Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Environ Health ; 15(1): 62, 2016 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-27230915

RESUMEN

BACKGROUND: Because some adverse health effects associated with chronic arsenic exposure may be mediated by methylated arsenicals, interindividual variation in capacity to convert inorganic arsenic into mono- and di-methylated metabolites may be an important determinant of risk associated with exposure to this metalloid. Hence, identifying biological and behavioral factors that modify an individual's capacity to methylate inorganic arsenic could provide insights into critical dose-response relations underlying adverse health effects. METHODS: A total of 904 older adults (≥45 years old) in Churchill County, Nevada, who chronically used home tap water supplies containing up to 1850 µg of arsenic per liter provided urine and toenail samples for determination of total and speciated arsenic levels. Effects of biological factors (gender, age, body mass index) and behavioral factors (smoking, recent fish or shellfish consumption) on patterns of arsenicals in urine were evaluated with bivariate analyses and multivariate regression models. RESULTS: Relative contributions of inorganic, mono-, and di-methylated arsenic to total speciated arsenic in urine were unchanged over the range of concentrations of arsenic in home tap water supplies used by study participants. Gender predicted both absolute and relative amounts of arsenicals in urine. Age predicted levels of inorganic arsenic in urine and body mass index predicted relative levels of mono- and di-methylated arsenic in urine. Smoking predicted both absolute and relative levels of arsenicals in urine. Multivariate regression models were developed for both absolute and relative levels of arsenicals in urine. Concentration of arsenic in home tap water and estimated water consumption were strongly predictive of levels of arsenicals in urine as were smoking, body mass index, and gender. Relative contributions of arsenicals to urinary arsenic were not consistently predicted by concentrations of arsenic in drinking water supplies but were more consistently predicted by gender, body mass index, age, and smoking. CONCLUSIONS: These findings suggest that analyses of dose-response relations in arsenic-exposed populations should account for biological and behavioral factors that modify levels of inorganic and methylated arsenicals in urine. Evidence of significant effects of these factors on arsenic metabolism may also support mode of action studies in appropriate experimental models.


Asunto(s)
Arsénico/orina , Arsenicales/orina , Contaminantes Ambientales/orina , Adulto , Anciano , Anciano de 80 o más Años , Animales , Arsénico/análisis , Arsénico/metabolismo , Arsenicales/metabolismo , Cotinina/orina , Creatinina/orina , Relación Dosis-Respuesta a Droga , Agua Potable/análisis , Exposición a Riesgos Ambientales/análisis , Contaminantes Ambientales/análisis , Contaminantes Ambientales/metabolismo , Femenino , Peces , Contaminación de Alimentos , Humanos , Masculino , Persona de Mediana Edad , Uñas/química , Encuestas Nutricionales , Fumar/orina
2.
Chem Res Toxicol ; 28(6): 1144-55, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-26039340

RESUMEN

There is strong epidemiologic evidence linking chronic exposure to inorganic arsenic (iAs) to myriad adverse health effects, including cancer of the bladder. We set out to identify DNA methylation patterns associated with arsenic and its metabolites in exfoliated urothelial cells (EUCs) that originate primarily from the urinary bladder, one of the targets of arsenic-induced carcinogenesis. Genome-wide, gene-specific promoter DNA methylation levels were assessed in EUCs from 46 residents of Chihuahua, Mexico, and the relationship was examined between promoter methylation profiles and the intracellular concentrations of total arsenic and arsenic species. A set of 49 differentially methylated genes was identified with increased promoter methylation associated with EUC tAs, iAs, and/or monomethylated As (MMAs) enriched for their roles in metabolic disease and cancer. Notably, no genes had differential methylation associated with EUC dimethylated As (DMAs), suggesting that DMAs may influence DNA methylation-mediated urothelial cell responses to a lesser extent than iAs or MMAs. Further analysis showed that 22 of the 49 arsenic-associated genes (45%) are also differentially methylated in bladder cancer tissue identified using The Cancer Genome Atlas repository. Both the arsenic- and cancer-associated genes are enriched for the binding sites of common transcription factors known to play roles in carcinogenesis, demonstrating a novel potential mechanistic link between iAs exposure and bladder cancer.


Asunto(s)
Arsénico/toxicidad , Metilación de ADN/efectos de los fármacos , Neoplasias de la Vejiga Urinaria/inducido químicamente , Neoplasias de la Vejiga Urinaria/genética , Urotelio/citología , Urotelio/efectos de los fármacos , Adulto , Anciano , Arsénico/metabolismo , Transformación Celular Neoplásica/inducido químicamente , Metilación de ADN/genética , Femenino , Humanos , Persona de Mediana Edad , Neoplasias de la Vejiga Urinaria/patología , Adulto Joven
3.
Environ Health Perspect ; 122(10): 1088-94, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25000461

RESUMEN

BACKGROUND: A growing number of studies link chronic exposure to inorganic arsenic (iAs) with the risk of diabetes. Many of these studies assessed iAs exposure by measuring arsenic (As) species in urine. However, this approach has been criticized because of uncertainties associated with renal function and urine dilution in diabetic individuals. OBJECTIVES: Our goal was to examine associations between the prevalence of diabetes and concentrations of As species in exfoliated urothelial cells (EUC) as an alternative to the measures of As in urine. METHODS: We measured concentrations of trivalent and pentavalent iAs methyl-As (MAs) and dimethyl-As (DMAs) species in EUC from 374 residents of Chihuahua, Mexico, who were exposed to iAs in drinking water. We used fasting plasma glucose, glucose tolerance tests, and self-reported diabetes diagnoses or medication to identify diabetic participants. Associations between As species in EUC and diabetes were estimated using logistic and linear regression, adjusting for age, sex, and body mass index. RESULTS: Interquartile-range increases in trivalent, but not pentavalent, As species in EUC were positively and significantly associated with diabetes, with ORs of 1.57 (95% CI: 1.19, 2.07) for iAsIII, 1.63 (1.24, 2.15) for MAsIII, and 1.31 (0.96, 1.84) for DMAsIII. DMAs/MAs and DMAs/iAs ratios were negatively associated with diabetes (OR = 0.62; 95% CI: 0.47, 0.83 and OR = 0.72; 95% CI: 0.55, 0.96, respectively). CONCLUSIONS: Our data suggest that uncertainties associated with measures of As species in urine may be avoided by using As species in EUC as markers of iAs exposure and metabolism. Our results provide additional support to previous findings suggesting that trivalent As species may be responsible for associations between diabetes and chronic iAs exposure.


Asunto(s)
Arsénico/orina , Diabetes Mellitus/epidemiología , Exposición a Riesgos Ambientales/estadística & datos numéricos , Urotelio/metabolismo , Contaminantes Químicos del Agua/orina , Adulto , Arsénico/análisis , Arsénico/metabolismo , Intoxicación por Arsénico , Arsenicales/análisis , Arsenicales/metabolismo , Arsenicales/orina , Biomarcadores/metabolismo , Glucemia/análisis , Diabetes Mellitus/inducido químicamente , Exposición a Riesgos Ambientales/efectos adversos , Células Epiteliales/química , Células Epiteliales/metabolismo , Femenino , Prueba de Tolerancia a la Glucosa , Humanos , Masculino , México/epidemiología , Persona de Mediana Edad , Prevalencia , Urotelio/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Abastecimiento de Agua/análisis , Abastecimiento de Agua/estadística & datos numéricos
4.
Toxicol Sci ; 139(2): 328-37, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24675094

RESUMEN

Exposure to inorganic arsenic (iAs) early in life is associated with adverse health effects in infants, children, and adults, and yet the biological mechanisms that underlie these effects are understudied. The objective of this research was to examine the proteomic shifts associated with prenatal iAs exposure using cord blood samples isolated from 50 newborns from Gómez Palacio, Mexico. Levels of iAs in maternal drinking water (DW-iAs) and the sum of iAs and iAs metabolites in maternal urine (U-tAs) were determined. Cord blood samples representing varying iAs exposure levels during the prenatal period (DW-iAs ranging from <1 to 236 µg As/l) were analyzed for altered expression of proteins associated with U-tAs using a high throughput, antibody-based method. A total of 111 proteins were identified that had a significant association between protein level in newborn cord blood and maternal U-tAs. Many of these proteins are regulated by tumor necrosis factor and are enriched in functionality related to immune/inflammatory response and cellular development/proliferation. Interindividual differences in proteomic response were observed in which 30 newborns were "activators," displaying a positive relationship between protein expression and maternal U-tAs. For 20 "repressor" newborns, a negative relationship between protein expression level and maternal U-tAs was observed. The activator/repressor status was significantly associated with maternal U-tAs and head circumference in newborn males. These results may provide a critical groundwork for understanding the diverse health effects associated with prenatal arsenic exposure and highlight interindividual responses to arsenic that likely influence differential susceptibility to adverse health outcomes.


Asunto(s)
Arsénico/toxicidad , Efectos Tardíos de la Exposición Prenatal/metabolismo , Proteoma/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Contaminantes Químicos del Agua/toxicidad , Arsénico/orina , Agua Potable/análisis , Agua Potable/normas , Femenino , Sangre Fetal/metabolismo , Ensayos Analíticos de Alto Rendimiento , Humanos , Recién Nacido , Masculino , Exposición Materna/efectos adversos , México , Análisis Multivariante , Embarazo , Resultado del Embarazo , Efectos Tardíos de la Exposición Prenatal/sangre , Análisis de Regresión , Contaminantes Químicos del Agua/orina
5.
Environ Mol Mutagen ; 55(3): 196-208, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24327377

RESUMEN

The Biomarkers of Exposure to ARsenic (BEAR) pregnancy cohort in Gómez Palacio, Mexico was recently established to better understand the impacts of prenatal exposure to inorganic arsenic (iAs). In this study, we examined a subset (n = 40) of newborn cord blood samples for microRNA (miRNA) expression changes associated with in utero arsenic exposure. Levels of iAs in maternal drinking water (DW-iAs) and maternal urine were assessed. Levels of DW-iAs ranged from below detectable values to 236 µg/L (mean = 51.7 µg/L). Total arsenic in maternal urine (U-tAs) was defined as the sum of iAs and its monomethylated and dimethylated metabolites (MMAs and DMAs, respectively) and ranged from 6.2 to 319.7 µg/L (mean = 64.5 µg/L). Genome-wide miRNA expression analysis of cord blood revealed 12 miRNAs with increasing expression associated with U-tAs. Transcriptional targets of the miRNAs were computationally predicted and subsequently assessed using transcriptional profiling. Pathway analysis demonstrated that the U-tAs-associated miRNAs are involved in signaling pathways related to known health outcomes of iAs exposure including cancer and diabetes mellitus. Immune response-related mRNAs were also identified with decreased expression levels associated with U-tAs, and predicted to be mediated in part by the arsenic-responsive miRNAs. Results of this study highlight miRNAs as novel responders to prenatal arsenic exposure that may contribute to associated immune response perturbations.


Asunto(s)
Inmunidad Adaptativa/fisiología , Arsénico/toxicidad , Epigénesis Genética , Sangre Fetal/metabolismo , Exposición Materna , MicroARNs/metabolismo , Adulto , Arsénico/orina , Biomarcadores/metabolismo , Estudios de Cohortes , Agua Potable/química , Epigenómica , Femenino , Sangre Fetal/efectos de los fármacos , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Recién Nacido , Embarazo , ARN Mensajero/metabolismo , Transducción de Señal , Transcripción Genética , Contaminantes Químicos del Agua/toxicidad
6.
Toxicol Appl Pharmacol ; 264(3): 439-50, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22959928

RESUMEN

Inorganic arsenic (iAs) is a complete transplacental carcinogen in mice. Previous studies have demonstrated that in utero exposure to iAs promotes cancer in adult mouse offspring, possibly acting through epigenetic mechanisms. Humans and rodents enzymatically convert iAs to its methylated metabolites. This reaction requires S-adenosylmethionine (SAM) as methyl group donor. SAM is also required for DNA methylation. Supplementation with folate, a major dietary source of methyl groups for SAM synthesis, has been shown to modify iAs metabolism and the adverse effects of iAs exposure. However, effects of gestational folate supplementation on iAs metabolism and fetal DNA methylation have never been thoroughly examined. In the present study, pregnant CD1 mice were fed control (i.e. normal folate, or 2.2 mg/kg) or high folate diet (11 mg/kg) from gestational day (GD) 5 to 18 and drank water with 0 or 85 ppm of As (as arsenite) from GD8 to 18. The exposure to iAs significantly decreased body weight of GD18 fetuses and increased both SAM and S-adenosylhomocysteine (SAH) concentrations in fetal livers. High folate intake lowered the burden of total arsenic in maternal livers but did not prevent the effects of iAs exposure on fetal weight or hepatic SAM and SAH concentrations. In fact, combined folate-iAs exposure caused further significant body weight reduction. Notably, iAs exposure alone had little effect on DNA methylation in fetal livers. In contrast, the combined folate-iAs exposure changed the CpG island methylation in 2,931 genes, including genes known to be imprinted. Most of these genes were associated with neurodevelopment, cancer, cell cycle, and signaling networks. The canonical Wnt-signaling pathway, which regulates fetal development, was among the most affected biological pathways. Taken together, our results suggest that a combined in utero exposure to iAs and a high folate intake may adversely influence DNA methylation profiles and weight of fetuses, compromising fetal development and possibly increasing the risk for early-onset of disease in offspring.


Asunto(s)
Arsenitos/toxicidad , Epigenómica , Ácido Fólico/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Compuestos de Sodio/toxicidad , Animales , Arsenitos/administración & dosificación , Femenino , Peso Fetal/efectos de los fármacos , Feto/efectos de los fármacos , Ácido Fólico/administración & dosificación , Ácido Fólico/sangre , Hígado/efectos de los fármacos , Hígado/embriología , Hígado/metabolismo , Masculino , Ratones , Embarazo , S-Adenosilhomocisteína/metabolismo , S-Adenosilmetionina/metabolismo , Compuestos de Sodio/administración & dosificación
7.
Toxicol Appl Pharmacol ; 264(1): 121-30, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22868225

RESUMEN

Arsenic (+3 oxidation state) methyltransferase (AS3MT) is the key enzyme in the pathway for methylation of arsenicals. A common polymorphism in the AS3MT gene that replaces a threonyl residue in position 287 with a methionyl residue (AS3MT/M287T) occurs at a frequency of about 10% among populations worldwide. Here, we compared catalytic properties of recombinant human wild-type (wt) AS3MT and AS3MT/M287T in reaction mixtures containing S-adenosylmethionine, arsenite (iAs(III)) or methylarsonous acid (MAs(III)) as substrates and endogenous or synthetic reductants, including glutathione (GSH), a thioredoxin reductase (TR)/thioredoxin (Trx)/NADPH reducing system, or tris (2-carboxyethyl) phosphine hydrochloride (TCEP). With either TR/Trx/NADPH or TCEP, wtAS3MT or AS3MT/M287T catalyzed conversion of iAs(III) to MAs(III), methylarsonic acid (MAs(V)), dimethylarsinous acid (DMAs(III)), and dimethylarsinic acid (DMAs(V)); MAs(III) was converted to DMAs(III) and DMAs(V). Although neither enzyme required GSH to support methylation of iAs(III) or MAs(III), addition of 1mM GSH decreased K(m) and increased V(max) estimates for either substrate in reaction mixtures containing TR/Trx/NADPH. Without GSH, V(max) and K(m) values were significantly lower for AS3MT/M287T than for wtAS3MT. In the presence of 1mM GSH, significantly more DMAs(III) was produced from iAs(III) in reactions catalyzed by the M287T variant than in wtAS3MT-catalyzed reactions. Thus, 1mM GSH modulates AS3MT activity, increasing both methylation rates and yield of DMAs(III). AS3MT genotype exemplified by differences in regulation of wtAS3MT and AS3MT/M287T-catalyzed reactions by GSH may contribute to differences in the phenotype for arsenic methylation and, ultimately, to differences in the disease susceptibility in individuals chronically exposed to inorganic arsenic.


Asunto(s)
Arsenicales/metabolismo , Arsenitos/metabolismo , Glutatión/metabolismo , Metiltransferasas/metabolismo , S-Adenosilmetionina/metabolismo , Animales , Humanos , Metilación/efectos de los fármacos , Metiltransferasas/genética , Fosfinas/metabolismo , Polimorfismo Genético , Ratas , Reductasa de Tiorredoxina-Disulfuro/metabolismo
8.
Chem Res Toxicol ; 25(1): 216-24, 2012 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-22136492

RESUMEN

Glutathione S-transferases, including GST-T1 and GST-M1, are known to be involved in the phase II detoxification pathways for xenobiotics as well as in the metabolism of endogenous compounds. Polymorphisms in these genes have been linked to an increased susceptibility to carcinogenesis and associated with risk factors that predispose to certain inflammatory diseases. In addition, GST-T1 and GST-M1 null genotypes have been shown to be responsible for interindividual variations in the metabolism of arsenic, a known human carcinogen. To assess the specific GST genotypes in the Mexican population chronically exposed to arsenic, we have developed a multiplex High Resolution Melting PCR (HRM-PCR) analysis using a LightCycler480 instrument. This method is based on analysis of the PCR product melting curve that discriminates PCR products according to their lengths and base sequences. Three pairs of primers that specifically recognize GST-T1, GST-M1, and ß-globin, an internal control, to produce amplicons of different length were designed and combined with LightCycler480 High Resolution Melting Master Mix containing ResoLight, a completely saturating DNA dye. Data collected from melting curve analysis were evaluated using LightCycler480 software to determine specific melting temperatures of individual melting curves representing target genes. Using this newly developed multiplex HRM-PCR analysis, we evaluated GST-T1 and GST-M1 genotypes in 504 DNA samples isolated from the blood of individuals residing in Zimapan, Lagunera, and Chihuahua regions in Mexico. We found that the Zimapan and Lagunera populations have similar GST-T1 and GST-M1 genotype frequencies which differ from those of the Chihuahua population. In addition, 14 individuals have been identified as carriers of the double null genotype, i.e., null genotypes in both GST-T1 and GST-M1 genes. Although this procedure does not distinguish between biallelic (+/+) and monoallelic (+/-) genotypes, it can be used in an automated workflow as a simple, sensitive, and time and money saving procedure for rapid identification of the GST-T1 and GST-M1 positive or null genotypes.


Asunto(s)
Genotipo , Glutatión Transferasa/genética , Reacción en Cadena de la Polimerasa Multiplex/métodos , Adulto , Anciano , ADN/genética , Femenino , Hepatocitos/enzimología , Humanos , Masculino , México , Persona de Mediana Edad , Polimorfismo Genético , Globinas beta/genética
9.
Chem Res Toxicol ; 24(2): 165-7, 2011 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-21291286

RESUMEN

Inorganic arsenic (iAs) is an environmental toxicant currently poisoning millions of people worldwide, and chronically exposed individuals are susceptible to arsenicosis or arsenic poisoning. Using a state-of-the-art technique to map the methylomes of our study subjects, we identified a large interactome of hypermethylated genes that are enriched for their involvement in arsenic-associated diseases, such as cancer, heart disease, and diabetes. Notably, we have uncovered an arsenic-induced tumor suppressorome, a complex of 17 tumor suppressors known to be silenced in human cancers. This finding represents a pivotal clue in unraveling a possible epigenetic mode of arsenic-induced disease.


Asunto(s)
Intoxicación por Arsénico/genética , Arsénico/toxicidad , Epigénesis Genética , Contaminantes Químicos del Agua/toxicidad , Islas de CpG , Metilación de ADN , Exposición a Riesgos Ambientales/efectos adversos , Humanos , México , Abastecimiento de Agua
10.
Curr Protoc Toxicol ; Chapter 4: Unit 4.35, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20949432

RESUMEN

Methylation of inorganic arsenic to produce mono-, di-, or trimethylated products is the central process in the cellular metabolism of arsenic. Identification of arsenic (+3 oxidation state) methyltransferase (As3mt) as the enzyme that could catalyze all the steps in the pathway for arsenic methylation suggests that expression of this enzyme could be a useful target for manipulation. Here, methods are described for heterologous expression of the rat As3mt gene in a human urothelial cell line that normally does not express this enzyme and for silencing of the AS3MT gene by RNA interference in a human hepatoma cell line. These tools can be applied to elucidating the role of methylation in the toxic and carcinogenic effects of arsenicals.


Asunto(s)
Células Epiteliales/metabolismo , Regulación Enzimológica de la Expresión Génica/fisiología , Metiltransferasas/metabolismo , Animales , Células Hep G2 , Humanos , Metiltransferasas/genética , Interferencia de ARN , Ratas , Urotelio/citología
11.
Toxicol Appl Pharmacol ; 245(1): 47-56, 2010 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-20138079

RESUMEN

Biomethylation is the major pathway for the metabolism of inorganic arsenic (iAs) in many mammalian species, including the human. However, significant interspecies differences have been reported in the rate of in vivo metabolism of iAs and in yields of iAs metabolites found in urine. Liver is considered the primary site for the methylation of iAs and arsenic (+3 oxidation state) methyltransferase (As3mt) is the key enzyme in this pathway. Thus, the As3mt-catalyzed methylation of iAs in the liver determines in part the rate and the pattern of iAs metabolism in various species. We examined kinetics and concentration-response patterns for iAs methylation by cultured primary hepatocytes derived from human, rat, mice, dog, rabbit, and rhesus monkey. Hepatocytes were exposed to [(73)As]arsenite (iAs(III); 0.3, 0.9, 3.0, 9.0 or 30 nmol As/mg protein) for 24 h and radiolabeled metabolites were analyzed in cells and culture media. Hepatocytes from all six species methylated iAs(III) to methylarsenic (MAs) and dimethylarsenic (DMAs). Notably, dog, rat and monkey hepatocytes were considerably more efficient methylators of iAs(III) than mouse, rabbit or human hepatocytes. The low efficiency of mouse, rabbit and human hepatocytes to methylate iAs(III) was associated with inhibition of DMAs production by moderate concentrations of iAs(III) and with retention of iAs and MAs in cells. No significant correlations were found between the rate of iAs methylation and the thioredoxin reductase activity or glutathione concentration, two factors that modulate the activity of recombinant As3mt. No associations between the rates of iAs methylation and As3mt protein structures were found for the six species examined. Immunoblot analyses indicate that the superior arsenic methylation capacities of dog, rat and monkey hepatocytes examined in this study may be associated with a higher As3mt expression. However, factors other than As3mt expression may also contribute to the interspecies differences in the hepatocyte capacity to methylate iAs.


Asunto(s)
Arsénico/metabolismo , Hepatocitos/metabolismo , Animales , Arsénico/toxicidad , Células Cultivadas , Perros , Femenino , Glutatión/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/enzimología , Humanos , Macaca mulatta , Masculino , Metilación , Metiltransferasas/metabolismo , Ratones , Persona de Mediana Edad , Conejos , Ratas , Especificidad de la Especie
12.
J Natl Cancer Inst ; 101(24): 1670-81, 2009 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-19933942

RESUMEN

BACKGROUND: Inorganic arsenic is an environmental carcinogen that may act through multiple mechanisms including formation of methylated derivatives in vivo. Sodium arsenite (up to 5.0 microM) renders arsenic methylation-competent TRL1215 rat liver epithelial cells tumorigenic in nude mice at 18 weeks of exposure and arsenic methylation-deficient RWPE-1 human prostate epithelial cells tumorigenic at 30 weeks of exposure. We assessed the role of arsenic biomethylation in oxidative DNA damage (ODD) using a recently developed immuno-spin trapping method. METHODS: Immuno-spin trapping was used to measure ODD after chronic exposure of cultured TRL1215 vs RWPE-1 cells, or of methylation-competent UROtsa/F35 vs methylation-deficient UROtsa human urothelial cells, to sodium arsenite. Secreted matrix metalloproteinase (MMP)-2 and -9 activity, as analyzed by zymography, cellular invasiveness by using a transwell assay, and colony formation by using soft agar assay were compared in cells exposed to arsenite with and without selenite, an arsenic biomethylation inhibitor, to assess the role of ODD in the transition to an in vitro cancer phenotype. RESULTS: Exposure of methylation-competent TRL1215 cells to up to 1.0 microM sodium arsenite was followed by a substantial increase in ODD at 5-18 weeks (eg, at 16 weeks with 1.0 microM arsenite, 1138% of control, 95% confidence interval [CI] = 797% to 1481%), whereas exposure of methylation-deficient RWPE-1 cells to up to 5.0 microM arsenite did not increase ODD for a 30-week period. Inhibition of arsenic biomethylation with sodium selenite abolished arsenic-induced ODD and invasiveness, colony formation, and MMP-2 and -9 hypersecretion in TRL1215 cells. Arsenic induced ODD in methylation-competent UROtsa/F35 cells (eg, at 16 weeks, with 1.0 microM arsenite 225% of control, 95% CI = 188% to 262%) but not in arsenic methylation-deficient UROtsa cells, and ODD levels corresponded to the levels of increased invasiveness, colony formation, and hypersecretion of active MMP-2 and -9 seen after transformation to an in vitro cancer phenotype. CONCLUSION: Arsenic biomethylation appears to be obligatory for arsenic-induced ODD and appears linked in some cells with the accelerated transition to an in vitro cancer phenotype.


Asunto(s)
Arsenitos/efectos adversos , Carcinógenos/toxicidad , Daño del ADN/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Inhibidores Enzimáticos/efectos adversos , Metiltransferasas/genética , Neoplasias Experimentales/genética , Estrés Oxidativo/efectos de los fármacos , Polimorfismo Genético/efectos de los fármacos , Compuestos de Sodio/efectos adversos , Animales , Arsénico/efectos adversos , Células Cultivadas , Células Epiteliales , Humanos , Hígado/citología , Masculino , Inhibidores de la Metaloproteinasa de la Matriz , Metiltransferasas/efectos de los fármacos , Neoplasias Experimentales/inducido químicamente , Fenotipo , Próstata/citología , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Selenito de Sodio/farmacología , Detección de Spin , Factores de Tiempo , Vejiga Urinaria/citología
13.
Chem Res Toxicol ; 22(10): 1713-20, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19691357

RESUMEN

The arsenic (+3 oxidation state) methyltransferase (As3mt) gene encodes a 43 kDa protein that catalyzes methylation of inorganic arsenic. Altered expression of AS3MT in cultured human cells controls arsenic methylation phenotypes, suggesting a critical role in arsenic metabolism. Because methylated arsenicals mediate some toxic or carcinogenic effects linked to inorganic arsenic exposure, studies of the fate and effects of arsenicals in mice which cannot methylate arsenic could be instructive. This study compared retention and distribution of arsenic in As3mt knockout mice and in wild-type C57BL/6 mice in which expression of the As3mt gene is normal. Male and female mice of either genotype received an oral dose of 0.5 mg of arsenic as arsenate per kg containing [(73)As]-arsenate. Mice were radioassayed for up to 96 h after dosing; tissues were collected at 2 and 24 h after dosing. At 2 and 24 h after dosing, livers of As3mt knockouts contained a greater proportion of inorganic and monomethylated arsenic than did livers of C57BL/6 mice. A similar predominance of inorganic and monomethylated arsenic was found in the urine of As3mt knockouts. At 24 h after dosing, As3mt knockouts retained significantly higher percentages of arsenic dose in liver, kidneys, urinary bladder, lungs, heart, and carcass than did C57BL/6 mice. Whole body clearance of [(73)As] in As3mt knockouts was substantially slower than in C57BL/6 mice. At 24 h after dosing, As3mt knockouts retained about 50% and C57BL/6 mice about 6% of the dose. After 96 h, As3mt knockouts retained about 20% and C57BL/6 mice retained less than 2% of the dose. These data confirm a central role for As3mt in the metabolism of inorganic arsenic and indicate that phenotypes for arsenic retention and distribution are markedly affected by the null genotype for arsenic methylation, indicating a close linkage between the metabolism and retention of arsenicals.


Asunto(s)
Arseniatos/administración & dosificación , Metiltransferasas/metabolismo , Administración Oral , Animales , Arseniatos/farmacocinética , Arseniatos/orina , Intoxicación por Arsénico , Arsenicales/metabolismo , Arsenicales/orina , Femenino , Genotipo , Humanos , Masculino , Metiltransferasas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Distribución Tisular
14.
Toxicol Appl Pharmacol ; 239(2): 200-7, 2009 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-19538983

RESUMEN

Exposure to naturally occurring inorganic arsenic (iAs), primarily from contaminated drinking water, is considered one of the top environmental health threats worldwide. Arsenic (+3 oxidation state) methyltransferase (AS3MT) is the key enzyme in the biotransformation pathway of iAs. AS3MT catalyzes the transfer of a methyl group from S-adenosyl-L-methionine to trivalent arsenicals, resulting in the production of methylated (MAs) and dimethylated arsenicals (DMAs). MAs is a susceptibility factor for iAs-induced toxicity. In this study, we evaluated the association of the polymorphism in AS3MT gene with iAs metabolism and with the presence of arsenic (As) premalignant skin lesions. This is a case-control study of 71 cases with skin lesions and 51 controls without skin lesions recruited from a iAs endemic area in Mexico. We measured urinary As metabolites, differentiating the trivalent and pentavalent arsenical species, using the hydride generation atomic absorption spectrometry. In addition, the study subjects were genotyped to analyze three single nucleotide polymorphisms (SNPs), A-477G, T14458C (nonsynonymus SNP; Met287Thr), and T35587C, in the AS3MT gene. We compared the frequencies of the AS3MT alleles, genotypes, and haplotypes in individuals with and without skin lesions. Marginal differences in the frequencies of the Met287Thr genotype were identified between individuals with and without premalignant skin lesions (p=0.055): individuals carrying the C (TC+CC) allele (Thr) were at risk [odds ratio=4.28; 95% confidence interval (1.0-18.5)]. Also, individuals with C allele of Met287Thr displayed greater percentage of MAs in urine and decrease in the percentage of DMAs. These findings indicate that Met287Thr influences the susceptibility to premalignant As skin lesions and might be at increased risk for other adverse health effects of iAs exposure.


Asunto(s)
Arsénico/toxicidad , Metiltransferasas/genética , Polimorfismo de Nucleótido Simple , Lesiones Precancerosas/inducido químicamente , Neoplasias Cutáneas/inducido químicamente , Contaminantes Químicos del Agua/toxicidad , Adolescente , Adulto , Arsénico/orina , Estudios de Casos y Controles , Estudios Transversales , ADN/genética , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Femenino , Frecuencia de los Genes , Genotipo , Humanos , Masculino , México/epidemiología , Persona de Mediana Edad , Mucosa Bucal/citología , Lesiones Precancerosas/enzimología , Lesiones Precancerosas/epidemiología , Lesiones Precancerosas/genética , Neoplasias Cutáneas/enzimología , Neoplasias Cutáneas/epidemiología , Neoplasias Cutáneas/genética , Contaminantes Químicos del Agua/orina , Adulto Joven
15.
Curr Protoc Toxicol ; 42(431): 4.31.1-4.31.6, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-25419261

RESUMEN

It is likely that at least some of the toxic and carcinogenic effects associated with exposure to inorganic arsenic are, in fact, due to actions of its methylated metabolites. Here, we provide an overview of current models for the biological methylation of arsenicals. This information provides a context for understanding the chemical, biochemical, and genetic approaches to elucidation of the formation and function of metahylated arsenicals which are presented in the following manuscripts.

16.
Environ Health Perspect ; 116(12): 1656-60, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19079716

RESUMEN

BACKGROUND: The concentration of arsenic in urine has been used as a marker of exposure to inorganic As (iAs). Relative proportions of urinary metabolites of iAs have been identified as potential biomarkers of susceptibility to iAs toxicity. However, the adverse effects of iAs exposure are ultimately determined by the concentrations of iAs metabolites in target tissues. OBJECTIVE: In this study we examined the feasibility of analyzing As species in cells that originate in the urinary bladder, a target organ for As-induced cancer in humans. METHODS: Exfoliated bladder epithelial cells (BECs) were collected from urine of 21 residents of Zimapan, Mexico, who were exposed to iAs in drinking water. We determined concentrations of iAs, methyl-As (MAs), and dimethyl-As (DMAs) in urine using conventional hydride generation-cryotrapping-atomic absorption spectrometry (HG-CT-AAS). We used an optimized HG-CT-AAS technique with detection limits of 12-17 pg As for analysis of As species in BECs. RESULTS: All urine samples and 20 of 21 BEC samples contained detectable concentrations of iAs, MAs, and DMAs. Sums of concentrations of these As species in BECs ranged from 0.18 to 11.4 ng As/mg protein and in urine from 4.8 to 1,947 ng As/mL. We found no correlations between the concentrations or ratios of As species in BECs and in urine. CONCLUSION: These results suggest that urinary levels of iAs metabolites do not necessarily reflect levels of these metabolites in the bladder epithelium. Thus, analysis of As species in BECs may provide a more effective tool for risk assessment of bladder cancer and other urothelial diseases associated with exposures to iAs.


Asunto(s)
Arsénico/aislamiento & purificación , Células Epiteliales/química , Vejiga Urinaria/química , Contaminantes Químicos del Agua/aislamiento & purificación , Abastecimiento de Agua/análisis , Adolescente , Adulto , Arsénico/clasificación , Arsénico/toxicidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Espectrofotometría Atómica , Vejiga Urinaria/citología , Contaminantes Químicos del Agua/clasificación , Contaminantes Químicos del Agua/toxicidad
17.
J Anal At Spectrom ; 23: 342-351, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18677417

RESUMEN

Analyses of arsenic (As) species in tissues and body fluids of individuals chronically exposed to inorganic arsenic (iAs) provide essential information about the exposure level and pattern of iAs metabolism. We have previously described an oxidation state-specific analysis of As species in biological matrices by hydride-generation atomic absorption spectrometry (HG-AAS), using cryotrapping (CT) for preconcentration and separation of arsines. To improve performance and detection limits of the method, HG and CT steps are automated and a conventional flame-in-tube atomizer replaced with a recently developed multiple microflame quartz tube atomizer (multiatomizer). In this system, arsines from As(III)-species are generated in a mixture of Tris-HCl (pH 6) and sodium borohydride. For generation of arsines from both As(III)- and As(V)-species, samples are pretreated with L-cysteine. Under these conditions, dimethylthioarsinic acid, a newly described metabolite of iAs, does not interfere significantly with detection and quantification of methylated trivalent arsenicals. Analytical performance of the automated HG-CT-AAS was characterized by analyses of cultured cells and mouse tissues that contained mono- and dimethylated metabolites of iAs. The capacity to detect methylated As(III)- and As(V)-species was verified, using an in vitro methylation system containing recombinant rat arsenic (+3 oxidation state) methyltransferase and cultured rat hepatocytes treated with iAs. Compared with the previous HG-CT-AAS design, detection limits for iAs and its metabolites have improved significantly with the current system, ranging from 8 to 20 pg. Recoveries of As were between 78 and 117%. The precision of the method was better than 5% for all biological matrices examined. Thus, the automated HG-CT-AAS system provides an effective and sensitive tool for analysis of all major human metabolites of iAs in complex biological matrices.

18.
Spectrochim Acta Part B At Spectrosc ; 63(3): 396-406, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18521190

RESUMEN

An automated system for hydride generation - cryotrapping- gas chromatography - atomic absorption spectrometry with the multiatomizer is described. Arsines are preconcentrated and separated in a Chromosorb filled U-tube. An automated cryotrapping unit, employing nitrogen gas formed upon heating in the detection phase for the displacement of the cooling liquid nitrogen, has been developed. The conditions for separation of arsines in a Chromosorb filled U-tube have been optimized. A complete separation of signals from arsine, methylarsine, dimethylarsine, and trimethylarsine has been achieved within a 60 s reading window. The limits of detection for methylated arsenicals tested were 4 ng l(-1). Selective hydride generation is applied for the oxidation state specific speciation analysis of inorganic and methylated arsenicals. The arsines are generated either exclusively from trivalent or from both tri- and pentavalent inorganic and methylated arsenicals depending on the presence of L-cysteine as a prereductant and/or reaction modifier. A TRIS buffer reaction medium is proposed to overcome narrow optimum concentration range observed for the L-cysteine modified reaction in HCl medium. The system provides uniform peak area sensitivity for all As species. Consequently, the calibration with a single form of As is possible. This method permits a high-throughput speciation analysis of metabolites of inorganic arsenic in relatively complex biological matrices such as cell culture systems without sample pretreatment, thus preserving the distribution of tri- and pentavalent species.

19.
Exp Biol Med (Maywood) ; 232(1): 3-13, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17202581

RESUMEN

Metabolic conversion of inorganic arsenic into methylated products is a multistep process that yields mono-, di-, and trimethylated arsenicals. In recent years, it has become apparent that formation of methylated metabolites of inorganic arsenic is not necessarily a detoxification process. Intermediates and products formed in this pathway may be more reactive and toxic than inorganic arsenic. Like all metabolic pathways, understanding the pathway for arsenic methylation involves identification of each individual step in the process and the characterization of the molecules which participate in each step. Among several arsenic methyltransferases that have been identified, arsenic (+3 oxidation state) methyltransferase is the one best characterized at the genetic and functional levels. This review focuses on phylogenetic relationships in the deuterostomal lineage for this enzyme and on the relation between genotype for arsenic (+3 oxidation state) methyltransferase and phenotype for conversion of inorganic arsenic to methylated metabolites. Two conceptual models for function of arsenic (+3 oxidation state) methyltransferase which posit different roles for cellular reductants in the conversion of inorganic arsenic to methylated metabolites are compared. Although each model accurately represents some aspects of enzyme's role in the pathway for arsenic methylation, neither model is a fully satisfactory representation of all the steps in this metabolic pathway. Additional information on the structure and function of the enzyme will be needed to develop a more comprehensive model for this pathway.


Asunto(s)
Arsenicales/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Secuencia de Aminoácidos , Animales , Glutatión/metabolismo , Humanos , Metilación , Metiltransferasas/química , Datos de Secuencia Molecular , Oxidación-Reducción
20.
Chem Res Toxicol ; 19(7): 894-8, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16841956

RESUMEN

Several methyltransferases have been shown to catalyze the oxidative methylation of inorganic arsenic (iAs) in mammalian species. However, the relative contributions of these enzymes to the overall capacity of cells to methylate iAs have not been characterized. Arsenic (+3 oxidation state) methyltransferase (AS3MT) that is expressed in rat and human hepatocytes catalyzes the conversion of iAs, yielding methylated metabolites that contain arsenic in +3 or +5 oxidation states. This study used short hairpin RNA (shRNA) to knock down AS3MT expression in human hepatocellular carcinoma (HepG2) cells. In a stable clonal HepG2/A cell line, AS3MT mRNA and protein levels were reduced by 83 and 88%, respectively. In comparison, the capacity to methylate iAs decreased only by 70%. These data suggest that AS3MT is the major enzyme in this pathway, although an AS3MT-independent process may contribute to iAs methylation in human hepatic cells.


Asunto(s)
Arsénico/metabolismo , Hepatocitos/metabolismo , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Arsénico/toxicidad , Secuencia de Bases , Línea Celular Tumoral , Hepatocitos/efectos de los fármacos , Humanos , Metilación/efectos de los fármacos , Metiltransferasas/genética , Datos de Secuencia Molecular , ARN Interferente Pequeño/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA