Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Endocrinol (Lausanne) ; 11: 545638, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193079

RESUMEN

Objective: Congenital hyperinsulinism (CHI) is a rare disease characterized by persistent hypoglycemia as a result of inappropriate insulin secretion, which can lead to irreversible neurological defects in infants. Poor efficacy and strong adverse effects of the current medications impede successful treatment. The aim of the study was to investigate new approaches to silence ß-cells and thus attenuate insulin secretion. Research Design and Methods: In the scope of our research, we tested substances more selective and more potent than the gold standard diazoxide that also interact with neuroendocrine ATP-sensitive K+ (KATP) channels. Additionally, KATP channel-independent targets as Ca2+-activated K+ channels of intermediate conductance (KCa3.1) and L-type Ca2+ channels were investigated. Experiments were performed using human islet cell clusters isolated from tissue of CHI patients (histologically classified as pathological) and islet cell clusters obtained from C57BL/6N (WT) or SUR1 knockout (SUR1-/-) mice. The cytosolic Ca2+ concentration ([Ca2+]c) was used as a parameter for the pathway regulated by electrical activity and was determined by fura-2 fluorescence. The mitochondrial membrane potential (ΔΨ) was determined by rhodamine 123 fluorescence and single channel currents were measured by the patch-clamp technique. Results: The selective KATP channel opener NN414 (5 µM) diminished [Ca2+]c in isolated human CHI islet cell clusters and WT mouse islet cell clusters stimulated with 10 mM glucose. In islet cell clusters lacking functional KATP channels (SUR1-/-) the drug was without effect. VU0071063 (30 µM), another KATP channel opener considered to be selective, lowered [Ca2+]c in human CHI islet cell clusters. The compound was also effective in islet cell clusters from SUR1-/- mice, showing that [Ca2+]c is influenced by additional effects besides KATP channels. Contrasting to NN414, the drug depolarized ΔΨ in murine islet cell clusters pointing to severe interference with mitochondrial metabolism. An opener of KCa3.1 channels, DCEBIO (100 µM), significantly decreased [Ca2+]c in SUR1-/- and human CHI islet cell clusters. To target L-type Ca2+ channels we tested two already approved drugs, dextromethorphan (DXM) and simvastatin. DXM (100 µM) efficiently diminished [Ca2+]c in stimulated human CHI islet cell clusters as well as in stimulated SUR1-/- islet cell clusters. Similar effects on [Ca2+]c were observed in experiments with simvastatin (7.2 µM). Conclusions: NN414 seems to provide a good alternative to the currently used KATP channel opener diazoxide. Targeting KCa3.1 channels by channel openers or L-type Ca2+ channels by DXM or simvastatin might be valuable approaches for treatment of CHI caused by mutations of KATP channels not sensitive to KATP channel openers.


Asunto(s)
Hiperinsulinismo Congénito/tratamiento farmacológico , Hipoglucemiantes/administración & dosificación , Animales , Compuestos Bicíclicos Heterocíclicos con Puentes/administración & dosificación , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/administración & dosificación , Células Cultivadas , Hiperinsulinismo Congénito/metabolismo , Óxidos S-Cíclicos/administración & dosificación , Dextrometorfano/administración & dosificación , Diazóxido , Humanos , Secreción de Insulina/efectos de los fármacos , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Canales KATP/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Nifedipino/administración & dosificación
2.
Endocrine ; 68(3): 526-535, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32146655

RESUMEN

Novel agonists of the nuclear liver-X-receptor (LXR) are designed to treat metabolic disorders or cancer. The rationale to develop these new drugs is based on promising results with established LXR agonist like T0901317 and GW3965. LXRα and LXRß are expressed in ß-cells, and expression is increased by T0901317. The aim of the present study was to evaluate whether effects of these drugs on ß-cell function are specific and reliably linked to LXR activation. T0901317 and GW3965, widely used as specific LXR agonists, show rapid, non-genomic effects on stimulus-secretion coupling of mouse pancreatic ß-cells at low µM concentrations. T0901317 lowered the cytosolic Ca2+ concentration, reduced or completely inhibited action potentials, and decreased insulin secretion. GW3965 exerted similar effects on insulin secretion. T0901317 affected the production of reactive oxygen species and ATP. The involvement of the classical nuclear LXRs in T0901317- and GW3965-mediated effects in ß-cells could be ruled out using LXRα, LXRß and double knockout mice. Our results strongly suggest that LXR agonists, that are considered to be specific for this receptor, interfere with mitochondrial metabolism and metabolism-independent processes in ß-cells. Thus, it is indispensable to test novel LXR agonists accompanying to ongoing clinical trials for acute and chronic effects on cell function in cellular systems and/or animal models lacking classical LXRs.


Asunto(s)
Células Secretoras de Insulina , Receptores Nucleares Huérfanos , Animales , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Receptores X del Hígado , Ratones , Ratones Noqueados
3.
Theranostics ; 10(1): 398-410, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31903128

RESUMEN

Non-invasive imaging of ß-cells represents a desirable preclinical and clinical tool to monitor the change of ß-cell mass and the loss of function during pre-diabetic stages. Although it is widely accepted that manganese (Mn) ions are actively gated by voltage-dependent calcium channels (VDCC) in response to glucose metabolism, little is known on its specificity in vivo for quantification of islet ß-cell function using Mn and magnetic resonance imaging (MRI). On the other hand, glucagon-like-peptide-1 receptor (GLP-1R) represents a validated target for the estimation of ß-cell mass using radiolabeled exendin-4 (Ex4) and positron emission tomography (PET). However, a multiparametric imaging workflow revealing ß-cell mass and function quantitatively is still missing. Methods: We developed a simultaneous PET/MRI protocol to comprehensively quantify in vivo changes in ß-cell mass and function by targeting, respectively, GLP-1R and VDCC coupled with insulin secretion. Differences in the spatial distribution of Mn and radiolabeled Ex4 were monitored overtime in native and transgenic pancreata, characterized by spontaneous pancreatic neuroendocrine tumor development. Follow-up with mass spectrometry imaging (MSI) and autoradiography allowed the ex vivo validation of the specificity of Mn and PET tracer uptake and the detection of endogenous biometals, such as calcium and zinc, throughout the endocrine and exocrine pancreas. Results: Our in vivo data based on a volumetric PET/MRI readout for native pancreata and insulinomas connects uptake of Mn measured at early imaging time points to high non-specific binding by the exocrine tissue, while specific retention was only found 24 h post injection. These results are supported by cross-validation of the spatial distribution of exogenous 55Mn and endogenous 44Ca and 64Zn as well with the specific internalization of the radiolabeled peptide targeting GLP-1R. Conclusion: Simultaneous PET/MR imaging of the pancreas enabled the comprehensive in vivo quantification of ß-cell function and mass using Mn and radiolabeled Ex4. Most important, our data revealed that only late time-point measurements reflect the Mn uptake in the islet ß-cells, while early time points detect non-specific accumulation of Mn in the exocrine pancreas.


Asunto(s)
Células Secretoras de Insulina , Imagen por Resonancia Magnética , Páncreas , Neoplasias Pancreáticas/diagnóstico por imagen , Tomografía de Emisión de Positrones , Animales , Canales de Calcio/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Células Secretoras de Insulina/patología , Células Secretoras de Insulina/ultraestructura , Manganeso/química , Ratones , Ratones Transgénicos , Páncreas/diagnóstico por imagen , Páncreas/patología , Radiofármacos/química
4.
Exp Clin Endocrinol Diabetes ; 128(10): 644-653, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30986881

RESUMEN

Glucose-stimulated insulin secretion (GSIS) is the gold standard for ß-cell function. Both experimental and clinical diabetology, i. e., preceding transplantation of isolated human islets, depend on functional testing. However, multiple factors influence GSIS rendering the comparison of different in vitro tests of glucose responsiveness difficult. This study examined the influence of bovine serum albumin (BSA)-coupled fatty acids on GSIS. Isolated islet preparations of human donors and of 12-months old mice displayed impaired GSIS in the presence of 0.5% FFA-free BSA compared to 0.5% BSA (fraction V, not deprived from fatty acids). In aged INS-1E cells, i. e. at a high passage number, GSIS became highly sensitive to FFA-free BSA. Readdition of 30 µM palmitate or 30 µM oleate to FFA-free BSA did not rescue GSIS, while the addition of 100 µM palmitate and the raise of extracellular Ca2+from 1.3 to 2.6 mM improved glucose responsiveness. A high concentration of palmitate (600 µM), which fully activates FFA1, largely restored insulin secretion. The FFA1-agonist TUG-469 also increased insulin secretion but to a lesser extent than palmitate. Glucose- and TUG-induced Ca2+oscillations were impaired in glucose-unresponsive, i. e., aged INS-1E cells. These results suggest that fatty acid deprivation (FFA-free BSA) impairs GSIS mainly through an effect on Ca2+sensitivity.


Asunto(s)
Ácidos Grasos no Esterificados/metabolismo , Glucosa/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Insulinoma , Compuestos de Anilina/farmacología , Animales , Calcio/metabolismo , Bovinos , Línea Celular Tumoral , Humanos , Ratones , Palmitatos/farmacología , Fenilpropionatos/farmacología
5.
Endocrine ; 63(2): 270-283, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30229397

RESUMEN

PURPOSE: The role of ATP, which is secreted by pancreatic ß-cells, is still a matter of debate. It has been postulated that extracellular ATP acts as a positive auto- or paracrine signal in ß-cells amplifying insulin secretion. However, there is rising evidence that extracellular ATP may also mediate a negative signal. METHODS: We evaluated whether extracellular ATP interferes with the Ca2+-mediated negative feedback mechanism that regulates oscillatory activity of ß-cells. RESULTS: To experimentally uncover the Ca2+-induced feedback we applied a high extracellular Ca2+ concentration. Under this condition ATP (100 µM) inhibited glucose-evoked oscillations of electrical activity and hyperpolarized the membrane potential. Furthermore, ATP acutely increased the interburst phase of Ca2+ oscillations and reduced the current through L-type Ca2+ channels. Accordingly, ATP (500 µM) decreased glucose-induced insulin secretion. The ATP effect was not mimicked by AMP, ADP, or adenosine. The use of specific agonists and antagonists and mice deficient of large conductance Ca2+-dependent K+ channels revealed that P2X, but not P2Y receptors, and Ca2+-dependent K+ channels are involved in the underlying signaling cascade induced by ATP. The effectiveness of ATP to interfere with parameters of stimulus-secretion coupling is markedly reduced at low extracellular Ca2+ concentration. CONCLUSION: It is suggested that extracellular ATP which is co-secreted with insulin in a pulsatile manner during glucose-stimulated exocytosis provides a negative feedback signal driving ß-cell oscillations in co-operation with Ca2+ and other signals.


Asunto(s)
Adenosina Trifosfato/farmacología , Comunicación Autocrina/efectos de los fármacos , Glucosa/farmacología , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Insulina/metabolismo , Animales , Calcio/metabolismo , Canales de Calcio/efectos de los fármacos , Canales de Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Células Cultivadas , Insulina/farmacología , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
6.
Diabetes ; 68(2): 324-336, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30409782

RESUMEN

The Takeda-G-protein-receptor-5 (TGR5) mediates physiological actions of bile acids. Since it was shown that TGR5 is expressed in pancreatic tissue, a direct TGR5 activation in ß-cells is currently postulated and discussed. The current study reveals that oleanolic acid (OLA) affects murine ß-cell function by TGR5 activation. Both a Gαs inhibitor and an inhibitor of adenylyl cyclase (AC) prevented stimulating effects of OLA. Accordingly, OLA augmented the intracellular cAMP concentration. OLA and two well-established TGR5 agonists, RG239 and tauroursodeoxycholic acid (TUDCA), acutely promoted stimulus-secretion coupling (SSC). OLA reduced KATP current and elevated current through Ca2+ channels. Accordingly, in mouse and human ß-cells, TGR5 ligands increased the cytosolic Ca2+ concentration by stimulating Ca2+ influx. Higher OLA concentrations evoked a dual reaction, probably due to activation of a counterregulating pathway. Protein kinase A (PKA) was identified as a downstream target of TGR5 activation. In contrast, inhibition of phospholipase C and phosphoinositide 3-kinase did not prevent stimulating effects of OLA. Involvement of exchange protein directly activated by cAMP 2 (Epac2) or farnesoid X receptor (FXR2) was ruled out by experiments with knockout mice. The proposed pathway was not influenced by local glucagon-like peptide 1 (GLP-1) secretion from α-cells, shown by experiments with MIN6 cells, and a GLP-1 receptor antagonist. In summary, these data clearly demonstrate that activation of TGR5 in ß-cells stimulates insulin secretion via an AC/cAMP/PKA-dependent pathway, which is supposed to interfere with SSC by affecting KATP and Ca2+ currents and thus membrane potential.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Células Secretoras de Insulina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Calcio/metabolismo , Línea Celular , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Femenino , Péptido 1 Similar al Glucagón/metabolismo , Humanos , Células Secretoras de Insulina/efectos de los fármacos , Masculino , Ratones , Ácido Oleanólico/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/fisiología , Ácido Tauroquenodesoxicólico/farmacología
7.
J Biol Chem ; 294(10): 3707-3719, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30587573

RESUMEN

Neuroendocrine-type ATP-sensitive K+ (KATP) channels are metabolite sensors coupling membrane potential with metabolism, thereby linking insulin secretion to plasma glucose levels. They are octameric complexes, (SUR1/Kir6.2)4, comprising sulfonylurea receptor 1 (SUR1 or ABCC8) and a K+-selective inward rectifier (Kir6.2 or KCNJ11). Interactions between nucleotide-, agonist-, and antagonist-binding sites affect channel activity allosterically. Although it is hypothesized that opening these channels requires SUR1-mediated MgATP hydrolysis, we show here that ATP binding to SUR1, without hydrolysis, opens channels when nucleotide antagonism on Kir6.2 is minimized and SUR1 mutants with increased ATP affinities are used. We found that ATP binding is sufficient to switch SUR1 alone between inward- or outward-facing conformations with low or high dissociation constant, KD , values for the conformation-sensitive channel antagonist [3H]glibenclamide ([3H]GBM), indicating that ATP can act as a pure agonist. Assembly with Kir6.2 reduced SUR1's KD for [3H]GBM. This reduction required the Kir N terminus (KNtp), consistent with KNtp occupying a "transport cavity," thus positioning it to link ATP-induced SUR1 conformational changes to channel gating. Moreover, ATP/GBM site coupling was constrained in WT SUR1/WT Kir6.2 channels; ATP-bound channels had a lower KD for [3H]GBM than ATP-bound SUR1. This constraint was largely eliminated by the Q1179R neonatal diabetes-associated mutation in helix 15, suggesting that a "swapped" helix pair, 15 and 16, is part of a structural pathway connecting the ATP/GBM sites. Our results suggest that ATP binding to SUR1 biases KATP channels toward open states, consistent with SUR1 variants with lower KD values causing neonatal diabetes, whereas increased KD values cause congenital hyperinsulinism.


Asunto(s)
Adenosina Trifosfato/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Receptores de Sulfonilureas/química , Receptores de Sulfonilureas/metabolismo , Adenosina Difosfato/metabolismo , Regulación Alostérica , Animales , Sitios de Unión , Cricetinae , Guanosina Trifosfato/metabolismo , Células HEK293 , Humanos , Hidrólisis , Activación del Canal Iónico , Modelos Moleculares , Mutación , Canales de Potasio de Rectificación Interna/química , Unión Proteica , Conformación Proteica en Hélice alfa
8.
Pflugers Arch ; 470(3): 537-547, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29218453

RESUMEN

We have shown previously that genetic or pharmacological deletion of KATP channels protect against beta cell dysfunction induced by reactive oxygen species (ROS). Since it is assumed that glucolipotoxicity (GLTx) causes ROS production, we aimed to evaluate whether suppression of KATP channel activity can also prevent beta cell damage evoked by GLTx. We used an in vitro model of GLTx and measured distinct parameters of stimulus-secretion coupling. GLTx gradually induced disturbances of Ca2+ oscillations over 3 days. This impairment in Ca2+ dynamics was partially reversed in beta cells without functional KATP channels (SUR1-/-) and by the sulfonylurea gliclazide but not by tolbutamide. By contrast, the GLTx-induced suppression of glucose-induced insulin secretion could not be rescued by decreased KATP channel activity pointing to a direct interaction of GLTx with the secretory capacity. Accordingly, GLTx also suppressed KCl-induced insulin secretion. GLTx was not accompanied by decisively increased ROS production or enhanced apoptosis. Insulin content of beta cells was markedly reduced by GLTx, an effect not prevented by gliclazide. Since GLTx markedly diminished the mitochondrial membrane potential and cellular ATP content, lack of ATP is assumed to decrease insulin biosynthesis. The deleterious effect of GLTx is therefore caused by direct interference with the secretory capacity whereby reduction of insulin content is one important parameter. These findings deepen our understanding how GLTx damages beta cells and reveal that GLTx is disconnected from ROS formation, a notion important for targeting beta cells in the treatment of diabetes. Overall, GLTx-induced energy depletion may be a primary step in the cascade of events leading to loss of beta cell function in type-2 diabetes mellitus.


Asunto(s)
Apoptosis , Metabolismo Energético , Células Secretoras de Insulina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Células Cultivadas , Gliclazida/farmacología , Glucosa/metabolismo , Hipoglucemiantes/farmacología , Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Canales KATP/metabolismo , Potencial de la Membrana Mitocondrial , Ratones , Ratones Endogámicos C57BL , Tolbutamida/farmacología
9.
Diabetes ; 66(11): 2840-2848, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28864549

RESUMEN

Atrial natriuretic peptide (ANP) influences glucose homeostasis and possibly acts as a link between the cardiovascular system and metabolism, especially in metabolic disorders like diabetes. The current study evaluated effects of ANP on ß-cell function by the use of a ß-cell-specific knockout of the ANP receptor with guanylate cyclase activity (ßGC-A-KO). ANP augmented insulin secretion at the threshold glucose concentration of 6 mmol/L and decreased KATP single-channel activity in ß-cells of control mice but not of ßGC-A-KO mice. In wild-type ß-cells but not ß-cells lacking functional KATP channels (SUR1-KO), ANP increased electrical activity, suggesting no involvement of other ion channels. At 6 mmol/L glucose, ANP readily elicited Ca2+ influx in control ß-cells. This effect was blunted in ß-cells of ßGC-A-KO mice, and the maximal cytosolic Ca2+ concentration was lower. Experiments with inhibitors of protein kinase G (PKG), protein kinase A (PKA), phosphodiesterase 3B (PDE3B), and a membrane-permeable cyclic guanosine monophosphate (cGMP) analog on KATP channel activity and insulin secretion point to participation of the cGMP/PKG and cAMP/PKA/Epac (exchange protein directly activated by cAMP) directly activated by cAMP Epac pathways in the effects of ANP on ß-cell function; the latter seems to prevail. Moreover, ANP potentiated the effect of glucagon-like peptide 1 (GLP-1) on glucose-induced insulin secretion, which could be caused by a cGMP-mediated inhibition of PDE3B, which in turn reduces cAMP degradation.


Asunto(s)
Factor Natriurético Atrial/farmacología , Glucosa/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/fisiología , Animales , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , GMP Cíclico/genética , GMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/genética , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp , Tolbutamida
10.
Endocrinology ; 158(7): 2145-2154, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28449117

RESUMEN

The role of liver X receptor (LXR) in pancreatic ß-cell physiology and pathophysiology is still unclear. It has been postulated that chronic LXR activation in ß-cells induces lipotoxicity, a key step in the development of ß-cell dysfunction, which accompanies type 2 diabetes mellitus. In most of these studies, the LXR ligand T0901317 has been administered chronically in the micromolar range to study the significance of LXR activation. In the current study, we have evaluated acute effects of T0901317 on stimulus-secretion coupling of ß-cells. We found that 10 µM T0901317 completely suppressed oscillations of the cytosolic Ca2+ concentration induced by 15 mM glucose. Obviously, this effect was due to inhibition of mitochondrial metabolism. T0901317 markedly depolarized the mitochondrial membrane potential, thus inhibiting adenosine triphosphate (ATP) production and reducing the cytosolic ATP concentration. This led in turn to a huge increase in KATP current and hyperpolarization of the cell membrane potential. Eventually, T0901317 inhibited glucose-induced insulin secretion. These effects were rapid in on-set and not compatible with the activation of a nuclear receptor. In vivo, T0901317 acutely increased the blood glucose concentration after intraperitoneal application. In summary, these data clearly demonstrate that T0901317 exerts acute effects on stimulus-secretion coupling. This observation questions the chronic use of T0901317 and limits the interpretation of results obtained under these experimental conditions.


Asunto(s)
Hidrocarburos Fluorados/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Insulina/metabolismo , Receptores X del Hígado/agonistas , Mitocondrias/efectos de los fármacos , Sulfonamidas/farmacología , Animales , Femenino , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/ultraestructura , Ligandos , Receptores X del Hígado/genética , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo
11.
Endocrinology ; 157(12): 4677-4690, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27715254

RESUMEN

The angiotensin-converting enzyme 2/angiotensin (Ang)-(1-7)/Mas axis of the renin-angiotensin system often opposes the detrimental effects of the angiotensin-converting enzyme/Ang II/Ang II type 1 receptor axis and has been associated with beneficial effects on glucose homeostasis, whereas underlying mechanisms are mostly unknown. Here we investigate the effects of Ang-(1-7) and its receptor Mas on ß-cell function. Isolated islets from Mas-deficient and wild-type mice were stimulated with Ang-(1-7) or its antagonists and effects on insulin secretion determined. Islets' cytoplasmic calcium and cAMP concentrations, mRNA amounts of Ins1, Ins2, Pdx1, and Mafa and effects of inhibitors of cAMP downstream signaling were determined. Ang-(1-7) was also applied to mice by osmotic pumps for 14 days and effects on glucose tolerance and insulin secretion were assessed. Ang-(1-7) increased insulin secretion from wild-type islets, whereas antagonists and genetic Mas deficiency led to reduced insulin secretion. The Mas-dependent effects of Ang-(1-7) on insulin secretion did not result from changes in insulin gene expression or changes in the excitation-secretion coupling but from increased intracellular cAMP involving exchange protein activated directly by cAMP. Administration of Ang-(1-7) in vivo had only marginal effects on glucose tolerance in wild-type mice but still resulted in improved insulin secretion from islets isolated of these mice. Interestingly, although less pronounced than in wild types, Ang-(1-7) still affected insulin secretion in Mas-deficient islets. The data indicate a significant function of Ang-(1-7) in the regulation of insulin secretion from mouse islets in vitro and in vivo, mainly, but not exclusively, by Mas-dependent signaling, modulating the accessory pathway of insulin secretion via increase in cAMP.


Asunto(s)
Angiotensina I/farmacología , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Fragmentos de Péptidos/farmacología , Proteínas Proto-Oncogénicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , AMP Cíclico/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Insulina/genética , Resistencia a la Insulina/fisiología , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Factores de Transcripción Maf de Gran Tamaño/genética , Factores de Transcripción Maf de Gran Tamaño/metabolismo , Ratones , Ratones Noqueados , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas/genética , Receptores Acoplados a Proteínas G/genética , Transactivadores/genética , Transactivadores/metabolismo
12.
Adv Exp Med Biol ; 654: 115-63, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20217497

RESUMEN

Stimulus-Secretion Coupling (SSC) of pancreatic islet cells comprises electrical activity. Changes of the membrane potential (V(m)) are regulated by metabolism-dependent alterations in ion channel activity. This coupling is best explored in beta-cells. The effect of glucose is directly linked to mitochondrial metabolism as the ATP/ADP ratio determines the open probability of ATP-sensitive K(+) channels (K(ATP) channels). Nucleotide sensitivity and concentration in the direct vicinity of the channels are controlled by several factors including phospholipids, fatty acids, and kinases, e.g., creatine and adenylate kinase. Closure of K(ATP) channels leads to depolarization of beta-cells via a yet unknown depolarizing current. Ca(2+) influx during action potentials (APs) results in an increase of the cytosolic Ca(2+) concentration ([Ca(2+)](c)) that triggers exocytosis. APs are elicited by the opening of voltage-dependent Na(+) and/or Ca(2+) channels and repolarized by voltage- and/or Ca(2+)-dependent K(+) channels. At a constant stimulatory glucose concentration APs are clustered in bursts that are interrupted by hyperpolarized interburst phases. Bursting electrical activity induces parallel fluctuations in [Ca(2+)](c) and insulin secretion. Bursts are terminated by I(Kslow) consisting of currents through Ca(2+)-dependent K(+) channels and K(ATP) channels. This review focuses on structure, characteristics, physiological function, and regulation of ion channels in beta-cells. Information about pharmacological drugs acting on K(ATP) channels, K(ATP) channelopathies, and influence of oxidative stress on K(ATP) channel function is provided. One focus is the outstanding significance of L-type Ca(2+) channels for insulin secretion. The role of less well characterized beta-cell channels including voltage-dependent Na(+) channels, volume sensitive anion channels (VSACs), transient receptor potential (TRP)-related channels, and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels is discussed. A model of beta-cell oscillations provides insight in the interplay of the different channels to induce and maintain electrical activity. Regulation of beta-cell electrical activity by hormones and the autonomous nervous system is discussed. alpha- and delta-cells are also equipped with K(ATP) channels, voltage-dependent Na(+), K(+), and Ca(2+) channels. Yet the SSC of these cells is less clear and is not necessarily dependent on K(ATP) channel closure. Different ion channels of alpha- and delta-cells are introduced and SSC in alpha-cells is described in special respect of paracrine effects of insulin and GABA secreted from beta-cells.


Asunto(s)
Electrofisiología/métodos , Islotes Pancreáticos/fisiología , Adenosina Trifosfato/química , Animales , Calcio/metabolismo , Membrana Celular/metabolismo , Glucosa/metabolismo , Humanos , Canales Iónicos/fisiología , Potenciales de la Membrana , Ratones , Ratones Noqueados , Oscilometría/métodos , Estrés Oxidativo , Canales de Potasio/química
13.
Diabetes ; 59(1): 119-27, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19826167

RESUMEN

OBJECTIVE: In vitro models suggest that free fatty acid-induced apoptotic beta-cell death is mediated through protein kinase C (PKC)delta. To examine the role of PKCdelta signaling in vivo, transgenic mice overexpressing a kinase-negative PKCdelta (PKCdeltaKN) selectively in beta-cells were generated and analyzed for glucose homeostasis and beta-cell survival. RESEARCH DESIGN AND METHODS: Mice were fed a standard or high-fat diet (HFD). Blood glucose and insulin levels were determined after glucose loads. Islet size, cleaved caspase-3, and PKCdelta expression were estimated by immunohistochemistry. In isolated islet cells apoptosis was assessed with TUNEL/TO-PRO3 DNA staining and the mitochondrial potential by rhodamine-123 staining. Changes in phosphorylation and subcellular distribution of forkhead box class O1 (FOXO1) were analyzed by Western blotting and immunohistochemistry. RESULTS: PKCdeltaKN mice were protected from HFD-induced glucose intolerance. This was accompanied by increased insulin levels in vivo, by an increased islet size, and by a reduced staining of beta-cells for cleaved caspase-3 compared with wild-type littermates. In accordance, long-term treatment with palmitate increased apoptotic cell death of isolated islet cells from wild-type but not from PKCdeltaKN mice. PKCdeltaKN overexpression protected islet cells from palmitate-induced mitochondrial dysfunction and inhibited nuclear accumulation of FOXO1 in mouse islet and INS-1E cells. The inhibition of nuclear accumulation of FOXO1 by PKCdeltaKN was accompanied by an increased phosphorylation of FOXO1 at Ser256 and a significant reduction of FOXO1 protein. CONCLUSIONS: Overexpression of PKCdeltaKN in beta-cells protects from HFD-induced beta-cell failure in vivo by a mechanism that involves inhibition of fatty acid-mediated apoptosis, inhibition of mitochondrial dysfunction, and inhibition of FOXO1 activation.


Asunto(s)
Intolerancia a la Glucosa/prevención & control , Células Secretoras de Insulina/enzimología , Células Secretoras de Insulina/fisiología , Proteína Quinasa C-delta/genética , Animales , Apoptosis , Glucemia/metabolismo , Técnicas de Cultivo de Célula , Muerte Celular , Dieta , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/genética , Regulación de la Expresión Génica , Insulina/análisis , Insulina/sangre , Insulina/genética , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Ratones , Ratones Noqueados , Ratones Transgénicos , Mitocondrias/efectos de los fármacos , Mitocondrias/fisiología , Mitocondrias/ultraestructura , Proteína Quinasa C-delta/deficiencia , Rodamina 123/farmacología
14.
J Clin Invest ; 119(11): 3246-56, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19805912

RESUMEN

The enhanced oxidative stress associated with type 2 diabetes mellitus contributes to disease pathogenesis. We previously identified plasma membrane-associated ATP-sensitive K+ (KATP) channels of pancreatic beta cells as targets for oxidants. Here, we examined the effects of genetic and pharmacologic ablation of KATP channels on loss of mouse beta cell function and viability following oxidative stress. Using mice lacking the sulfonylurea receptor type 1 (Sur1) subunit of KATP channels, we found that, compared with insulin secretion by WT islets, insulin secretion by Sur1-/- islets was less susceptible to oxidative stress induced by the oxidant H2O2. This was likely, at least in part, a result of the reduced ability of H2O2 to hyperpolarize plasma membrane potential and reduce cytosolic free Ca2+ concentration ([Ca2+]c) in the Sur1-/- beta cells. Remarkably, Sur1-/- beta cells were less prone to apoptosis induced by H2O2 or an NO donor than WT beta cells, despite an enhanced basal rate of apoptosis. This protective effect was attributed to upregulation of the antioxidant enzymes SOD, glutathione peroxidase, and catalase. Upregulation of antioxidant enzymes and reduced sensitivity of Sur1-/- cells to H2O2-induced apoptosis were mimicked by treatment with the sulfonylureas tolbutamide and gliclazide. Enzyme upregulation and protection against oxidant-induced apoptosis were abrogated by agents lowering [Ca2+]c. Sur1-/- mice were less susceptible than WT mice to streptozotocin-induced beta cell destruction and subsequent hyperglycemia and death, which suggests that loss of KATP channel activity may protect against streptozotocin-induced diabetes in vivo.


Asunto(s)
Células Secretoras de Insulina/fisiología , Canales KATP/antagonistas & inhibidores , Canales KATP/fisiología , Estrés Oxidativo/fisiología , Animales , Antibióticos Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Glucemia/análisis , Calcio/metabolismo , Diabetes Mellitus Experimental , Enzimas/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Gliclazida/farmacología , Peróxido de Hidrógeno/farmacología , Hipoglucemiantes/farmacología , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Canales KATP/genética , Ratones , Ratones Noqueados , Oxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Estreptozocina/farmacología , Tolbutamida/farmacología
15.
Pflugers Arch ; 453(5): 703-18, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16897043

RESUMEN

The sulfonylurea receptors (SURs) ABCC8/SUR1 and ABCC9/SUR2 are members of the C-branch of the transport adenosine triphosphatase superfamily. Unlike their brethren, the SURs have no identified transport function; instead, evolution has matched these molecules with K(+) selective pores, either K(IR)6.1/KCNJ8 or K(IR)6.2/KCNJ11, to assemble adenosine triphosphate (ATP)-sensitive K(+) channels found in endocrine cells, neurons, and both smooth and striated muscle. Adenine nucleotides, the major regulators of ATP-sensitive K(+) (K(ATP)) channel activity, exert a dual action. Nucleotide binding to the pore reduces the activity or channel open probability, whereas Mg-nucleotide binding and/or hydrolysis in the nucleotide-binding domains of SUR antagonize this inhibitory action to stimulate channel openings. Mutations in either subunit can alter this balance and, in the case of the SUR1/KIR6.2 channels found in neurons and insulin-secreting pancreatic beta cells, are the cause of monogenic forms of hyperinsulinemic hypoglycemia and neonatal diabetes. Additionally, the subtle dysregulation of K(ATP) channel activity by a K(IR)6.2 polymorphism has been suggested as a predisposing factor in type 2 diabetes mellitus. Studies on K(ATP) channel null mice are clarifying the roles of these metabolically sensitive channels in a variety of tissues.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/fisiología , Canales de Potasio de Rectificación Interna/fisiología , Canales de Potasio/fisiología , Receptores de Droga/fisiología , Aminoácidos/fisiología , Animales , Calcio/fisiología , Catecolaminas/metabolismo , Hiperinsulinismo Congénito/fisiopatología , Diabetes Mellitus/congénito , Diabetes Mellitus Tipo 2/fisiopatología , Modelos Animales de Enfermedad , Polipéptido Inhibidor Gástrico/fisiología , Péptido 1 Similar al Glucagón/fisiología , Glucosa/metabolismo , Humanos , Lactante , Recién Nacido , Insulina/metabolismo , Secreción de Insulina , Hígado/metabolismo , Ratones , Ratones Transgénicos , Modelos Moleculares , Estructura Terciaria de Proteína , Receptores de Sulfonilureas
16.
J Biol Chem ; 282(5): 3347-56, 2007 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-17138562

RESUMEN

Sulfonylurea receptors (SURs) constitute the regulatory subunits of ATP-sensitive K+ channels (K(ATP) channels). SUR binds nucleotides and synthetic K(ATP) channel modulators, e.g. the antidiabetic sulfonylurea glibenclamide, which acts as a channel blocker. However, knowledge about naturally occurring ligands of SUR is very limited. In this study, we show that the plant phenolic compound trans-resveratrol can bind to SUR and displace binding of glibenclamide. Electrophysiological measurements revealed that resveratrol is a blocker of pancreatic SUR1/K(IR)6.2 K(ATP) channels. We further demonstrate that, like glibenclamide, resveratrol induces enhanced apoptosis. This was shown by analyzing different apoptotic parameters (cell detachment, nuclear condensation and fragmentation, and activities of different caspase enzymes). The observed apoptotic effect was specific to cells expressing the SUR1 isoform and was not mediated by the electrical activity of K(ATP) channels, as it was observed in human embryonic kidney 293 cells expressing SUR1 alone. Enhanced susceptibility to resveratrol was not observed in pancreatic beta-cells from SUR1 knock-out mice or in cells expressing the isoform SUR2A or SUR2B or the mutant SUR1(M1289T). Resveratrol was much more potent than glibenclamide in inducing SUR1-specific apoptosis. Treatment with etoposide, a classical inducer of apoptosis, did not result in SUR isoform-specific apoptosis. In conclusion, resveratrol is a natural SUR ligand that can induce apoptosis in a SUR isoform-specific manner. Considering the tissue-specific expression patterns of SUR isoforms and the possible effects of SUR mutations on susceptibility to apoptosis, these observations could be important for diabetes and/or cancer research.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/fisiología , Apoptosis/fisiología , Canales de Potasio de Rectificación Interna/fisiología , Canales de Potasio/fisiología , Receptores de Droga/fisiología , Estilbenos/farmacología , Transportadoras de Casetes de Unión a ATP/efectos de los fármacos , Transportadoras de Casetes de Unión a ATP/genética , Animales , Apoptosis/efectos de los fármacos , Caspasas/efectos de los fármacos , Caspasas/metabolismo , Adhesión Celular/efectos de los fármacos , Línea Celular , Etopósido/farmacología , Femenino , Humanos , Hipoglucemiantes/farmacología , Islotes Pancreáticos/citología , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/fisiología , Riñón , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Canales de Potasio/deficiencia , Canales de Potasio/efectos de los fármacos , Canales de Potasio/genética , Canales de Potasio de Rectificación Interna/deficiencia , Canales de Potasio de Rectificación Interna/efectos de los fármacos , Canales de Potasio de Rectificación Interna/genética , Receptores de Droga/deficiencia , Receptores de Droga/efectos de los fármacos , Receptores de Droga/genética , Proteínas Recombinantes/efectos de los fármacos , Proteínas Recombinantes/metabolismo , Resveratrol , Estilbenos/farmacocinética , Receptores de Sulfonilureas , Transfección
17.
Diabetes ; 55(5): 1380-90, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16644695

RESUMEN

Glucocorticoid excess induces hyperglycemia, which may result in diabetes. The present experiments explored whether glucocorticoids trigger apoptosis in insulin-secreting cells. Treatment of mouse beta-cells or INS-1 cells with the glucocorticoid dexamethasone (0.1 micromol/l) over 4 days in cell culture increased the number of fractionated nuclei from 2 to 7 and 14%, respectively, an effect that was reversed by the glucocorticoid receptor antagonist RU486 (1 micromol/l). In INS-1 cells, dexamethasone increased the number of transferase-mediated dUTP nick-end labeling-staining positive cells, caspase-3 activity, and poly-(ADP-) ribose polymerase protein cleavage; decreased Bcl-2 transcript and protein abundance; dephosphorylated the proapoptotic protein of the Bcl-2 family (BAD) at serine155; and depolarized mitochondria. Dexamethasone increased PP-2B (calcineurin) activity, an effect abrogated by FK506. FK506 (0.1 micromol/l) and another calcineurin inhibitor, deltamethrin (1 micromol/l), attenuated dexamethasone-induced cell death. The stable glucagon-like peptide 1 analog, exendin-4 (10 nmol/l), inhibited dexamethasone-induced apoptosis in mouse beta-cells and INS-1 cells. The protective effect of exendin-4 was mimicked by forskolin (10 micromol/l) but not mimicked by guanine nucleotide exchange factor with the specific agonist 8CPT-Me-cAMP (50 micromol/l). Exendin-4 did not protect against cell death in the presence of cAMP-dependent protein kinase (PKA) inhibition by H89 (10 micromol/l) or KT5720 (5 micromol/l). In conclusion, glucocorticoid-induced apoptosis in insulin-secreting cells is accompanied by a downregulation of Bcl-2, activation of calcineurin with subsequent dephosphorylation of BAD, and mitochondrial depolarization. Exendin-4 protects against glucocorticoid-induced apoptosis, an effect mimicked by forskolin and reversed by PKA inhibitors.


Asunto(s)
Dexametasona/farmacología , Islotes Pancreáticos/citología , Péptidos/farmacología , Ponzoñas/farmacología , Animales , Línea Celular , Exenatida , Humanos , Insecticidas/farmacología , Insulina/metabolismo , Secreción de Insulina , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Cinética , Lagartos , Ratones , Microscopía Fluorescente , Mifepristona/farmacología , Nitrilos/farmacología , Piretrinas/farmacología , Tacrolimus/farmacología
18.
Mol Cell Endocrinol ; 212(1-2): 1-9, 2003 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-14654245

RESUMEN

Free fatty acids (FFA) have been proposed to participate in the regulation of insulin release from pancreatic beta-cells (beta-cells). As a rise in cytosolic free Ca2+ ([Ca(2+)]i) is a key event for the stimulation of insulin secretion, the effects of saturated FFA on [Ca2+]i were investigated. Palmitate was used as a reference compound and [Ca2+]i was measured in single fura-2 loaded HIT-T15 and in primary mouse beta-cells. Stimulation of single beta-cells with palmitate (100 microM) caused either repetitive Ca2+ transients or a plateau-like rise in [Ca2+]i. In HIT-T15 and in mouse beta-cells, the number of palmitate-responsive cells, and the amplitude of the palmitate-induced Ca2+-signals were dependent on the extracellular glucose concentration. In Ca2+-free medium palmitate (100 microM) caused only 1 or 2 Ca2+ transients indicating mobilization of Ca2+ from internal stores. Withdrawal of external Ca2+, the addition of voltage-sensitive Ca2+ channel (VSCC) blockers, as well as the K(ATP)-channel opener diazoxide (100 microM) reversibly blocked the palmitate-induced cytosolic Ca2+ responses. This demonstrates that Ca2+ influx through VSCC of the L-type coupled to membrane depolarization through closure of K(ATP)-channels are crucial for a sustained Ca2+-signal in response to palmitate. Methyl palmoxirate (100 microM) and 2-bromopalmitate (100 microM), which both inhibit transport of acyl-CoA into the mitochondria, reversibly blocked the palmitate-induced Ca2+-signals in HIT-T15 as well as in primary mouse beta-cells. By contrast, cerulenin (100 microM), an inhibitor of protein acylation, had no effect on the palmitate-induced changes in [Ca2+]i, which suggests that mitochondrial palmitate metabolism is required for eliciting the Ca2+-signals. Simultaneous measurement of [Ca2+]i and the mitochondrial membrane potential (DeltaPsi) revealed palmitate-induced depolarization of DeltaPsi which demonstrates that palmitate does not enhance mitochondrial ATP production. Therefore mitochondrial signals other than ATP appear to be generated from palmitate metabolism that underly the palmitate-induced Ca2+-signals in pancreatic beta-cells.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Ácido Palmítico/farmacología , Adenosina Trifosfato/metabolismo , Animales , Bloqueadores de los Canales de Calcio/farmacología , Línea Celular , Diazóxido/farmacología , Inhibidores Enzimáticos/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Ratones , Mitocondrias/metabolismo , NADP/metabolismo , Ácido Palmítico/metabolismo , Canales de Potasio/metabolismo
19.
Pflugers Arch ; 445(5): 556-62, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12634926

RESUMEN

The aim of the present study was to test the hypothesis that a creatine kinase/phosphocreatine system is involved in the regulation of K(ATP) channels in pancreatic beta-cells. The phosphocreatine concentration in isolated mouse islets clearly increased in parallel with the ATP/ADP ratio in response to a rise of the glucose concentration from 0.5 mM to 15 mM. The currents through K(ATP) channels expressed in oocytes of Xenopus laevis were inhibited by injection of phosphocreatine or ATP but not by phosphate or creatine alone. In inside-out patches of beta-cell membranes obtained from native beta-cells, phosphocreatine reduced the open probability of single K(ATP) channels in the presence of ADP but not in the absence of the nucleotide. These experiments suggest the existence of a K(ATP) channel-associated creatine kinase that phosphorylates ADP. The creatine kinase inhibitor iodoacetamide suppressed the glucose-induced oscillations of the cytoplasmic Ca(2+) concentration, [Ca(2+)](c). It is concluded that phosphocreatine serves as a shuttle for energy-rich phosphate from the mitochondria to the plasma membrane. The data provide a novel model for signal transduction to K(ATP) channels in pancreatic beta-cells.


Asunto(s)
Adenosina Trifosfato/fisiología , Islotes Pancreáticos/metabolismo , Fosfocreatina/metabolismo , Canales de Potasio/metabolismo , Animales , Calcio/metabolismo , Creatina Quinasa/antagonistas & inhibidores , Citosol/metabolismo , Conductividad Eléctrica , Femenino , Glucosa/metabolismo , Yodoacetamida/farmacología , Ratones , Ratones Endogámicos , Oocitos , Concentración Osmolar , Fosfocreatina/farmacología , Canales de Potasio/efectos de los fármacos , Canales de Potasio/fisiología , Xenopus laevis
20.
Biochem J ; 368(Pt 3): 817-25, 2002 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-12350226

RESUMEN

In pancreatic beta-cells, methyl pyruvate is a potent secretagogue and is widely used to study stimulus-secretion coupling. In contrast with pyruvate, which barely stimulates insulin secretion, methyl pyruvate was suggested to act as an effective mitochondrial substrate. We show that methyl pyruvate elicited electrical activity in the presence of 0.5 mM glucose, in contrast with pyruvate. Accordingly, methyl pyruvate increased the cytosolic free Ca(2+) concentration after an initial decrease, similar to glucose. The initial decrease was inhibited by thapsigargin, suggesting that methyl pyruvate stimulates ATP production. This assumption is supported by the observation that methyl pyruvate hyperpolarized the mitochondrial membrane potential, similar to glucose. However, in contrast with glucose, methyl pyruvate even slightly decreased NAD(P)H autofluorescence and did not influence ATP production or the ATP/ADP ratio. This observation questions the suggestion that methyl pyruvate acts as a powerful mitochondrial substrate. The finding that methyl pyruvate directly inhibited a cation current across the inner membrane of Jurkat T-lymphocyte mitochondria suggests that this metabolite may increase ATP production in beta-cells by activating the respiratory chains without providing reduction equivalents. We conclude that this mechanism may account for a slight and transient increase in ATP production. We further show that methyl pyruvate inhibited the K(ATP) current measured in the standard whole-cell configuration, an effect that was at least partly antagonized by diazoxide. Accordingly, single-channel currents in inside-out patches were blocked by methyl pyruvate. We conclude that inhibition of K(ATP) channels, and not activation of metabolism, mediates the induction of electrical activity in pancreatic beta-cells by methyl pyruvate.


Asunto(s)
Islotes Pancreáticos/metabolismo , Mitocondrias/metabolismo , Canales de Potasio/metabolismo , Piruvatos/farmacología , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Citosol/metabolismo , Diazóxido/farmacología , Inhibidores Enzimáticos/farmacología , Femenino , Glucosa/metabolismo , Humanos , Potenciales de la Membrana , Ratones , NADP/metabolismo , Técnicas de Placa-Clamp , Ácido Pirúvico/metabolismo , Espectrometría de Fluorescencia , Especificidad por Sustrato , Linfocitos T/metabolismo , Tapsigargina/farmacología , Vasodilatadores/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA