Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nat Commun ; 14(1): 8135, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38065959

RESUMEN

Staphylococcus aureus is a predominant cause of chronic lung infections. While the airway environment is rich in highly sialylated mucins, the interaction of S. aureus with sialic acid is poorly characterized. Using S. aureus USA300 as well as clinical isolates, we demonstrate that quorum-sensing dysfunction, a hallmark of S. aureus adaptation, correlates with a greater ability to consume free sialic acid, providing a growth advantage in an air-liquid interface model and in vivo. Furthermore, RNA-seq experiment reveals that free sialic acid triggers transcriptional reprogramming promoting S. aureus chronic lifestyle. To support the clinical relevance of our results, we show the co-occurrence of S. aureus, sialidase-producing microbiota and free sialic acid in the airway of patients with cystic fibrosis. Our findings suggest a dual role for sialic acid in S. aureus airway infection, triggering virulence reprogramming and driving S. aureus adaptive strategies through the selection of quorum-sensing dysfunctional strains.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Humanos , Percepción de Quorum/genética , Ácido N-Acetilneuramínico , Sistema Respiratorio , Proteínas Bacterianas
2.
PLoS Pathog ; 10(1): e1003893, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24453979

RESUMEN

Intracellular bacterial pathogens have developed a variety of strategies to avoid degradation by the host innate immune defense mechanisms triggered upon phagocytocis. Upon infection of mammalian host cells, the intracellular pathogen Francisella replicates exclusively in the cytosolic compartment. Hence, its ability to escape rapidly from the phagosomal compartment is critical for its pathogenicity. Here, we show for the first time that a glutamate transporter of Francisella (here designated GadC) is critical for oxidative stress defense in the phagosome, thus impairing intra-macrophage multiplication and virulence in the mouse model. The gadC mutant failed to efficiently neutralize the production of reactive oxygen species. Remarkably, virulence of the gadC mutant was partially restored in mice defective in NADPH oxidase activity. The data presented highlight links between glutamate uptake, oxidative stress defense, the tricarboxylic acid cycle and phagosomal escape. This is the first report establishing the role of an amino acid transporter in the early stage of the Francisella intracellular lifecycle.


Asunto(s)
Ciclo del Ácido Cítrico , Francisella tularensis/metabolismo , Ácido Glutámico/metabolismo , Macrófagos/microbiología , Fagosomas/metabolismo , Tularemia/metabolismo , Sistema de Transporte de Aminoácidos X-AG/genética , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Línea Celular , Femenino , Francisella tularensis/genética , Francisella tularensis/patogenicidad , Ácido Glutámico/genética , Macrófagos/metabolismo , Macrófagos/patología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos BALB C , Mutación , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Fagosomas/genética , Fagosomas/microbiología , Fagosomas/patología , Tularemia/genética
3.
Cell Microbiol ; 16(3): 434-49, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24134488

RESUMEN

In order to develop a successful infectious cycle, intracellular bacterial pathogens must be able to adapt their metabolism to optimally utilize the nutrients available in the cellular compartments and tissues where they reside. Francisella tularensis, the agent of the zoonotic disease tularaemia, is a highly infectious bacterium for a large number of animal species. This bacterium replicates in its mammalian hosts mainly in the cytosol of infected macrophages. We report here the identification of a novel amino acid transporter of the major facilitator superfamily of secondary transporters that is required for bacterial intracellular multiplication and systemic dissemination. We show that inactivation of this transporter does not affect phagosomal escape but prevents multiplication in the cytosol of all cell types tested. Remarkably, the intracellular growth defect of the mutant was fully and specifically reversed by addition of asparagine or asparagine-containing dipeptides as well as by simultaneous addition of aspartic acid and ammonium. Importantly, bacterial virulence was also restored in vivo, in the mouse model, by asparagine supplementation. This work unravels thus, for the first time, the importance of asparagine for cytosolicmultiplication of Francisella. Amino acid transporters are likely to constitute underappreciated players in bacterial intracellular parasitism.


Asunto(s)
Sistemas de Transporte de Aminoácidos/genética , Asparagina/metabolismo , Proteínas Bacterianas/genética , Francisella tularensis/crecimiento & desarrollo , Compuestos de Amonio/farmacología , Animales , Asparagina/farmacología , Ácido Aspártico/metabolismo , Ácido Aspártico/farmacología , Proteínas Bacterianas/farmacocinética , Línea Celular Tumoral , Francisella tularensis/metabolismo , Francisella tularensis/patogenicidad , Células Hep G2 , Humanos , Macrófagos/microbiología , Ratones , Ratones Endogámicos BALB C , Fagosomas/microbiología , Tularemia/microbiología
4.
PLoS One ; 7(7): e41999, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22848684

RESUMEN

Francisella tularensis is a highly virulent bacterium responsible for the zoonotic disease tularemia. It is a facultative intracellular pathogen that replicates in the cytoplasm of host cells, particularly in macrophages. Here we show that F. tularensis live vaccine strain (LVS) expresses a novel small RNA (sRNA), which modulates the virulence capacities of the bacterium. When this sRNA, designated FtrC (for Francisella tularensis RNA C), is expressed at high levels, F. tularensis replicates in macrophages less efficiently than the wild-type parent strain. Similarly, high expression of FtrC reduces the number of viable bacteria recovered from the spleen and liver of infected mice. Our data demonstrate that expression of gene FTL_1293 is regulated by FtrC. Furthermore, we show by in vitro gel shift assays that FtrC interacts specifically with FTL_1293 mRNA and that this happens independently of the RNA chaperone Hfq. Remarkably, FtrC interacts only with full-length FTL_1293 mRNA. These results, combined with a bioinformatic analysis, indicate that FtrC interacts with the central region of the mRNA and hence does not act by sterically hindering access of the ribosome to the mRNA. We further show that gene FTL_1293 is not required for F. tularensis virulence in vitro or in vivo, which indicates that another unidentified FtrC target modulates the virulence capacity of the bacterium.


Asunto(s)
Francisella tularensis/genética , Francisella tularensis/patogenicidad , ARN Bacteriano/genética , ARN no Traducido/genética , Animales , Secuencia de Bases , Femenino , Regulación Bacteriana de la Expresión Génica/genética , Espacio Intracelular/microbiología , Macrófagos/citología , Macrófagos/microbiología , Ratones , Datos de Secuencia Molecular , Especificidad de la Especie
5.
Mol Microbiol ; 80(6): 1581-97, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21545655

RESUMEN

We studied three Fur-regulated systems of Listeria monocytogenes: the srtB region, that encodes sortase-anchored proteins and a putative ABC transporter, and the fhu and hup operons, that produce putative ABC transporters for ferric hydroxamates and haemin (Hn)/haemoglobin (Hb) respectively. Deletion of lmo2185 in the srtB region reduced listerial [(59) Fe]-Hn transport, and purified Lmo2185 bound [(59) Fe]-Hn (K(D) = 12 nM), leading to its designation as a Hn/Hb binding protein (hbp2). Purified Hbp2 also acted as a haemophore, capturing and supplying Hn from the environment. Nevertheless, Hbp2 only functioned in [(59) Fe]-Hn transport at external concentrations less than 50 nM: at higher Hn levels its uptake occurred with equivalent affinity and rate without Hbp2. Similarly, deletion of sortase A had no effect on ferric siderophore or Hn/Hb transport at any concentration, and the srtA-independence of listerial Hn/Hb uptake distinguished it from comparable systems of Staphylococcus aureus. In the cytoplasmic membrane, the Hup transporter was specific for Hn: its lipoprotein (HupD) only showed high affinity for the iron porphyrin (K(D) = 26 nM). Conversely, the FhuD lipoprotein encoded by the fhu operon had broad specificity: it bound both ferric siderophores and Hn, with the highest affinity for ferrioxamine B (K(D) = 123 nM). Deletions of Hup permease components hupD, hupG or hupDGC reduced Hn/Hb uptake, and complementation of ΔhupC and ΔhupG by chromosomal integration of hupC(+) and hupG(+) alleles on pPL2 restored growth promotion by Hn/Hb. However, ΔhupDGC did not completely eliminate [(59) Fe]-Hn transport, implying the existence of another cytoplasmic membrane Hn transporter. The overall K(M) of Hn uptake by wild-type strain EGD-e was 1 nM, and it occurred at similar rates (V(max) = 23 pmol 10(9) cells(-1) min(-1)) to those of ferric siderophore transporters. In the ΔhupDGC strain uptake occurred at a threefold lower rate (V(max) = 7 pmol 10(9) cells(-1) min(-1)). The results show that at low (< 50 nM) levels of Hn, SrtB-dependent peptidoglycan-anchored proteins (e.g. Hbp2) bind the porphyrin, and HupDGC or another transporter completes its uptake into the cytoplasm. However, at higher concentrations Hn uptake is SrtB-independent: peptidoglycan-anchored binding proteins are dispensable because HupDGC directly absorbs and internalizes Hn. Finally, ΔhupDGC increased the LD(50) of L. monocytogenes 100-fold in the mouse infection model, reiterating the importance of this system in listerial virulence.


Asunto(s)
Aminoaciltransferasas/metabolismo , Proteínas Bacterianas/metabolismo , Cisteína Endopeptidasas/metabolismo , Hemo/metabolismo , Hemoglobinas/metabolismo , Listeria monocytogenes/metabolismo , Aminoaciltransferasas/genética , Animales , Proteínas Bacterianas/genética , Cisteína Endopeptidasas/genética , Femenino , Humanos , Listeria monocytogenes/enzimología , Listeria monocytogenes/genética , Listeria monocytogenes/patogenicidad , Listeriosis/microbiología , Ratones , Operón , Virulencia
6.
Infect Immun ; 79(4): 1428-39, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21245269

RESUMEN

Francisella tularensis is a highly infectious bacterium causing the zoonotic disease tularemia. This facultative intracellular bacterium replicates in vivo mainly inside macrophages and therefore has developed strategies to resist this stressful environment. Here, we identified a novel genetic locus that is important for stress resistance and intracellular survival of F. tularensis. In silico and transcriptional analyses suggest that this locus (genes FTL_0200 to FTL_0209 in the live vaccine strain [LVS]) constitutes an operon controlled by the alternative sigma factor σ³². The first gene, FTL_0200, encodes a putative AAA+ ATPase of the MoxR subfamily. Insertion mutagenesis into genes FTL_0200, FTL_0205, and FTL_0206 revealed a role for the locus in both intracellular multiplication and in vivo survival of F. tularensis. Deletion of gene FTL_0200 led to a mutant bacterium with increased vulnerability to various stress conditions, including oxidative and pH stresses. Proteomic analyses revealed a pleiotropic impact of the ΔFTL_0200 deletion, supporting a role as a chaperone for FTL_0200. This is the first report of a role for a MoxR family member in bacterial pathogenesis. This class of proteins is remarkably conserved among pathogenic species and may thus constitute a novel player in bacterial virulence.


Asunto(s)
Francisella tularensis/genética , Francisella tularensis/patogenicidad , Genes Bacterianos/genética , Chaperonas Moleculares/genética , Estrés Fisiológico/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Southern Blotting , Humanos , Macrófagos/metabolismo , Macrófagos/microbiología , Chaperonas Moleculares/metabolismo , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Tularemia/genética , Tularemia/metabolismo , Virulencia/genética
7.
BMC Genomics ; 11: 625, 2010 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-21067590

RESUMEN

BACKGROUND: Regulation of bacterial gene expression by small RNAs (sRNAs) have proved to be important for many biological processes. Francisella tularensis is a highly pathogenic Gram-negative bacterium that causes the disease tularaemia in humans and animals. Relatively little is known about the regulatory networks existing in this organism that allows it to survive in a wide array of environments and no sRNA regulators have been identified so far. RESULTS: We have used a combination of experimental assays and in silico prediction to identify sRNAs in F. tularensis strain LVS. Using a cDNA cloning and sequencing approach we have shown that F. tularensis expresses homologues of several sRNAs that are well-conserved among diverse bacteria. We have also discovered two abundant putative sRNAs that share no sequence similarity or conserved genomic context with any previously annotated regulatory transcripts. Deletion of either of these two loci led to significant changes in the expression of several mRNAs that likely include the cognate target(s) of these sRNAs. Deletion of these sRNAs did not, however, significantly alter F. tularensis growth under various stress conditions in vitro, its replication in murine cells, or its ability to induce disease in a mouse model of F. tularensis infection. We also conducted a genome-wide in silico search for intergenic loci that suggests F. tularensis encodes several other sRNAs in addition to the sRNAs found in our experimental screen. CONCLUSION: Our findings suggest that F. tularensis encodes a significant number of non-coding regulatory RNAs, including members of well conserved families of structural and housekeeping RNAs and other poorly conserved transcripts that may have evolved more recently to help F. tularensis deal with the unique and diverse set of environments with which it must contend.


Asunto(s)
Francisella tularensis/genética , ARN Bacteriano/análisis , ARN Bacteriano/genética , Animales , Vacunas Bacterianas/inmunología , Secuencia de Bases , Northern Blotting , Clonación Molecular , Biología Computacional , ADN Complementario/genética , Francisella tularensis/inmunología , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Espacio Intracelular/microbiología , Macrófagos/microbiología , Ratones , Datos de Secuencia Molecular , Mutación/genética , Conformación de Ácido Nucleico , Análisis de Secuencia por Matrices de Oligonucleótidos , Transporte de ARN/genética , ARN Bacteriano/química , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Vacunas Atenuadas/inmunología
8.
PLoS Pathog ; 5(1): e1000284, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19158962

RESUMEN

Francisella tularensis is a highly infectious bacterium causing the zoonotic disease tularemia. Its ability to multiply and survive in macrophages is critical for its virulence. By screening a bank of HimarFT transposon mutants of the F. tularensis live vaccine strain (LVS) to isolate intracellular growth-deficient mutants, we selected one mutant in a gene encoding a putative gamma-glutamyl transpeptidase (GGT). This gene (FTL_0766) was hence designated ggt. The mutant strain showed impaired intracellular multiplication and was strongly attenuated for virulence in mice. Here we present evidence that the GGT activity of F. tularensis allows utilization of glutathione (GSH, gamma-glutamyl-cysteinyl-glycine) and gamma-glutamyl-cysteine dipeptide as cysteine sources to ensure intracellular growth. This is the first demonstration of the essential role of a nutrient acquisition system in the intracellular multiplication of F. tularensis. GSH is the most abundant source of cysteine in the host cytosol. Thus, the capacity this intracellular bacterial pathogen has evolved to utilize the available GSH, as a source of cysteine in the host cytosol, constitutes a paradigm of bacteria-host adaptation.


Asunto(s)
Cisteína/metabolismo , Dipéptidos/metabolismo , Francisella tularensis/metabolismo , Francisella tularensis/patogenicidad , Glutatión/metabolismo , Viabilidad Microbiana , Animales , Línea Celular , Citosol/metabolismo , Escherichia coli/genética , Femenino , Francisella tularensis/genética , Genes Bacterianos , Prueba de Complementación Genética , Macrófagos/citología , Macrófagos/microbiología , Ratones , Ratones Endogámicos BALB C , Mutación , Plásmidos , Virulencia , gamma-Glutamiltransferasa/genética , gamma-Glutamiltransferasa/metabolismo
9.
Mol Microbiol ; 67(6): 1384-401, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18284578

RESUMEN

Intracellular bacterial pathogens generally express chaperones such as Hsp100s during multiplication in host cells, allowing them to survive potentially hostile conditions. Francisella tularensis is a highly infectious bacterium causing the zoonotic disease tularaemia. The ability of F. tularensis to multiply and survive in macrophages is considered essential for its virulence. Although previous mutant screens in Francisella have identified the Hsp100 chaperone ClpB as important for intracellular survival, no detailed study has been performed. We demonstrate here that ClpB of F. tularensis live vaccine strain (LVS) is important for resistance to cellular stress. Promoter analysis shows that the transcriptional start is preceded by a sigma32-like promoter sequence and we demonstrate that expression of clpB is induced by heat shock. This indicates that expression of clpB is dependent on the heat-shock response mediated by sigma32, the only alternative sigma-factor present in Francisella. Our studies demonstrate that ClpB contributes to intracellular multiplication in vitro, but is not essential. However, ClpB is absolutely required for Francisella to replicate in target organs and induce disease in mice. Proteomic analysis of membrane-enriched fractions shows that five proteins are recovered at lower levels in the mutant strain. The crucial role of ClpB for in vivo persistence of Francisella may be linked to its assumed function in reactivation of aggregated proteins under in vivo stress conditions.


Asunto(s)
Proteínas Bacterianas/metabolismo , Francisella tularensis/metabolismo , Proteínas de Choque Térmico/metabolismo , Macrófagos/microbiología , Adaptación Fisiológica/genética , Adaptación Fisiológica/fisiología , Animales , Proteínas Bacterianas/genética , Electroforesis en Gel Bidimensional , Electroporación , Femenino , Francisella tularensis/genética , Francisella tularensis/ultraestructura , Proteínas de Choque Térmico/genética , Calor , Ratones , Ratones Endogámicos BALB C , Viabilidad Microbiana , Microscopía Electrónica de Transmisión , Regiones Promotoras Genéticas/genética , Proteoma/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor sigma/metabolismo , Sitio de Iniciación de la Transcripción
10.
Appl Environ Microbiol ; 72(10): 6623-31, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17021213

RESUMEN

Molecular chaperones play an essential role in the folding of nascent chain polypeptides, as well as in the refolding and degradation of misfolded or aggregated proteins. They also assist in protein translocation and participate in stress functions. We identified a gene, designated tig, encoding a protein homologous to trigger factor (TF), a cytosolic ribosome-associated chaperone, in the genome of Listeria monocytogenes. We constructed a chromosomal Delta tig deletion and evaluated the impact of the mutation on bacterial growth in broth under various stress conditions and on pathogenesis. The Delta tig deletion did not affect cell viability but impaired survival in the presence of heat and ethanol stresses. We also identified the ffh gene, encoding a protein homologous to the SRP54 eukaryotic component of the signal recognition particle. However, a Delta ffh deletion was not tolerated, suggesting that Ffh is essential, as it is in Bacillus subtilis and Escherichia coli. Thus, although dispensable for growth, TF is involved in the stress response of L. monocytogenes. The Delta tig mutant showed no or very modest intracellular survival defects in eukaryotic cells. However, in vivo it showed a reduced capacity to persist in the spleens and livers of infected mice, revealing that TF has a role in the pathogenicity of L. monocytogenes.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/fisiología , Listeria monocytogenes/patogenicidad , Virulencia , Animales , Proteínas Bacterianas/genética , Línea Celular , Células Cultivadas , Deleción Cromosómica , Etanol/farmacología , Listeria monocytogenes/genética , Listeria monocytogenes/fisiología , Listeriosis , Ratones , ARN/aislamiento & purificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Ácido Nucleico , Cloruro de Sodio/farmacología , Temperatura
11.
J Bacteriol ; 188(18): 6580-91, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16952950

RESUMEN

Listeria monocytogenes is a facultative intracellular gram-positive bacterium responsible for severe opportunistic infections in humans and animals. We had previously identified a gene encoding a putative UDP-N-acetylglucosamine 2-epimerase, a precursor of the teichoic acid linkage unit, in the genome of L monocytogenes strain EGD-e. This gene, now designated lmo2537, encodes a protein that shares 62% identity with the cognate epimerase MnaA of Bacillus subtilis and 55% identity with Cap5P of Staphylococcus aureus. Here, we addressed the role of lmo2537 in L. monocytogenes pathogenesis by constructing a conditional knockout mutant. The data presented here demonstrate that lmo2537 is an essential gene of L. monocytogenes that is involved in teichoic acid biogenesis. In vivo, the conditional mutant is very rapidly eliminated from the target organs of infected mice and thus is totally avirulent.


Asunto(s)
Genes Esenciales , Listeria monocytogenes/enzimología , Listeria monocytogenes/patogenicidad , Ácidos Teicoicos/biosíntesis , Factores de Virulencia/genética , Animales , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carbohidrato Epimerasas/genética , Carbohidrato Epimerasas/metabolismo , Línea Celular , Recuento de Colonia Microbiana , Citoplasma/microbiología , Modelos Animales de Enfermedad , Listeria monocytogenes/genética , Listeria monocytogenes/ultraestructura , Listeriosis/microbiología , Macrófagos/microbiología , Ratones , Microscopía Electrónica de Transmisión , Mutación , Homología de Secuencia de Aminoácido , Staphylococcus aureus , Factores de Virulencia/metabolismo
12.
Infect Immun ; 73(9): 5530-9, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16113269

RESUMEN

Flagellar structures have been shown to participate in virulence in a variety of intestinal pathogens. Here, we have identified two potential flagellar genes of Listeria monocytogenes: lmo0713, encoding a protein similar to the flagellar basal body component FliF, and lmo0716, encoding a protein similar to FliI, the cognate ATPase energizing the flagellar export apparatus. Expression of fliF and fliI appears to be downregulated at 37 degrees C, like that of flaA, encoding flagellin. By constructing two chromosomal deletion mutants, we show that inactivation of either fliF or fliI (i) abolishes bacterial motility and flagella production, (ii) impairs adhesion and entry into nonphagocytic epithelial cells, and (iii) also reduces uptake by bone marrow-derived macrophages. However, the DeltafliF and DeltafliI mutations have only a minor impact on bacterial virulence in the mouse model, indicating that the flagellar secretion apparatus itself is not essential for survival in this animal model. Finally, among 100 human clinical isolates of L. monocytogenes tested, we found 20 strains still motile at 37 degrees C. Notably, all these strains adhered less efficiently than strain EGD-e to Caco-2 cells at 37 degrees C but showed no defect of intracellular multiplication. These data suggest that expression of the flagella at 37 degrees C might hinder optimal adhesion to epithelial cells but has no impact on intracytosolic survival of L. monocytogenes.


Asunto(s)
Proteínas Bacterianas/fisiología , Flagelos/fisiología , Listeria monocytogenes/fisiología , Proteínas de la Membrana/fisiología , ATPasas de Translocación de Protón/fisiología , Animales , Adhesión Bacteriana/genética , Células CACO-2 , Línea Celular Tumoral , Flagelos/química , Flagelos/genética , Flagelina/genética , Flagelina/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Humanos , Cinética , Listeria monocytogenes/patogenicidad , Ratones , Mutación , Procesamiento Proteico-Postraduccional , Análisis de Secuencia de ADN , Temperatura
13.
Mol Microbiol ; 55(3): 927-40, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15661014

RESUMEN

In Listeria monocytogenes the promoter region of the svpA-srtB locus contains a well-conserved Fur box. We characterized the iron-regulation of this locus: real-time polymerase chain reaction analyses and anti-SvpA immunoblots showed that, in response to iron deprivation svpA transcription and SvpA production markedly increased (80-fold and 10-fold respectively), when initiated by either the addition of the iron chelator 2,2'-bipyridyl to BHI media, or by growth in iron-restricted minimal media. Green fluorescent protein (GFP) reporter constructs also showed increased activity of the svpA-srtB promoter in Escherichia coli (37-fold) and in L. monocytogenes (two- to threefold) when the bacteria were grown in iron-deficient conditions. A Deltafur mutant of L. monocytogenes constitutively synthesized SvpA, as well as GFP fused to the svpA-srtB promoter. Cellular fractionation data revealed that in iron-rich media wild-type SvpA was exclusively secreted to the culture supernatant. However, both the Deltafur derivative and wild-type L. monocytogenes grown in iron-deficient media anchored a fraction of the SvpA proteins (approximately 5%) to peptidoglycan, and produced a lower-molecular weight, wholly secreted form of SvpA. Together these data establish that iron availability controls transcription of the svpA-srtB locus (through Fur-mediated regulation), and attachment of SvpA to the cell wall (through SrtB-mediated covalent linkage). SvpA bears homology to IsdC, a haemin-binding protein of Staphylococcus aureus, and haemin bound to SvpA in solution. However, site-directed deletions of four structural genes and the promoter of the svpA-srtB locus did not impair haemin, haemoglobin or ferrichrome utilization in nutrition tests. We did not find strong evidence to support the notion that the svpA-srtB locus participates in haemin acquisition, as was reported for the homologous isd operon of S. aureus. Furthermore, the svpA-srtB mutant strains showed no significant attenuation of virulence in an intravenous mouse model system, but we found that the mutations reduced the persistence of L. monocytogenes in murine liver, spleen and intestines after oral administration.


Asunto(s)
Aminoaciltransferasas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Hierro/metabolismo , Listeria monocytogenes/patogenicidad , Proteínas de la Membrana/genética , Proteínas Represoras/metabolismo , Aminoaciltransferasas/metabolismo , Animales , Secuencia de Bases , Células CACO-2 , Línea Celular , Medios de Cultivo , Cisteína Endopeptidasas , Modelos Animales de Enfermedad , Femenino , Eliminación de Gen , Humanos , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Listeriosis/microbiología , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Proteínas Represoras/genética , Virulencia
14.
Mol Microbiol ; 51(5): 1251-66, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14982622

RESUMEN

Most bacteria contain one type I signal peptidase (Spase I) for cleavage of signal peptides from exported and secreted proteins. Here, we identified a locus encoding three contiguous Spase I genes in the genome of Listeria monocytogenes. The deduced Sip proteins (denoted SipX, SipY and SipZ) are significantly similar to SipS and SipT, the major SPase I proteins of Bacillus subtilis (38% to 44% peptidic identity). We studied the role of these multiple signal peptidases in bacterial pathogenicity by constructing a series of single- and double-chromosomal knock-out mutants. Inactivation of sipX did not affect intracellular multiplication of L. monocytogenes but significantly reduced bacterial virulence (approximately 100-fold). Inactivation of sipZ impaired the secretion of phospholipase C (PC-PLC) and listeriolysin O (LLO), restricted intracellular multiplication and almost abolished virulence (LD(50) of 10(8.3)), inactivation of sipY had no detectable effects. Most importantly, a mutant expressing only SipX was impaired in intracellular survival and strongly attenuated in the mouse (LD(50) of 10(7.2)), whereas, a mutant expressing only SipZ behaved like wild-type EGD in all the assays performed. The data establish that SipX and SipZ perform distinct functions in bacterial pathogenicity and that SipZ is the major Spase I of L. monocytogenes. This work constitutes the first report on the differential role of multiple Spases I in a pathogenic bacterium and suggests a possible post-translational control mechanism of virulence factors expression.


Asunto(s)
Proteínas Bacterianas/metabolismo , Isoenzimas/metabolismo , Listeria monocytogenes/enzimología , Listeria monocytogenes/patogenicidad , Proteínas de la Membrana/metabolismo , Serina Endopeptidasas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/genética , Genoma Bacteriano , Humanos , Isoenzimas/genética , Listeria monocytogenes/citología , Listeria monocytogenes/genética , Listeriosis/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Macrófagos/microbiología , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones , Datos de Secuencia Molecular , Mutación , Alineación de Secuencia , Serina Endopeptidasas/química , Serina Endopeptidasas/genética , Fosfolipasas de Tipo C/metabolismo , Factores de Virulencia/metabolismo
15.
Infect Immun ; 70(3): 1382-90, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11854224

RESUMEN

Listeria monocytogenes is an intracellular gram-positive human pathogen that invades eucaryotic cells. Among the surface-exposed proteins playing a role in this invasive process, internalin belongs to the family of LPXTG proteins, which are known to be covalently linked to the bacterial cell wall in gram-positive bacteria. Recently, it has been shown in Staphylococcus aureus that the covalent anchoring of protein A, a typical LPXTG protein, is due to a cysteine protease, named sortase, required for bacterial virulence. Here, we identified in silico from the genome of L. monocytogenes a gene, designated srtA, encoding a sortase homologue. The role of this previously unknown sortase was studied by constructing a sortase knockout mutant. Internalin was used as a reporter protein to study the effects of the srtA mutation on cell wall anchoring of this LPXTG protein in L. monocytogenes. We show that the srtA mutant (i) is affected in the display of internalin at the bacterial surface, (ii) is significantly less invasive in vitro, and (iii) is attenuated in its virulence in the mouse. These results demonstrate that srtA of L. monocytogenes acts as a sortase and plays a role in the pathogenicity.


Asunto(s)
Aminoaciltransferasas/metabolismo , Proteínas Bacterianas/metabolismo , Listeria monocytogenes/patogenicidad , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Aminoaciltransferasas/genética , Animales , Cisteína Endopeptidasas , Femenino , Genes Bacterianos , Genoma Bacteriano , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Ratones , Datos de Secuencia Molecular , Unión Proteica , Transporte de Proteínas , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA