Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Stem Cells ; 25(12): 3016-25, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17823239

RESUMEN

The development of stem cell-based neural repair strategies requires detailed knowledge on the interaction of migrating donor cells with the host brain environment. Here we report that overexpression of polysialic acid (PSA), a carbohydrate polymer attached to the neural cell adhesion molecule (NCAM), in embryonic stem (ES) cell-derived glial precursors (ESGPs) strikingly modifies their migration behavior in response to guidance cues. ESGPs transduced with a retrovirus encoding the polysialyltransferase STX exhibit enhanced migration in monolayer cultures and an increased penetration of organotypic slice cultures. Chemotaxis assays show that overexpression of PSA results in an enhanced chemotactic migration toward gradients of a variety of chemoattractants, including fibroblast growth factor 2 (FGF2), platelet-derived growth factor, and brain-derived neurotrophic factor (BDNF), and that this effect is mediated via the phosphatidylinositol 3'-kinase (PI3K) pathway. Moreover, PSA-overexpressing ESGPs also exhibit an enhanced chemotactic response to tissue explants derived from different brain regions. The effect of polysialylation on directional migration is preserved in vivo. Upon transplantation into the adult striatum, PSA-overexpressing but not control cells display a targeted migration toward the subventricular zone. On the basis of these data, we propose that PSA plays a crucial role in modulating the ability of migrating precursor cells to respond to regional guidance cues within the brain tissue. Disclosure of potential conflicts of interest is found at the end of this article.


Asunto(s)
Quimiotaxis/fisiología , Señales (Psicología) , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Neuronas/citología , Neuronas/metabolismo , Ácidos Siálicos/metabolismo , Animales , Células Cultivadas , Células Madre Embrionarias/química , Ratones , Moléculas de Adhesión de Célula Nerviosa/fisiología , Neuronas/química , Ratas , Ácidos Siálicos/fisiología
2.
Glia ; 53(8): 868-78, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16598779

RESUMEN

Schwann cells, the myelin-forming cells of the PNS, are attractive candidates for remyelination therapy as they can remyelinate CNS axons. Yet their integration in CNS tissue appears hampered, at least in part, by their limited motility in the CNS environment. As the polysialylated (PSA) form of NCAM regulates migration of neural precursors in the CNS and is not expressed by developing Schwann cells, we investigated whether conferring sustained expression of PSA to Schwann cells derived from postnatal rats enhances their motility. Cells were transduced with a retrovirus encoding polysialyl-transferase STX, an enzyme that synthesizes PSA on NCAM. Migration of wild type and transduced cells expressing STX or the marker gene alkaline phosphatase was examined using a gap bridging assay in dissociated cells and by grafting cells in slice cultures of postnatal brain. Migration of PSA expressing cells was significantly increased in both models, as compared to control cells, and this effect was abolished by endoneuraminidase-N stripping of PSA. PSA-positive Schwann cells retained the ability to differentiate in vitro and expressed the Krox20 and P zero myelination markers. When grafted in neonatal cerebellar slices, STX-transduced cells started to myelinate Purkinje cell axons like control cells and make myelin internodes after 2 to 3 weeks. PSA was redistributed on the cell membrane and downregulated during differentiation in pure Schwann cell cultures and slice co-cultures. Thus, migratory properties of PNS myelin-forming cells within the CNS can be enhanced without altering their differentiation program. This finding may be beneficial for the development of remyelination therapies.


Asunto(s)
Movimiento Celular/fisiología , Vaina de Mielina/metabolismo , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Nervios Periféricos/metabolismo , Células de Schwann/metabolismo , Ácidos Siálicos/biosíntesis , Ácidos Siálicos/metabolismo , Animales , Animales Recién Nacidos , Axones/fisiología , Axones/ultraestructura , Biomarcadores/metabolismo , Comunicación Celular/fisiología , Diferenciación Celular/genética , Células Cultivadas , Regulación hacia Abajo/fisiología , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Ingeniería Genética/métodos , Vectores Genéticos , Proteína P0 de la Mielina/metabolismo , Vaina de Mielina/ultraestructura , Regeneración Nerviosa/fisiología , Técnicas de Cultivo de Órganos , Nervios Periféricos/citología , Ratas , Células de Schwann/citología , Células de Schwann/trasplante , Ácidos Siálicos/genética , Sialiltransferasas/genética , Transducción Genética/métodos , Regulación hacia Arriba/fisiología
3.
Mol Cell Neurosci ; 27(2): 151-62, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15485771

RESUMEN

Polysialic acid (PSA) on NCAM is an important modulator of cell-cell interactions during development and regeneration. Here we investigated whether PSA overexpression influences neural cell migration and myelination. We stably expressed a GFP-tagged polysialytransferase, PSTGFP, in mouse neurospheres and induced prolonged PSA synthesis. Using a chick xenograft assay for migration, we show that PSA can instruct precursor migration along the ventral pathway. PSA persistence did not change neural precursor multipotentiality in vitro but induced a delay in oligodendrocyte differentiation. PSTGFP+ precursors showed widespread engraftment in shiverer brain, closely similar to that observed with control precursors expressing a fluorescent protein. Initially, myelination by oligodendrocytes was delayed but, eventually, down-regulation of PSTGFP occurred, allowing myelination to proceed. Thus down-regulation of polysialyltransferases takes place even in cells where its RNA is under the control of a heterologous promoter and engineering PSA overexpression in neural precursors does not cause irreversible unphysiological effects.


Asunto(s)
Movimiento Celular/fisiología , Fibras Nerviosas Mielínicas/metabolismo , Molécula L1 de Adhesión de Célula Nerviosa/biosíntesis , Neuronas/metabolismo , Ácidos Siálicos/biosíntesis , Células Madre/metabolismo , Células 3T3 , Animales , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Embrión de Pollo , Regulación de la Expresión Génica/fisiología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fibras Nerviosas Mielínicas/trasplante , Molécula L1 de Adhesión de Célula Nerviosa/genética , Neuronas/trasplante , Ingeniería de Proteínas/métodos , Ácidos Siálicos/genética
4.
J Neurosci ; 23(33): 10724-31, 2003 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-14627658

RESUMEN

Finding ways to enhance remyelination is a major challenge in treating demyelinating diseases. Recent studies have suggested that circulating bone marrow cells can home in brain and transdifferentiate into neural cells. To ask whether hematopoietic precursors can form myelinating cells, we investigated the neuropoietic potential of embryonic precursors sorted from the mouse aorta-gonads-mesonephros (AGM) region. This cell fraction is capable of long-term hematopoietic reconstitution and generates colonies containing multipotential precursors and lymphoid or erythro-myeloid progenies. When cultured in hematopoietic growth conditions, a fraction of CD45-positive AGM cells coexpress neural markers such as nestin, the polysialylated form of neural cell adhesion molecule, the betaIII tubulin isoform, and glial fibrillary acidic protein. However, when hematopoietic precursors containing green fluorescent protein were cocultured with embryonic striatal precursors into neurospheres, they maintained their hematopoietic phenotype without undergoing differentiation into neurons, astrocytes, or oligodendrocytes. After intraventricular grafting, hematopoietic precursors integrated into the brain of wild-type or hypomyelinated newborn shiverer mice and gave rise to microglia but not neurons or glia. In contrast, when wild-type embryonic striatal neurospheres were grafted in shiverer, they formed numerous myelin internode patches. Even when neural and hematopoietic precursors were grafted together into shiverer mice, only neural precursors generated myelin-forming cells and synthesized myelin. Thus, embryonic neurospheres have myelin repair properties not shown by embryonic hematopoietic precursors. This suggests that the use of multipotential neural precursors to generate myelin-forming cells remains one of the most promising avenues toward remyelination therapies.


Asunto(s)
Células Madre Hematopoyéticas/citología , Microglía/citología , Vaina de Mielina/metabolismo , Neuronas/citología , Oligodendroglía/metabolismo , Animales , Animales Recién Nacidos , Antígenos de Diferenciación/biosíntesis , Aorta/citología , Aorta/embriología , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Separación Celular , Células Cultivadas , Cruzamientos Genéticos , Femenino , Citometría de Flujo , Gónadas/citología , Gónadas/embriología , Supervivencia de Injerto , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/fisiología , Masculino , Mesonefro/citología , Mesonefro/embriología , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Mutantes Neurológicos , Ratones Transgénicos , Oligodendroglía/citología
5.
J Neurosci ; 23(12): 5123-30, 2003 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-12832536

RESUMEN

The chemotactic factors directing interneuron migration during cerebrocortical development are essentially unknown. Here we identify the CXC chemokine receptor 4 (CXCR4) in interneuron precursors migrating from the basal forebrain to the neocortex and demonstrate that stromal cell-derived factor-1 (SDF-1) is a potent chemoattractant for isolated striatal precursors. In addition, we show that CXCR4 is present in early generated Cajal-Retzius cells of the cortical marginal zone. In mice with a null mutation in CXCR4 or SDF-1, interneurons were severely underrepresented in the superficial layers and ectopically placed in the deep layers of the neocortex. In contrast, the submeningeal positioning of Cajal-Retzius cells was unaffected. Thus, our findings suggest that SDF-1, which is highly expressed in the embryonic leptomeninx, selectively regulates migration and layer-specific integration of CXCR4-expressing interneurons during neocortical development.


Asunto(s)
Movimiento Celular/fisiología , Interneuronas/metabolismo , Neocórtex/metabolismo , Receptores CXCR4/fisiología , Animales , Moléculas de Adhesión Celular Neuronal/biosíntesis , Recuento de Células , Movimiento Celular/efectos de los fármacos , Quimiocina CXCL12 , Quimiocinas CXC/deficiencia , Quimiocinas CXC/genética , Quimiocinas CXC/fisiología , Coristoma/genética , Coristoma/patología , Proteínas de la Matriz Extracelular/biosíntesis , Regulación del Desarrollo de la Expresión Génica , Inmunohistoquímica , Hibridación in Situ , Interneuronas/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neocórtex/anomalías , Neocórtex/citología , Proteínas del Tejido Nervioso , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/patología , ARN Mensajero/biosíntesis , Ratas , Ratas Wistar , Receptores CXCR4/deficiencia , Receptores CXCR4/genética , Proteína Reelina , Serina Endopeptidasas , Transducción de Señal/fisiología , Células Madre/citología , Células Madre/metabolismo
6.
Glia ; 42(2): 139-48, 2003 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-12655598

RESUMEN

alpha-chemokines, which control the activation and directed migration of leukocytes, participate in the inflammatory processes in host defense response. One of the alpha-chemokines, CXCL12 or stromal cell-derived factor 1 (SDF-1), not only regulates cell growth and migration of hematopoietic stem cells but may also play a central role in brain development as we discuss here. SDF-1 indeed activates the CXCR4 receptor expressed in a variety of neural cells, and this signaling results in diverse biological effects. It enhances migration and proliferation of cerebellar granule cells, chemoattracts microglia, and stimulates cytokine production and glutamate release by astrocytes. Moreover, it elicits postsynaptic currents in Purkinje cells, triggers migration of cortical neuron progenitors, and produces pain by directly exciting nociceptive neurons. By modulating cell signaling and survival during neuroinflammation, SDF-1 may also play a role in the pathogenesis of brain tumors, experimental allergic encephalitis, and the nervous system dysfunction associated with acquired immunodeficiency syndrome.


Asunto(s)
Diferenciación Celular/fisiología , Sistema Nervioso Central/embriología , Sistema Nervioso Central/crecimiento & desarrollo , Quimiocinas CXC/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Células Madre/metabolismo , Animales , Sistema Nervioso Central/metabolismo , Quimiocina CXCL12 , Quimiotaxis/fisiología , Encefalitis/metabolismo , Humanos , Neuroglía/citología , Neuronas/citología , Receptores CXCR4/metabolismo , Transducción de Señal/fisiología , Células Madre/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA