Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Biochemistry (Mosc) ; 89(5): 904-911, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38880650

RESUMEN

Multiple sclerosis (MS) is a complex autoimmune disease of central nervous system (CNS) characterized by the myelin sheath destruction and compromised nerve signal transmission. Understanding molecular mechanisms driving MS development is critical due to its early onset, chronic course, and therapeutic approaches based only on symptomatic treatment. Cytokines are known to play a pivotal role in the MS pathogenesis with interleukin-6 (IL-6) being one of the key mediators. This study investigates contribution of IL-6 produced by microglia and dendritic cells to the development of experimental autoimmune encephalomyelitis (EAE), a widely used mouse model of MS. Mice with conditional inactivation of IL-6 in the CX3CR1+ cells, including microglia, or CD11c+ dendritic cells, displayed less severe symptoms as compared to their wild-type counterparts. Mice with microglial IL-6 deletion exhibited an elevated proportion of regulatory T cells and reduced percentage of pathogenic IFNγ-producing CD4+ T cells, accompanied by the decrease in pro-inflammatory monocytes in the CNS at the peak of EAE. At the same time, deletion of IL-6 from microglia resulted in the increase of CCR6+ T cells and GM-CSF-producing T cells. Conversely, mice with IL-6 deficiency in the dendritic cells showed not only the previously described increase in the proportion of regulatory T cells and decrease in the proportion of TH17 cells, but also reduction in the production of GM-CSF and IFNγ in the secondary lymphoid organs. In summary, IL-6 functions during EAE depend on both the source and localization of immune response: the microglial IL-6 exerts both pathogenic and protective functions specifically in the CNS, whereas the dendritic cell-derived IL-6, in addition to being critically involved in the balance of regulatory T cells and TH17 cells, may stimulate production of cytokines associated with pathogenic functions of T cells.


Asunto(s)
Células Dendríticas , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental , Interleucina-6 , Microglía , Esclerosis Múltiple , Animales , Células Dendríticas/metabolismo , Células Dendríticas/inmunología , Ratones , Interleucina-6/metabolismo , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Microglía/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Ratones Endogámicos C57BL , Receptor 1 de Quimiocinas CX3C/metabolismo , Receptor 1 de Quimiocinas CX3C/genética , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Receptores CCR6/metabolismo , Receptores CCR6/genética , Femenino
2.
Biochemistry (Mosc) ; 89(5): 817-838, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38880644

RESUMEN

In recent years, the role of cellular metabolism in immunity has come into the focus of many studies. These processes form a basis for the maintenance of tissue integrity and homeostasis, as well as represent an integral part of the immune response, in particular, inflammation. Metabolic adaptations not only ensure energy supply for immune response, but also affect the functions of immune cells by controlling transcriptional and post-transcriptional programs. Studying the immune cell metabolism facilitates the search for new treatment approaches, especially for metabolic disorders. Macrophages, innate immune cells, are characterized by a high functional plasticity and play a key role in homeostasis and inflammation. Depending on the phenotype and origin, they can either perform various regulatory functions or promote inflammation state, thus exacerbating the pathological condition. Furthermore, their adaptations to the tissue-specific microenvironment influence the intensity and type of immune response. The review examines the effect of metabolic reprogramming in macrophages on the functional activity of these cells and their polarization. The role of immunometabolic adaptations of myeloid cells in tissue homeostasis and in various pathological processes in the context of inflammatory and metabolic diseases is specifically discussed. Finally, modulation of the macrophage metabolism-related mechanisms reviewed as a potential therapeutic approach.


Asunto(s)
Homeostasis , Inflamación , Macrófagos , Macrófagos/metabolismo , Macrófagos/inmunología , Humanos , Inflamación/metabolismo , Inflamación/inmunología , Animales
3.
Biochemistry (Mosc) ; 89(5): 853-861, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38880646

RESUMEN

Tumor necrosis factor (TNF) is one of many cytokines - protein molecules responsible for communication between the cells of immune system. TNF was discovered and given its grand name because of its striking antitumor effects in experimental systems, but its main physiological functions in the context of whole organism turned out to be completely unrelated to protection against tumors. This short review discusses "man-made" mouse models generated by early genome-editing technologies, which enabled us to establish true functions of TNF in health and certain diseases as well as to unravel potential strategies for improving therapy of TNF-dependent diseases.


Asunto(s)
Factor de Necrosis Tumoral alfa , Animales , Humanos , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Ratones , Edición Génica/métodos , Neoplasias/inmunología , Neoplasias/genética , Neoplasias/terapia
4.
Front Immunol ; 14: 1303795, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38124735

RESUMEN

Akkermansia muciniphila is a gram-negative anaerobic bacterium, which represents a part of the commensal human microbiota. Decline in the abundance of A. muciniphila among other microbial species in the gut correlates with severe systemic diseases such as diabetes, obesity, intestinal inflammation and colorectal cancer. Due to its mucin-reducing and immunomodulatory properties, the use of probiotics containing Akkermansia sp. appears as a promising approach to the treatment of metabolic and inflammatory diseases. In particular, a number of studies have focused on the role of A. muciniphila in colorectal cancer. Of note, the results of these studies in mice are contradictory: some reported a protective role of A. muciniphila in colorectal cancer, while others demonstrated that administration of A. muciniphila could aggravate the course of the disease resulting in increased tumor burden. More recent studies suggested the immunomodulatory effect of certain unique surface antigens of A. muciniphila on the intestinal immune system. In this Perspective, we attempt to explain how A. muciniphila contributes to protection against colorectal cancer in some models, while being pathogenic in others. We argue that differences in the experimental protocols of administration of A. muciniphila, as well as viability of bacteria, may significantly affect the results. In addition, we hypothesize that antigens presented by pasteurized bacteria or live A. muciniphila may exert distinct effects on the barrier functions of the gut. Finally, A. muciniphila may reduce the mucin barrier and exerts combined effects with other bacterial species in either promoting or inhibiting cancer development.


Asunto(s)
Neoplasias Colorrectales , Mucinas , Humanos , Animales , Ratones , Composición de Base , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN
5.
Front Immunol ; 14: 1172467, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153552

RESUMEN

The naked mole-rat (NMR) is a unique long-lived rodent which is highly resistant to age-associated disorders and cancer. The immune system of NMR possesses a distinct cellular composition with the prevalence of myeloid cells. Thus, the detailed phenotypical and functional assessment of NMR myeloid cell compartment may uncover novel mechanisms of immunoregulation and healthy aging. In this study gene expression signatures, reactive nitrogen species and cytokine production, as well as metabolic activity of classically (M1) and alternatively (M2) activated NMR bone marrow-derived macrophages (BMDM) were examined. Polarization of NMR macrophages under pro-inflammatory conditions led to expected M1 phenotype characterized by increased pro-inflammatory gene expression, cytokine production and aerobic glycolysis, but paralleled by reduced production of nitric oxide (NO). Under systemic LPS-induced inflammatory conditions NO production also was not detected in NMR blood monocytes. Altogether, our results indicate that NMR macrophages are capable of transcriptional and metabolic reprogramming under polarizing stimuli, however, NMR M1 possesses species-specific signatures as compared to murine M1, implicating distinct adaptations in NMR immune system.


Asunto(s)
Citocinas , Macrófagos , Ratones , Animales , Fenotipo , Citocinas/metabolismo , Ratas Topo
6.
Int J Mol Sci ; 24(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37175976

RESUMEN

The binding properties of synthetic and recombinant peptides derived from N-terminal part of ACE2, the main receptor for SARS-CoV-2, were evaluated. Additionally, the ability of these peptides to prevent virus entry in vitro was addressed using both pseudovirus particles decorated with the S protein, as well as through infection of Vero cells with live SARS-CoV-2 virus. Surprisingly, in spite of effective binding to S protein, all linear peptides of various lengths failed to neutralize the viral infection in vitro. However, the P1st peptide that was chemically "stapled" in order to stabilize its alpha-helical structure was able to interfere with virus entry into ACE2-expressing cells. Interestingly, this peptide also neutralized pseudovirus particles decorated with S protein derived from the Omicron BA.1 virus, in spite of variations in key amino acid residues contacting ACE2.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Chlorocebus aethiops , Humanos , SARS-CoV-2/metabolismo , Células Vero , Enzima Convertidora de Angiotensina 2/metabolismo , Unión Proteica , Péptidos/farmacología , Péptidos/metabolismo
7.
Biochemistry (Mosc) ; 87(7): 590-604, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36154880

RESUMEN

Peptides are widely used for the diagnostics, prevention, and therapy of certain human diseases. How useful can they be for the disease caused by the SARS-CoV-2 coronavirus? In this review, we discuss the possibility of using synthetic and recombinant peptides and polypeptides for prevention of COVID-19 via blocking the interaction between the virus and its main receptor ACE2, as well as components of antiviral vaccines, in particular, against new emerging virus variants.


Asunto(s)
COVID-19 , Enzima Convertidora de Angiotensina 2 , Antivirales/uso terapéutico , Humanos , Péptidos/uso terapéutico , SARS-CoV-2
8.
Biochim Biophys Acta Mol Basis Dis ; 1868(12): 166531, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36038040

RESUMEN

Asthma is one of the most common chronic diseases. In many cases it is preceded by the development of an immune response to allergens such as animal fur, dust, pollens and etc. In human population this disease is heterogeneous, and no selective drugs are available at the moment for some endotypes of asthma. The role of the adaptive immune system in the pathogenesis of asthma was extensively studied, while the role of innate immune cells, in particular myeloid cells, was not sufficiently addressed. Myeloid cells, such as macrophages and dendritic cells, are characterized by high plasticity, heterogenicity and ability to undergo polarization in response to various pathogenic stimuli, including those engaging innate immune receptors. Recently, special attention was drawn to the link between polarization of macrophages and cell metabolism. We hypothesized that immunometabolic reprogramming of myeloid cells, in particular, of macrophages and dendritic cells during sensitization with an allergen may affect further immune response and asthma development. To test this hypothesis, we generated distinct types of myeloid cells in vitro from murine bone marrow and analyzed their immunometabolic profiles upon activation with house dust mite extract (HDM) and its key active components. We found that the combination of lipopolysaccharide (LPS) and beta-glucan is sufficient to upregulate proinflammatory cytokine production as well as respiratory and glycolytic capacity of myeloid cells, comparably to HDM. This specific immunometabolic phenotype was associated with altered mitochondrial morphology and possibly with increased ROS production in macrophages. Moreover, we found that both TNF production and metabolic remodeling of macrophages in response to HDM are TLR4-dependent processes. Altogether, these results expand our understanding of molecular mechanisms underlying asthma induction and pathogenesis and may potentially lead to new therapeutic strategies for the treatment of this disease.


Asunto(s)
Asma , beta-Glucanos , Alérgenos , Animales , Asma/metabolismo , Citocinas/metabolismo , Polvo , Humanos , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Ratones , Fenotipo , Pyroglyphidae , Especies Reactivas de Oxígeno , Receptor Toll-Like 4
9.
Int J Mol Sci ; 23(7)2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35408882

RESUMEN

Combined anti-cytokine therapy is a promising therapeutic approach for uncontrolled steroid-resistant asthma. In this regard, simultaneous blockade of IL-4 and IL-13 signaling by Dupilumab (anti-IL-4Ra monoclonal antibody) was recently approved for severe eosinophilic asthma. However, no therapeutic options for neutrophilic asthma are currently available. Recent advances in our understanding of asthma pathogenesis suggest that both IL-6 and TNF may represent potential targets for treatment of severe neutrophilic asthma. Nevertheless, the efficacy of simultaneous pharmacological inhibition of TNF and IL-6 in asthma was not yet studied. To evaluate the potency of combined cytokine inhibition, we simultaneously administrated IL-6 and TNF inhibitors to BALB/c mice with HDM-induced asthma. Combined IL-6/TNF inhibition, but not individual blockade of these two cytokines, led to complex anti-inflammatory effects including reduced Th2-induced eosinophilia and less prominent Th17/Th1-mediated neutrophilic infiltrate in the airways. Taken together, our results provide evidence for therapeutic potential of combined IL-6/TNF inhibition in severe steroid-resistant asthma.


Asunto(s)
Asma , Interleucina-6 , Animales , Citocinas , Modelos Animales de Enfermedad , Interleucina-6/farmacología , Ratones , Ratones Endogámicos BALB C , Células TH1 , Células Th17
10.
J Allergy Clin Immunol ; 149(6): 2078-2090, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34974067

RESUMEN

BACKGROUND: Infectious agents can reprogram or "train" macrophages and their progenitors to respond more readily to subsequent insults. However, whether such an inflammatory memory exists in type 2 inflammatory conditions such as allergic asthma was not known. OBJECTIVE: We sought to decipher macrophage-trained immunity in allergic asthma. METHODS: We used a combination of clinical sampling of house dust mite (HDM)-allergic patients, HDM-induced allergic airway inflammation in mice, and an in vitro training setup to analyze persistent changes in macrophage eicosanoid, cytokine, and chemokine production as well as the underlying metabolic and epigenetic mechanisms. Transcriptional and metabolic profiles of patient-derived and in vitro trained macrophages were assessed by RNA sequencing or metabolic flux analysis and liquid chromatography-tandem mass spectrometry analysis, respectively. RESULTS: We found that macrophages differentiated from bone marrow or blood monocyte progenitors of HDM-allergic mice or asthma patients show inflammatory transcriptional reprogramming and excessive mediator (TNF-α, CCL17, leukotriene, PGE2, IL-6) responses upon stimulation. Macrophages from HDM-allergic mice initially exhibited a type 2 imprint, which shifted toward a classical inflammatory training over time. HDM-induced allergic airway inflammation elicited a metabolically activated macrophage phenotype, producing high amounts of 2-hydroxyglutarate (2-HG). HDM-induced macrophage training in vitro was mediated by a formyl peptide receptor 2-TNF-2-HG-PGE2/PGE2 receptor 2 axis, resulting in an M2-like macrophage phenotype with high CCL17 production. TNF blockade by etanercept or genetic ablation of Tnf in myeloid cells prevented the inflammatory imprinting of bone marrow-derived macrophages from HDM-allergic mice. CONCLUSION: Allergen-triggered inflammation drives a TNF-dependent innate memory, which may perpetuate and exacerbate chronic type 2 airway inflammation and thus represents a target for asthma therapy.


Asunto(s)
Asma , Hipersensibilidad , Animales , Dermatophagoides pteronyssinus , Modelos Animales de Enfermedad , Humanos , Inflamación , Macrófagos , Ratones , Prostaglandinas E/metabolismo , Pyroglyphidae
11.
Front Immunol ; 12: 661900, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054827

RESUMEN

TNF is a multifunctional cytokine with its key functions attributed to inflammation, secondary lymphoid tissue organogenesis and immune regulation. However, it is also a physiological regulator of hematopoiesis and is involved in development and homeostatic maintenance of various organs and tissues. Somewhat unexpectedly, the most important practical application of TNF biology in medicine is anti-TNF therapy in several autoimmune diseases. With increased number of patients undergoing treatment with TNF inhibitors and concerns regarding possible adverse effects of systemic cytokine blockade, the interest in using humanized mouse models to study the efficacy and safety of TNF-targeting biologics in vivo is justified. This Perspective discusses the main functions of TNF and its two receptors, TNFR1 and TNFR2, in steady state, as well as in emergency hematopoiesis. It also provides a comparative overview of existing mouse lines with humanization of TNF/TNFR system. These genetically engineered mice allow us to study TNF signaling cascades in the hematopoietic compartment in the context of various experimental disease models and for evaluating the effects of various human TNF inhibitors on hematopoiesis and other physiological processes.


Asunto(s)
Hematopoyesis/efectos de los fármacos , Hematopoyesis/inmunología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/inmunología , Animales , Células Cultivadas , Humanos , Inflamación/inmunología , Ratones , Ratones Transgénicos , Receptores Tipo I de Factores de Necrosis Tumoral/antagonistas & inhibidores , Receptores Tipo II del Factor de Necrosis Tumoral/antagonistas & inhibidores , Transducción de Señal
12.
Cancers (Basel) ; 13(8)2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33917839

RESUMEN

Tumor necrosis factor (TNF) and lymphotoxin alpha (LTα) are two related cytokines from the TNF superfamily, yet they mediate their functions in soluble and membrane-bound forms via overlapping, as well as distinct, molecular pathways. Their genes are encoded within the major histocompatibility complex class III cluster in close proximity to each other. TNF is involved in host defense, maintenance of lymphoid tissues, regulation of cell death and survival, and antiviral and antibacterial responses. LTα, known for some time as TNFß, has pleiotropic functions including control of lymphoid tissue development and homeostasis cross talk between lymphocytes and their environment, as well as lymphoid tissue neogenesis with formation of lymphoid follicles outside the lymph nodes. Along with their homeostatic functions, deregulation of these two cytokines may be associated with initiation and progression of chronic inflammation, autoimmunity, and tumorigenesis. In this review, we summarize the current state of knowledge concerning TNF/LTα functions in tumor promotion and suppression, with the focus on the recently uncovered significance of host-microbiota interplay in cancer development that may explain some earlier controversial results.

13.
FEBS Lett ; 594(21): 3542-3550, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32865225

RESUMEN

Spatial organization and conformational changes of antibodies may significantly affect their biological functions. We assessed the effect of mutual organization of the two VH H domains within bispecific antibodies recognizing human TNF and the surface molecules of murine myeloid cells (F4/80 or CD11b) on TNF retention and inhibition. TNF-neutralizing properties in vitro and in vivo of MYSTI-2 and MYSTI-3 antibodies were compared with new variants with interchanged VH H domains and different linker sequences. The most effective structure of MYSTI-2 and MYSTI-3 proteins required the Ser/Gly-containing 'superflexible' linker. The orientation of the modules was crucial for the activity of the proteins, but not for MYSTI-3 with the Pro/Gln-containing 'semi-rigid' linker. Our results may contribute toward the development of more effective drug prototypes.


Asunto(s)
Células Mieloides/efectos de los fármacos , Inhibidores del Factor de Necrosis Tumoral/farmacología , Animales , Anticuerpos Biespecíficos/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas , Galactosamina , Humanos , Lipopolisacáridos , Macrófagos/efectos de los fármacos , Ratones , Tasa de Supervivencia , Factor de Necrosis Tumoral alfa/farmacología
14.
J Leukoc Biol ; 107(6): 933-939, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32040234

RESUMEN

Systemic TNF neutralization can be used as a therapy for several autoimmune diseases. To evaluate the effects of cell type-restricted TNF blockade, we previously generated bispecific antibodies that can limit TNF secretion by myeloid cells (myeloid cell-specific TNF inhibitors or MYSTIs). In this study several such variable domain (VH) of a camelid heavy-chain only antibody-based TNF inhibitors were compared in relevant experimental models, both in vitro and in vivo. Pretreatment with MYSTI-2, containing the anti-F4/80 module, can restrict the release of human TNF (hTNF) from LPS-activated bone marrow-derived macrophage (BMDM) cultures of humanized TNF knock-in (mice; hTNFKI) more effectively than MYSTI-3, containing the anti-CD11b module. MYSTI-2 was also superior to MYSTI-3 in providing in vivo protection in acute toxicity model. Finally, MYSTI-2 was at least as effective as Infliximab in preventing collagen antibody-induced arthritis. This study demonstrates that a 33 kDa bispecific mini-antibody that specifically restricts TNF secretion by macrophages is efficient for amelioration of experimental arthritis.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Artritis Experimental/terapia , Antígeno CD11b/antagonistas & inhibidores , Proteínas de Unión al Calcio/antagonistas & inhibidores , Cadenas Pesadas de Inmunoglobulina/farmacología , Células Progenitoras Mieloides/efectos de los fármacos , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Inhibidores del Factor de Necrosis Tumoral/farmacología , Animales , Antirreumáticos/farmacología , Artritis Experimental/genética , Artritis Experimental/inmunología , Artritis Experimental/patología , Antígeno CD11b/genética , Antígeno CD11b/inmunología , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/inmunología , Expresión Génica , Humanos , Infliximab/farmacología , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones , Ratones Transgénicos , Células Progenitoras Mieloides/inmunología , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/inmunología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología
15.
J Leukoc Biol ; 107(6): 893-905, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32083339

RESUMEN

TNF is a key proinflammatory and immunoregulatory cytokine whose deregulation is associated with the development of autoimmune diseases and other pathologies. Recent studies suggest that distinct functions of TNF may be associated with differential engagement of its two receptors: TNFR1 or TNFR2. In this review, we discuss the relative contributions of these receptors to pathogenesis of several diseases, with the focus on autoimmunity and neuroinflammation. In particular, we discuss the role of TNFRs in the development of regulatory T cells during neuroinflammation and recent findings concerning targeting TNFR2 with agonistic and antagonistic reagents in various murine models of autoimmune and neuroinflammatory disorders and cancer.


Asunto(s)
Encefalomielitis Autoinmune Experimental/genética , Esclerosis Múltiple/genética , Neuroinmunomodulación/genética , Receptores Tipo II del Factor de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Transducción de Señal/genética , Factor de Necrosis Tumoral alfa/genética , Animales , Artritis Reumatoide/genética , Artritis Reumatoide/inmunología , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Autoinmunidad/genética , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/inmunología , Regulación de la Expresión Génica , Humanos , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Ratones , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/patología , Psoriasis/genética , Psoriasis/inmunología , Psoriasis/metabolismo , Psoriasis/patología , Receptores Tipo I de Factores de Necrosis Tumoral/inmunología , Receptores Tipo II del Factor de Necrosis Tumoral/inmunología , Transducción de Señal/inmunología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/patología , Factor de Necrosis Tumoral alfa/inmunología
16.
Front Immunol ; 9: 2718, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30534125

RESUMEN

Asthma is a common inflammatory disease of the airway caused by a combination of genetic and environmental factors and characterized by airflow obstruction, wheezing, eosinophilia, and neutrophilia of lungs and sputum. Similar to other proinflammatory cytokines, IL-6 is elevated in asthma and plays an active role in this disease. However, the exact molecular mechanism of IL-6 involvement in the pathogenesis of asthma remains largely unknown and the major cellular source of pathogenic IL-6 has not been defined. In the present study, we used conditional gene targeting to demonstrate that macrophages and dendritic cells are the critical sources of pathogenic IL-6 in acute HDM-induced asthma in mice. Complete genetic inactivation of IL-6 ameliorated the disease with significant decrease in eosinophilia in the lungs. Specific ablation of IL-6 in macrophages reduced key indicators of type 2 allergic inflammation, including eosinophil and Th2 cell accumulation in the lungs, production of IgE and expression of asthma-associated inflammatory mediators. In contrast, mice with deficiency of IL-6 in dendritic cells demonstrated attenuated neutrophilic, but regular eosinophilic response in HDM-induced asthma. Taken together, our results indicate that IL-6 plays a pathogenic role in the HDM-induced asthma model and that lung macrophages and dendritic cells are the predominant sources of pathogenic IL-6 but contribute differently to the disease.


Asunto(s)
Asma/inmunología , Células Dendríticas/inmunología , Interleucina-6/inmunología , Macrófagos/inmunología , Animales , Asma/genética , Asma/patología , Células Dendríticas/patología , Modelos Animales de Enfermedad , Eosinófilos/inmunología , Eosinófilos/patología , Interleucina-6/genética , Macrófagos/patología , Ratones , Ratones Noqueados , Células Th2/inmunología , Células Th2/patología
17.
Front Immunol ; 9: 2851, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30564244

RESUMEN

Despite decades of research, the goal of achieving scarless wound healing remains elusive. One of the approaches, treatment with polymeric microcarriers, was shown to promote tissue regeneration in various in vitro models of wound healing. The in vivo effects of such an approach are attributed to transferred cells with polymeric microparticles functioning merely as inert scaffolds. We aimed to establish a bioactive biopolymer carrier that would promote would healing and inhibit scar formation in the murine model of deep skin wounds. Here we characterize two candidate types of microparticles based on fibroin/gelatin or spidroin and show that both types increase re-epithelialization rate and inhibit scar formation during skin wound healing. Interestingly, the effects of these microparticles on inflammatory gene expression and cytokine production by macrophages, fibroblasts, and keratinocytes are distinct. Both types of microparticles, as well as their soluble derivatives, fibroin and spidroin, significantly reduced the expression of profibrotic factors Fgf2 and Ctgf in mouse embryonic fibroblasts. However, only fibroin/gelatin microparticles induced transient inflammatory gene expression and cytokine production leading to an influx of inflammatory Ly6C+ myeloid cells to the injection site. The ability of microparticle carriers of equal proregenerative potential to induce inflammatory response may allow their subsequent adaptation to treatment of wounds with different bioburden and fibrotic content.


Asunto(s)
Cicatriz/prevención & control , Portadores de Fármacos/administración & dosificación , Repitelización/efectos de los fármacos , Piel/lesiones , Cicatrización de Heridas/efectos de los fármacos , Animales , Cicatriz/inmunología , Cicatriz/patología , Factor de Crecimiento del Tejido Conjuntivo/inmunología , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Citocinas/inmunología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Portadores de Fármacos/química , Factor 2 de Crecimiento de Fibroblastos , Fibroblastos/efectos de los fármacos , Fibroblastos/inmunología , Fibroblastos/metabolismo , Fibroínas/administración & dosificación , Fibroínas/química , Fibrosis/inmunología , Fibrosis/prevención & control , Gelatina/administración & dosificación , Gelatina/química , Humanos , Inyecciones Subcutáneas , Queratinocitos/efectos de los fármacos , Queratinocitos/inmunología , Queratinocitos/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Tamaño de la Partícula , Repitelización/inmunología , Piel/efectos de los fármacos , Piel/patología , Traumatismos de los Tejidos Blandos/complicaciones , Traumatismos de los Tejidos Blandos/tratamiento farmacológico , Traumatismos de los Tejidos Blandos/inmunología , Traumatismos de los Tejidos Blandos/patología , Resultado del Tratamiento , Cicatrización de Heridas/inmunología
18.
Proc Natl Acad Sci U S A ; 115(51): 13051-13056, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30498033

RESUMEN

TNF is a multifunctional cytokine involved in autoimmune disease pathogenesis that exerts its effects through two distinct TNF receptors, TNFR1 and TNFR2. While TNF- and TNFR1-deficient (but not TNFR2-deficient) mice show very similar phenotypes, the significance of TNFR2 signaling in health and disease remains incompletely understood. Recent studies implicated the importance of the TNF/TNFR2 axis in T regulatory (Treg) cell functions. To definitively ascertain the significance of TNFR2 signaling, we generated and validated doubly humanized TNF/TNFR2 mice, with the option of conditional inactivation of TNFR2. These mice carry a functional human TNF-TNFR2 (hTNF-hTNFR2) signaling module and provide a useful tool for comparative evaluation of TNF-directed biologics. Conditional inactivation of TNFR2 in FoxP3+ cells in doubly humanized TNF/TNFR2 mice down-regulated the expression of Treg signature molecules (such as FoxP3, CD25, CTLA-4, and GITR) and diminished Treg suppressive function in vitro. Consequently, Treg-restricted TNFR2 deficiency led to significant exacerbation of experimental autoimmune encephalomyelitis (EAE), accompanied by reduced capacity to control Th17-mediated immune responses. Our findings expose the intrinsic and beneficial effects of TNFR2 signaling in Treg cells that could translate into protective functions in vivo, including treatment of autoimmunity.


Asunto(s)
Autoinmunidad/inmunología , Sistema Nervioso Central/inmunología , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/prevención & control , Receptores Tipo II del Factor de Necrosis Tumoral/fisiología , Linfocitos T Reguladores/inmunología , Factor de Necrosis Tumoral alfa/fisiología , Animales , Células Cultivadas , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
19.
Artículo en Inglés | MEDLINE | ID: mdl-29535976

RESUMEN

Toll-like receptor 4 (TLR4) initiates immune response against Gram-negative bacteria upon specific recognition of lipid A moiety of lipopolysaccharide (LPS), the major component of their cell wall. Some natural differences between LPS variants in their ability to interact with TLR4 may lead to either insufficient activation that may not prevent bacterial growth, or excessive activation which may lead to septic shock. In this study we evaluated the biological activity of LPS isolated from pathogenic strain of Campylobacter jejuni, the most widespread bacterial cause of foodborne diarrhea in humans. With the help of hydrophobic chromatography and MALDI-TOF mass spectrometry we showed that LPS from a C. jejuni strain O2A consists of both hexaacyl and tetraacyl forms. Since such hypoacylation can result in a reduced immune response in humans, we assessed the activity of LPS from C. jejuni in mouse macrophages by measuring its capacity to activate TLR4-mediated proinflammatory cytokine and chemokine production, as well as NFκB-dependent reporter gene transcription. Our data support the hypothesis that LPS acylation correlates with its bioactivity.


Asunto(s)
Campylobacter jejuni/inmunología , Campylobacter jejuni/metabolismo , Enfermedades Transmitidas por los Alimentos/microbiología , Lipopolisacáridos/farmacología , Receptor Toll-Like 4/efectos de los fármacos , Receptor Toll-Like 4/inmunología , Animales , Campylobacter jejuni/patogenicidad , Citocinas/metabolismo , Factor 3 Regulador del Interferón/genética , Interleucina-1beta/metabolismo , Interleucina-6 , Lípido A/inmunología , Lípido A/aislamiento & purificación , Lípido A/farmacología , Lipopolisacáridos/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , ARN Interferente Pequeño , Receptor Toll-Like 4/genética , Factor de Necrosis Tumoral alfa/metabolismo
20.
Cytokine ; 101: 33-38, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-27624866

RESUMEN

Cytokines are involved in a wide range of functions shaping the normal immune response, yet inflammatory changes in the immune system due to dysregulated cytokine signaling may lead to the induction of autoimmunity. Cytokine inhibitors have revolutionized the treatment of many autoimmune diseases in recent years. Systemic cytokine ablation, however, is often associated with the development of adverse side effects and some patients simply do not respond to therapy. TNF, IL-1 and IL-6 are the best characterized proinflammatory cytokines considered as the main therapeutic targets for the treatment of several autoimmune and inflammatory diseases. But can anti-cytokine therapy become more selective and thus more efficient? This mini-review discusses several recently emerging paradigms and summarizes current experimental attempts to validate them in mouse studies.


Asunto(s)
Autoinmunidad/inmunología , Citocinas/antagonistas & inhibidores , Modelos Animales de Enfermedad , Inmunoterapia , Animales , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/terapia , Citocinas/inmunología , Inflamación/terapia , Interleucina-1/antagonistas & inhibidores , Interleucina-6/antagonistas & inhibidores , Ratones , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA