Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Biol Psychiatry ; 92(3): 179-192, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35489874

RESUMEN

BACKGROUND: Depression is the most common mental illness. Mounting evidence suggests that dysregulation of extracellular ATP (adenosine triphosphate) is involved in the pathophysiology of depression. However, the cellular and neural circuit mechanisms through which ATP modulates depressive-like behavior remain elusive. METHODS: By use of ex vivo slice electrophysiology, chemogenetic manipulations, RNA interference, gene knockout, behavioral testing, and two depression mouse models, one induced by chronic social defeat stress and one caused by a IP3R2-null mutation, we systematically investigated the cellular and neural circuit mechanisms underlying ATP deficiency-induced depressive-like behavior. RESULTS: Deficiency of extracellular ATP in both defeated susceptible mice and IP3R2-null mutation mice led to reduced GABAergic (gamma-aminobutyric acidergic) inhibition and elevated excitability in lateral habenula-projecting, but not dorsal raphe-projecting, medial prefrontal cortex (mPFC) neurons. Furthermore, the P2X2 receptor in GABAergic interneurons mediated ATP modulation of lateral habenula-projecting mPFC neurons and depressive-like behavior. Remarkably, chemogenetic activation of the mPFC-lateral habenula pathway induced depressive-like behavior in C57BL/6J mice, while inhibition of this pathway was sufficient to alleviate the behavioral impairment in both defeated susceptible and IP3R2-null mutant mice. CONCLUSIONS: Overall, our study provides compelling evidence that ATP level in the mPFC is critically involved in regulating depressive-like behavior in a pathway-specific manner. These results shed new light on the mechanisms underlying depression and the antidepressant effect of ATP.


Asunto(s)
Habénula , Adenosina Trifosfato/metabolismo , Animales , Depresión/etiología , Núcleo Dorsal del Rafe/metabolismo , Habénula/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Corteza Prefrontal/metabolismo
2.
Genes Brain Behav ; 19(4): e12620, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31652391

RESUMEN

The CreERT2 recombinase system is an advanced method to temporally control site-specific mutagenesis in adult rodents. In this process, tamoxifen is injected to induce Cre recombinase expression, and then, Cre recombinase can excise LoxP-flanked DNA. However, tamoxifen is a nonselective estrogen receptor antagonist that may influence behavioral alterations. Therefore, we designed five different protocols (acute effects, chronic effects, chronic effects after social defeat model, chronic effects after learned helplessness model, chronic effects after isolation models) to explore whether tamoxifen affects mouse behavior. Researching the acute/chronic effects of tamoxifen, we found that tamoxifen could influence locomotor activity, anxiety and immobility time in the forced swimming test. Researching the chronic effects of tamoxifen after social defeat/learned helplessness/isolation models, we found that tamoxifen could also influence locomotor activity, social interaction and anxiety. Therefore, the effects of tamoxifen are more complex than previously reported. Our results show, for the first time, that tamoxifen affects behavior in mouse models. Meanwhile, we compare the effects of tamoxifen in different protocols. These results will provide important information when designing similar experiments.


Asunto(s)
Ansiedad/etiología , Tamoxifeno/farmacología , Animales , Marcación de Gen/métodos , Marcación de Gen/normas , Desamparo Adquirido , Locomoción/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Receptores de Estrógenos/antagonistas & inhibidores , Conducta Social , Tamoxifeno/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA