortalidad Prematura , Mutación , Trastornos del Neurodesarrollo/genética , Neuronas/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Transcriptoma/fisiología , Pez Cebra
3.
Front Cell Dev Biol ; 6: 68, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30050902

RESUMEN

Glycine is mainly known as an inhibitory neurotransmitter in adult mature neurons, regulating neuronal network activity in the central nervous system. In contrast, during embryogenesis glycine can act as an excitatory neurotransmitter and generates the first electrical signal in immature neurons. The roles and functional significance of this excitatory glycinergic activity during neurodevelopment are still unclear. Using the zebrafish embryo as a model, we previously showed that glycine regulates proliferation and differentiation of neural stem cells (NSCs) to interneurons. Moreover, we identified that glycine signaling in NSCs is associated with several common developmental pathways and surprisingly also the p53-related apoptosis. Here we investigated how glycine signaling regulates NSC survival. First, we showed by two approaches, acridine orange staining and active caspase 3 immunostaining that defects in glycine signaling induce an early and transient cell death, which was suppressed by knockdown of p53. Then, we developed an NSC transplantation strategy to directly assess NSC-autonomous development upon perturbing glycine signaling. In vivo time-lapse imaging showed that disruption of glycine signaling disturbed the normal NSC interkinetic nuclear migration, leading to cell cycle arrest and apoptosis. Finally, we analyzed two main subpopulations of NSCs, expressing either nestin or GFAP, by in situ labeling and in transgenic lines expressing GFP in either population. We found that disruption of glycine signaling induced a drastic and selective loss of nestin-positive (nestin+) NSCs, which was only partially rescued upon p53 knockdown. Taken together, our findings support a role of glycine signaling in promoting survival of the nestin+ NSC subpopulation early during development.

4.
PLoS One ; 11(3): e0150188, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26930076

RESUMEN

The methodology for site-directed editing of single nucleotides in the vertebrate genome is of considerable interest for research in biology and medicine. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 type II (Cas9) system has emerged as a simple and inexpensive tool for editing genomic loci of interest in a variety of animal models. In zebrafish, error-prone non-homologous end joining (NHEJ) has been used as a simple method to disrupt gene function. We sought to develop a method to easily create site-specific SNPs in the zebrafish genome. Here, we report simple methodologies for using CRISPR/Cas9-mediated homology directed repair using single-stranded oligodeoxynucleotide donor templates (ssODN) for site-directed single nucleotide editing, for the first time in two disease-related genes, tardbp and fus.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Sistemas CRISPR-Cas/genética , Proteínas de Unión al ADN/genética , Mutación Puntual , Proteína FUS de Unión a ARN/genética , Proteínas de Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Reparación del ADN , ADN de Cadena Simple , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen/métodos , Humanos , Oligodesoxirribonucleótidos/genética , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Pez Cebra/genética
5.
Hum Mol Genet ; 25(6): 1088-99, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26744324

RESUMEN

Hereditary spastic paraplegias (HSPs) are a group of neurodegenerative diseases causing progressive gait dysfunction. Over 50 genes have now been associated with HSP. Despite the recent explosion in genetic knowledge, HSP remains without pharmacological treatment. Loss-of-function mutation of the SPAST gene, also known as SPG4, is the most common cause of HSP in patients. SPAST is conserved across animal species and regulates microtubule dynamics. Recent studies have shown that it also modulates endoplasmic reticulum (ER) stress. Here, utilizing null SPAST homologues in C. elegans, Drosophila and zebrafish, we tested FDA-approved compounds known to modulate ER stress in order to ameliorate locomotor phenotypes associated with HSP. We found that locomotor defects found in all of our spastin models could be partially rescued by phenazine, methylene blue, N-acetyl-cysteine, guanabenz and salubrinal. In addition, we show that established biomarkers of ER stress levels correlated with improved locomotor activity upon treatment across model organisms. Our results provide insights into biomarkers and novel therapeutic avenues for HSP.


Asunto(s)
Modelos Animales de Enfermedad , Paraplejía Espástica Hereditaria/tratamiento farmacológico , Adenosina Trifosfatasas/genética , Animales , Caenorhabditis elegans , Drosophila , Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/genética , Femenino , Humanos , Locomoción/efectos de los fármacos , Locomoción/genética , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Mutación , Fenazinas/farmacología , Fenotipo , Paraplejía Espástica Hereditaria/genética , Pez Cebra
6.
Dev Neurobiol ; 76(6): 642-60, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26408263

RESUMEN

We describe neuronal patterns in the spinal cord of adult zebrafish. We studied the distribution of cells and processes in the three spinal regions reported in the literature: the 8th vertebra used as a transection injury site, the 15th vertebra mainly used for motor cell recordings and also for crush injury, and the 24th vertebra used to record motor nerve activity. We used well-known transgenic lines in which expression of green fluorescent protein (GFP) is driven by promoters to hb9 and isl1 in motoneurons, alx/chx10 and evx1 interneurons, ngn1 in sensory neurons and olig2 in oligodendrocytes, as well as antibodies for neurons (HuC/D, NF and SV2) and glia (GFAP). In isl1:GFP fish, GFP-positive processes are retained in the upper part of ventral horns and two subsets of cell bodies are observed. The pattern of the transgene in hb9:GFP adults is more diffuse and fibers are present broadly through the adult spinal cord. In alx/chx10 and evx1 lines we respectively observed two and three different GFP-positive populations. Finally, the ngn1:GFP transgene identifies dorsal root ganglion and some cells in dorsal horns. Interestingly some GFP positive fibers in ngn1:GFP fish are located around Mauthner axons and their density seems to be related to a rostrocaudal gradient. Many other cell types have been described in embryos and need to be studied in adults. Our findings provide a reference for further studies on spinal cytoarchitecture. Combined with physiological, histological and pathological/traumatic approaches, these studies will help clarify the operation of spinal locomotor circuits of adult zebrafish.


Asunto(s)
Neuronas/metabolismo , Médula Espinal/citología , Proteínas de Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteína 3 Similar a ELAV/metabolismo , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Microscopía Confocal , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Pez Cebra , Proteínas de Pez Cebra/genética
7.
Birth Defects Res A Clin Mol Teratol ; 103(12): 1021-7, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26368655

RESUMEN

BACKGROUND: Neural tube defects (NTDs) are among the most common congenital defects affecting approximately 1 in 1000 live births in North America. Their etiology is complex including environmental and genetic factors. Defects in the planar cell polarity (PCP) signaling pathway have been strongly associated with NTDs in animal models and human cohorts. Protein tyrosine kinase 7 (Ptk7) was shown to cause a very severe form of NTDs called craniorachischisis in a mouse model and genetically interacts with a core PCP member Vangl2 where double heterozygotes suffer from spina bifida. In this study, we examined the role of PTK7 in human NTDs to determine whether variants at this gene predispose to these defects. METHODS: We sequenced the coding region and the exon-intron junctions of PTK7 in a cohort of 473 patients affected with various forms of open and closed NTDs. Novel and rare variants(<1%) were genotyped in a cohort of 473 individuals. Their pathogenic effect was predicted in silico and functionally in an overexpression assay in a well-established zebrafish model. RESULTS: We identified in our cohort 6 rare variants, 3 of which were absent in public databases. One variant, p.Gly348Ser, acted as a hypermorph when overexpressed in the zebrafish model. CONCLUSION: We detected potentially pathogenic PTK7 variants in 1.1% of our NTD cohort. Our findings implicate PTK7 as a risk factor for NTDs and provide additional evidence for a pathogenic role of PCP signaling in these malformations.


Asunto(s)
Moléculas de Adhesión Celular/genética , Polaridad Celular/genética , Defectos del Tubo Neural/genética , Proteínas Tirosina Quinasas Receptoras/genética , Secuencia de Aminoácidos , Animales , Estudios de Cohortes , Humanos , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido
8.
PLoS One ; 9(11): e111799, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25369329

RESUMEN

The zebrafish posterior lateral line is formed during early development by the deposition of neuromasts from a migrating primordium. The molecular mechanisms regulating the regional organization and migration of the primordium involve interactions between Fgf and Wnt/ß-catenin signaling and the establishment of specific cxcr4b and cxcr7b cytokine receptor expression domains. Itch has been identified as a regulator in several different signaling pathways, including Wnt and Cxcr4 signaling. We identified two homologous itch genes in zebrafish, itcha and itchb, with generalized expression patterns. By reducing itchb expression in particular upon morpholino knockdown, we demonstrated the importance of Itch in regulating lateral line development by perturbing the patterns of cxcr4b and cxcr7b expression. Itch knockdown results in a failure to down-regulate Wnt signaling and overexpression of cxcr4b in the primordium, slowing migration of the posterior lateral line primordium and resulting in abnormal development of the lateral line.


Asunto(s)
Sistema de la Línea Lateral , Ubiquitina-Proteína Ligasas/genética , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Pez Cebra/genética , Animales , Movimiento Celular , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Filogenia , Ubiquitina-Proteína Ligasas/metabolismo , Vía de Señalización Wnt , Pez Cebra/anatomía & histología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
9.
Hum Mol Genet ; 22(21): 4282-92, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23771027

RESUMEN

Amyotrophic lateral sclerosis (ALS) presents clinically in adulthood and is characterized by the loss of motoneurons in the spinal cord and cerebral cortex. Animal models of the disease suggest that significant neuronal abnormalities exist during preclinical stages of the disease. Mutations in the gene fused in sarcoma (FUS) are associated with ALS and cause impairment in motor function in animal models. However, the mechanism of neuromuscular dysfunction underlying pathophysiological deficits causing impairment in locomotor function resulting from mutant FUS expression is unknown. To characterize the cellular pathophysiological defect, we expressed the wild-type human gene (wtFUS) or the ALS-associated mutation R521H (mutFUS) gene in zebrafish larvae and characterized their motor (swimming) activity and function of their neuromuscular junctions (NMJs). Additionally, we tested knockdown of zebrafish fus with an antisense morpholino oligonucleotide (fus AMO). Expression of either mutFUS or knockdown of fus resulted in impaired motor activity and reduced NMJ synaptic fidelity with reduced quantal transmission. Primary motoneurons expressing mutFUS were found to be more excitable. These impairments in neuronal function could be partially restored in fus AMO larvae also expressing wtFUS (fus AMO+wtFUS) but not mutFUS (fus AMO+mutFUS). These results show that both a loss and gain of FUS function result in defective presynaptic function at the NMJ.


Asunto(s)
Esclerosis Amiotrófica Lateral/fisiopatología , Neuronas Motoras/fisiología , Unión Neuromuscular/fisiología , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Transmisión Sináptica , Esclerosis Amiotrófica Lateral/genética , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Humanos , Actividad Motora , Unión Neuromuscular/genética , Natación/fisiología , Pez Cebra/genética , Pez Cebra/metabolismo , Pez Cebra/fisiología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
10.
PLoS Genet ; 9(1): e1003124, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23300475

RESUMEN

Hereditary sensory and autonomic neuropathy type 2 (HSNAII) is a rare pathology characterized by an early onset of severe sensory loss (all modalities) in the distal limbs. It is due to autosomal recessive mutations confined to exon "HSN2" of the WNK1 (with-no-lysine protein kinase 1) serine-threonine kinase. While this kinase is well studied in the kidneys, little is known about its role in the nervous system. We hypothesized that the truncating mutations present in the neural-specific HSN2 exon lead to a loss-of-function of the WNK1 kinase, impairing development of the peripheral sensory system. To investigate the mechanisms by which the loss of WNK1/HSN2 isoform function causes HSANII, we used the embryonic zebrafish model and observed strong expression of WNK1/HSN2 in neuromasts of the peripheral lateral line (PLL) system by immunohistochemistry. Knocking down wnk1/hsn2 in embryos using antisense morpholino oligonucleotides led to improper PLL development. We then investigated the reported interaction between the WNK1 kinase and neuronal potassium chloride cotransporter KCC2, as this transporter is a target of WNK1 phosphorylation. In situ hybridization revealed kcc2 expression in mature neuromasts of the PLL and semi-quantitative RT-PCR of wnk1/hsn2 knockdown embryos showed an increased expression of kcc2 mRNA. Furthermore, overexpression of human KCC2 mRNA in embryos replicated the wnk1/hsn2 knockdown phenotype. We validated these results by obtaining double knockdown embryos, both for wnk1/hsn2 and kcc2, which alleviated the PLL defects. Interestingly, overexpression of inactive mutant KCC2-C568A, which does not extrude ions, allowed a phenocopy of the PLL defects. These results suggest a pathway in which WNK1/HSN2 interacts with KCC2, producing a novel regulation of its transcription independent of KCC2's activation, where a loss-of-function mutation in WNK1 induces an overexpression of KCC2 and hinders proper peripheral sensory nerve development, a hallmark of HSANII.


Asunto(s)
Neuropatías Hereditarias Sensoriales y Autónomas/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Sistema Nervioso Periférico , Proteínas Serina-Treonina Quinasas/genética , Simportadores , Pez Cebra , Animales , Modelos Animales de Enfermedad , Regulación del Desarrollo de la Expresión Génica , Neuropatías Hereditarias Sensoriales y Autónomas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Antígenos de Histocompatibilidad Menor , Morfolinos , Mutación , Neuronas/metabolismo , Sistema Nervioso Periférico/crecimiento & desarrollo , Sistema Nervioso Periférico/metabolismo , Fenotipo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Simportadores/genética , Simportadores/metabolismo , Activación Transcripcional , Proteína Quinasa Deficiente en Lisina WNK 1 , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Cotransportadores de K Cl
11.
PLoS One ; 7(7): e42117, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22848727

RESUMEN

The DNA/RNA-binding proteins TDP-43 and FUS are found in protein aggregates in a growing number of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and related dementia, but little is known about the neurotoxic mechanisms. We have generated Caenorhabditis elegans and zebrafish animal models expressing mutant human TDP-43 (A315T or G348C) or FUS (S57Δ or R521H) that reflect certain aspects of ALS including motor neuron degeneration, axonal deficits, and progressive paralysis. To explore the potential of our humanized transgenic C. elegans and zebrafish in identifying chemical suppressors of mutant TDP-43 and FUS neuronal toxicity, we tested three compounds with potential neuroprotective properties: lithium chloride, methylene blue and riluzole. We identified methylene blue as a potent suppressor of TDP-43 and FUS toxicity in both our models. Our results indicate that methylene blue can rescue toxic phenotypes associated with mutant TDP-43 and FUS including neuronal dysfunction and oxidative stress.


Asunto(s)
Caenorhabditis elegans/citología , Proteínas de Unión al ADN/metabolismo , Azul de Metileno/farmacología , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Proteína FUS de Unión a ARN/metabolismo , Pez Cebra/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/genética , Humanos , Azul de Metileno/administración & dosificación , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Mutación , Neuronas/metabolismo , Fármacos Neuroprotectores/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Fenotipo , Proteína FUS de Unión a ARN/genética , Factores de Tiempo , Pez Cebra/genética
12.
PLoS One ; 7(2): e31321, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22363618

RESUMEN

Mutations in the DNA/RNA binding proteins TDP-43 and FUS are associated with Amyotrophic Lateral Sclerosis and Frontotemporal Lobar Degeneration. Intracellular accumulations of wild type TDP-43 and FUS are observed in a growing number of late-onset diseases suggesting that TDP-43 and FUS proteinopathies may contribute to multiple neurodegenerative diseases. To better understand the mechanisms of TDP-43 and FUS toxicity we have created transgenic Caenorhabditis elegans strains that express full-length, untagged human TDP-43 and FUS in the worm's GABAergic motor neurons. Transgenic worms expressing mutant TDP-43 and FUS display adult-onset, age-dependent loss of motility, progressive paralysis and neuronal degeneration that is distinct from wild type alleles. Additionally, mutant TDP-43 and FUS proteins are highly insoluble while wild type proteins remain soluble suggesting that protein misfolding may contribute to toxicity. Populations of mutant TDP-43 and FUS transgenics grown on solid media become paralyzed over 7 to 12 days. We have developed a liquid culture assay where the paralysis phenotype evolves over several hours. We introduce C. elegans transgenics for mutant TDP-43 and FUS motor neuron toxicity that may be used for rapid genetic and pharmacological suppressor screening.


Asunto(s)
Envejecimiento/patología , Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Mutantes/metabolismo , Degeneración Nerviosa/patología , Parálisis/patología , Proteína FUS de Unión a ARN/metabolismo , Envejecimiento/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Unión al ADN/química , Humanos , Longevidad , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Proteínas Mutantes/química , Degeneración Nerviosa/complicaciones , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/fisiopatología , Parálisis/complicaciones , Parálisis/metabolismo , Parálisis/fisiopatología , Fenotipo , Estructura Cuaternaria de Proteína , Proteína FUS de Unión a ARN/química , Solubilidad , Coloración y Etiquetado , Transmisión Sináptica , Transgenes/genética , Ácido gamma-Aminobutírico/metabolismo
13.
Dev Neurobiol ; 72(2): 208-14, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22234938

RESUMEN

Glycine and γ-aminobutyric acid (GABA) are depolarizing during early development but the purpose is unclear. We tested the effect of altering glycine signaling in zebrafish embryos by overexpressing the potassium-chloride co-transporter type 2 (KCC2) to reverse the chloride gradient or by blocking glycine receptors with strychnine or by selectively knocking down the embryonic glycine receptor (GlyR KD). Using a variety of markers we observed in all three cases a reduction of all types of spinal interneuron populations examined, indicating that glycine modulates their overall differentiation rather than choice of cell fate. Other cell populations (motor, sensory, and glial cells) were unaffected. As glycine appeared to act preceding neural and synaptic development, we examined the bandoneon (beo) mutant in which glycine receptors are functional but not clustered at synapses. Neural populations in beo embryos appeared normal, suggesting a paracrine action of circulating glycine in promoting interneuron differentiation.


Asunto(s)
Diferenciación Celular/fisiología , Glicina/metabolismo , Interneuronas/fisiología , Comunicación Paracrina/fisiología , Transducción de Señal/fisiología , Médula Espinal/citología , Animales , Animales Modificados Genéticamente , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Diferenciación Celular/efectos de los fármacos , Proteínas ELAV/metabolismo , Glutamato Descarboxilasa/metabolismo , Glicinérgicos/farmacología , Proteínas Fluorescentes Verdes , Proteínas de Homeodominio/metabolismo , Microscopía Confocal , Morfolinos/farmacología , Proteínas del Tejido Nervioso , Factor de Transcripción PAX2/metabolismo , Receptores de Glicina/deficiencia , Transducción de Señal/efectos de los fármacos , Estricnina/farmacología , Simportadores , Proteínas de Xenopus , Pez Cebra/embriología , Proteínas de Pez Cebra/metabolismo , Cotransportadores de K Cl
14.
Hum Mutat ; 32(12): 1371-5, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21901791

RESUMEN

The planar cell polarity (PCP) pathway controls the process of convergent extension (CE) during gastrulation and neural tube closure, and has been implicated in the pathogenesis of neural tube defects (NTDs) in animal models and human cohorts. In this study, we analyzed the role of one core PCP gene PRICKLE1 in these malformations. We screened this gene in 810 unrelated NTD patients and identified seven rare missense heterozygous mutations that were absent in all controls analyzed and predicted to be functionally deleterious using bioinformatics. Functional validation of five PRICKLE1 variants in a zebrafish model demonstrated that one variant, p.Arg682Cys, antagonized the CE phenotype induced by the wild-type zebrafish prickle1a (zpk1a) in a dominant fashion. Our study demonstrates that PRICKLE1 could act as a predisposing factor to human NTDs and further expands our knowledge of the role of PCP genes in the pathogenesis of these malformations.


Asunto(s)
Polaridad Celular/genética , Proteínas con Dominio LIM/genética , Mutación Missense/genética , Defectos del Tubo Neural/genética , Proteínas Supresoras de Tumor/genética , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Italia , Masculino , Defectos del Tubo Neural/etnología , Defectos del Tubo Neural/metabolismo , Defectos del Tubo Neural/patología , Estados Unidos , Pez Cebra/genética
15.
PLoS Genet ; 7(8): e1002214, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21829392

RESUMEN

Mutations in the SOD1 and TARDBP genes have been commonly identified in Amyotrophic Lateral Sclerosis (ALS). Recently, mutations in the Fused in sarcoma gene (FUS) were identified in familial (FALS) ALS cases and sporadic (SALS) patients. Similarly to TDP-43 (coded by TARDBP gene), FUS is an RNA binding protein. Using the zebrafish (Danio rerio), we examined the consequences of expressing human wild-type (WT) FUS and three ALS-related mutations, as well as their interactions with TARDBP and SOD1. Knockdown of zebrafish Fus yielded a motor phenotype that could be rescued upon co-expression of wild-type human FUS. In contrast, the two most frequent ALS-related FUS mutations, R521H and R521C, unlike S57Δ, failed to rescue the knockdown phenotype, indicating loss of function. The R521H mutation caused a toxic gain of function when expressed alone, similar to the phenotype observed upon knockdown of zebrafish Fus. This phenotype was not aggravated by co-expression of both mutant human TARDBP (G348C) and FUS (R521H) or by knockdown of both zebrafish Tardbp and Fus, consistent with a common pathogenic mechanism. We also observed that WT FUS rescued the Tardbp knockdown phenotype, but not vice versa, suggesting that TARDBP acts upstream of FUS in this pathway. In addition we observed that WT SOD1 failed to rescue the phenotype observed upon overexpression of mutant TARDBP or FUS or upon knockdown of Tardbp or Fus; similarly, WT TARDBP or FUS also failed to rescue the phenotype induced by mutant SOD1 (G93A). Finally, overexpression of mutant SOD1 exacerbated the motor phenotype caused by overexpression of mutant FUS. Together our results indicate that TARDBP and FUS act in a pathogenic pathway that is independent of SOD1.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/genética , Modelos Genéticos , Proteína FUS de Unión a ARN/genética , Superóxido Dismutasa/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Proteínas de Unión al ADN/metabolismo , Epistasis Genética , Humanos , Actividad Motora/genética , Mutación/genética , Fenotipo , Proteína FUS de Unión a ARN/metabolismo , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Pez Cebra/genética , Pez Cebra/metabolismo
16.
J Neurosci ; 30(26): 8871-81, 2010 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-20592209

RESUMEN

Neurons respond homeostatically to chronic changes in network activity with compensatory changes such as a uniform alteration in the size of miniature postsynaptic current (mPSC) amplitudes termed synaptic scaling. However, little is known about the impact of synaptic scaling on the function of neural networks in vivo. We used the embryonic zebrafish to address the effect of synaptic scaling on the neural network underlying locomotion. Activity was decreased during development by TTX injection to block action potentials or CNQX injection to block glutamatergic transmission. Alternatively TNFalpha was chronically applied. Recordings from spinal neurons showed that glutamatergic mPSCs scaled up approximately 25% after activity reduction and fortuitously scaled down approximately 20% after TNFalpha treatment, and were unchanged following blockade of neuromuscular activity alone with alpha-bungarotoxin. Regardless of the direction of scaling, immediately following reversal of treatment no chronic effect was distinguishable in motoneuron activity patterns or in swimming behavior. We also acutely induced a similar increase of glutamatergic mPSC amplitudes using cyclothiazide to reduce AMPA receptor desensitization or decrease of glutamatergic mPSC amplitudes using a low concentration of CNQX to partially block AMPA receptors. Though the strength of the motor output was altered, neither chronic nor acute treatments disrupted the patterning of synaptic activity or swimming. Our results show, for the first time, that scaling of glutamatergic synapses can be induced in vivo in the zebrafish and that synaptic patterning is less plastic than synaptic strength during development.


Asunto(s)
Neuronas Motoras/fisiología , Natación/fisiología , Sinapsis/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Ácido Glutámico/metabolismo , Neuronas Motoras/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/embriología , Músculo Esquelético/fisiología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/embriología , Vías Nerviosas/fisiología , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Receptores AMPA/metabolismo , Sinapsis/efectos de los fármacos , Potenciales Sinápticos/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Pez Cebra
17.
Mech Dev ; 127(7-8): 385-92, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20043994

RESUMEN

In humans, rare non-synonymous variants in the planar cell polarity gene VANGL1 are associated with neural tube defects (NTDs). These variants were hypothesized to be pathogenic based mainly on genetic studies in a large cohort of NTD patients. In this study, we validate the potential pathogenic effect of these mutations in vivo by investigating their effect on convergent extension in zebrafish. Knocking down the expression of tri, the ortholog of Vangl2, using an antisense morpholino (MO), as shown previously, led to a defective convergent extension (CE) manifested by a shortened body axis and widened somites. Co-injection of the human VANGL1 with the tri-MO was able to partially rescue the tri-MO induced phenotype in zebrafish. In contrast, co-injection of two human VANGL1 variants, p.Val239Ile and p.Met328Thr, failed to rescue this phenotype. We next carried out overexpression studies where we measured the ability of the human VANGL1 alleles to induce a CE phenotype when injected at high doses in zebrafish embryos. While overexpressing the wild-type allele led to a severely defective CE, overexpression of either p.Val239Ile or p.Met328Thr variant failed to do so. Results from both tri-MO knockdown/rescue results and overexpression assays suggest that these two variants most likely represent "loss-of-function" alleles that affect protein function during embryonic development. Our study demonstrates a high degree of functional conservation of VANGL genes across evolution and provides a model system for studying potential variants identified in human NTDs.


Asunto(s)
Proteínas Portadoras/genética , Proteínas de la Membrana/genética , Mutación/genética , Defectos del Tubo Neural/genética , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Pez Cebra/genética , Animales , Bioensayo , Proteínas Portadoras/metabolismo , Secuencia Conservada , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Evolución Molecular , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Proteínas Mutantes/metabolismo , Oligonucleótidos Antisentido/farmacología , Fenotipo , Proteínas de Pez Cebra/metabolismo
18.
PLoS Genet ; 4(12): e1000296, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19057675

RESUMEN

Adaptor protein (AP) complexes regulate clathrin-coated vesicle assembly, protein cargo sorting, and vesicular trafficking between organelles in eukaryotic cells. Because disruption of the various subunits of the AP complexes is embryonic lethal in the majority of cases, characterization of their function in vivo is still lacking. Here, we describe the first mutation in the human AP1S1 gene, encoding the small subunit sigma1A of the AP-1 complex. This founder splice mutation, which leads to a premature stop codon, was found in four families with a unique syndrome characterized by mental retardation, enteropathy, deafness, peripheral neuropathy, ichthyosis, and keratodermia (MEDNIK). To validate the pathogenic effect of the mutation, we knocked down Ap1s1 expression in zebrafish using selective antisens morpholino oligonucleotides (AMO). The knockdown phenotype consisted of perturbation in skin formation, reduced pigmentation, and severe motility deficits due to impaired neural network development. Both neural and skin defects were rescued by co-injection of AMO with wild-type (WT) human AP1S1 mRNA, but not by co-injecting the truncated form of AP1S1, consistent with a loss-of-function effect of this mutation. Together, these results confirm AP1S1 as the gene responsible for MEDNIK syndrome and demonstrate a critical role of AP1S1 in development of the skin and spinal cord.


Asunto(s)
Complejo 1 de Proteína Adaptadora/genética , Subunidades sigma de Complejo de Proteína Adaptadora/genética , Técnicas de Silenciamiento del Gen , Síndromes Neurocutáneos/genética , Piel/crecimiento & desarrollo , Médula Espinal/crecimiento & desarrollo , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Complejo 1 de Proteína Adaptadora/metabolismo , Subunidades sigma de Complejo de Proteína Adaptadora/metabolismo , Animales , Células Cultivadas , Femenino , Humanos , Masculino , Mutación , Síndromes Neurocutáneos/metabolismo , Linaje , Fenotipo , Piel/metabolismo , Médula Espinal/metabolismo , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
19.
Dev Neurobiol ; 68(12): 1391-405, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18712783

RESUMEN

The zebrafish hi472 mutation is caused by a retroviral insertion into the vesicular integral protein-like gene, or zVIPL, a poorly studied lectin implicated in endoplasmic reticulum (ER)-Golgi trafficking. A mutation in the shorter isoform of zVIPL (zVIPL-s) results in a reduction of mechanosensitivity and consequent loss of escape behavior. Here we show that motoneurons and hindbrain reticulospinal neurons, which normally integrate mechanosensory inputs, failed to fire in response to tactile stimuli in hi472 larvae, suggesting a perturbation in sensory function. The hi472 mutant larvae in fact suffered from a severe loss of functional neuromasts of the lateral line mechanosensory system, a reduction of zVIPL labeling in support cells, and a reduction or even a complete loss of hair cells in neuromasts. The Delta-Notch signaling pathway is implicated in cellular differentiation of neuromasts, and we observed an increase in Notch expression in neuromasts of hi472 mutant larvae. Treatment of hi472 mutant larvae with DAPT, an inhibitor of Notch signaling, or overexpression of the Notch ligand deltaB in hi472 mutant blastocysts produced partial rescue of the morphological defects and of the startle response behavior. We conclude that zVIPL-s is a necessary component of Delta-Notch signaling during neuromast development in the lateral line mechanosensory system.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/fisiología , Sistema de la Línea Lateral/fisiología , Mecanorreceptores/fisiología , Neuronas/fisiología , Rombencéfalo/fisiología , Proteínas de Pez Cebra/fisiología , Pez Cebra/fisiología , Animales , Western Blotting , Electrofisiología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Hibridación in Situ , Péptidos y Proteínas de Señalización Intracelular/genética , Larva/genética , Larva/crecimiento & desarrollo , Larva/fisiología , Sistema de la Línea Lateral/metabolismo , Lectinas/genética , Lectinas/fisiología , Mecanorreceptores/efectos de los fármacos , Mecanorreceptores/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/fisiología , Mutación , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Receptores Notch/genética , Receptores Notch/metabolismo , Receptores Notch/fisiología , Rombencéfalo/citología , Rombencéfalo/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/fisiología , Triglicéridos/farmacología , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/genética , Ácido gamma-Aminobutírico/análogos & derivados , Ácido gamma-Aminobutírico/farmacología
20.
N Engl J Med ; 356(14): 1432-7, 2007 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-17409324

RESUMEN

Neural-tube defects such as anencephaly and spina bifida constitute a group of common congenital malformations caused by complex genetic and environmental factors. We have identified three mutations in the VANGL1 gene in patients with familial types (V239I and R274Q) and a sporadic type (M328T) of the disease, including a spontaneous mutation (V239I) appearing in a familial setting. In a protein-protein interaction assay V239I abolished interaction of VANGL1 protein with its binding partners, disheveled-1, -2, and -3. These findings implicate VANGL1 as a risk factor in human neural-tube defects.


Asunto(s)
Proteínas Portadoras/genética , Proteínas de la Membrana/genética , Mutación Missense , Defectos del Tubo Neural/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adolescente , Adulto , Secuencia de Aminoácidos , Proteínas Portadoras/metabolismo , Niño , Análisis Mutacional de ADN , Proteínas Dishevelled , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Italia , Masculino , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Linaje , Fosfoproteínas/metabolismo , Factores de Riesgo , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA