Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Eur Radiol Exp ; 7(1): 76, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-38049615

RESUMEN

BACKGROUND: Diagnostic accuracy of endomyocardial biopsy could improve if clinically safe magnetic resonance (MR)-compatible bioptomes were available. We explored two novel MR-compatible cardiac bioptomes for performance, safety, and clinical viability, employing in vivo minipig trials and phase-contrast synchrotron radiation computed microtomography (SRµCT). METHODS: Analysis of ex vivo obtained pig endomyocardial biopsies was performed using phase-contrast SRµCT and conventional two-dimensional histology. The technical performance was evaluated by measuring volume, inner and outer integrities, compression, and histological diagnostic value in 3 sets (6 per set) of biopsies for each experimental bioptome. The bioptomes were tested in vivo in 3 healthy minipigs per bioptome. The clinical feasibility was evaluated by procedural and cutting success as well as histological diagnostic value. RESULTS: The bioptome with the 'grind-grind' design achieved similar values to control in compression (p = 0.822), inner (p = 0.628), and outer (p = 0.507), integrities ex vivo. It showed a better performance in the in vivo real-time MRI setting demonstrating a higher cutting success (91.7%) than the 'grind-anvil' (86.2%) design. In both ex vivo and in vivo evaluations, the 'grind-grind' design displayed sufficient diagnostic value (83% and 95%). The 'grind-anvil' design showed adequate diagnostic value both ex vivo and in vivo (78% and 87.5%) but was not comparable to control according to the three-dimensional (3D) analysis. CONCLUSION: A novel MR-compatible bioptome was identified as plausible in a clinical setting. Additionally, SRµCT and subsequent 3D structural analysis could be valuable in the label-free investigation of myocardial tissue at a micrometer level. RELEVANCE STATEMENT: Implementation of MR-guided biopsy can improve animal studies on structural myocardial changes at any point in an experimental setup. With further improvements in guiding catheters, MR-guided biopsy, using the new bioptome, has a potential to increase quality and diagnostic accuracy in patients both with structural and inflammatory cardiomyopathies. KEY POINTS: • Novel MR-compatible bioptomes show promise for a clinical application. • SRµCT enabled detailed analysis of endomyocardial biopsies. • The bioptomes showed adequate in vivo performance without major complications.


Asunto(s)
Corazón , Imagen por Resonancia Magnética , Animales , Humanos , Porcinos , Porcinos Enanos , Corazón/diagnóstico por imagen , Biopsia/métodos , Espectroscopía de Resonancia Magnética
2.
Sci Rep ; 13(1): 18637, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37903864

RESUMEN

Lung fibrosis (LF) is a chronic progressive, incurable, and debilitating condition of the lung, which is associated with different lung disease. Treatment options are still sparse. Nintedanib, an oral tyrosine kinase inhibitor, significantly slows the LF progression. However, there is a strong need of further research and the development of novel therapies. In this study, we used a correlative set-up that combines X-ray based lung function (XLF) with microCT and whole body plethysmography (WBP) for a comprehensive functional and structural evaluation of lung fibrosis (LF) as well as for monitoring response to orally administered Nintedanib in the mouse model of bleomycin induced LF. The decline in lung function as early as one week after intratracheal bleomycin instillation was reliably detected by XLF, revealing the lowest decay rate in the LF mice compared to healthy ones. Simultaneously performed microCT and WBP measurements corroborated XLF findings by exhibiting reduced lung volume [Formula: see text] and tidal volume [Formula: see text]. In LF mice XLF also revealed profound improvement in lung function one week after Nintedanib treatment. This positive response to Nintedanib therapy was further substantiated by microCT and WBP measurements which also showed significantly improved [Formula: see text] and [Formula: see text] in the Nintedanib treated mice. By comparing the XLF data to structural features assessing the extent of fibrosis obtained by ex-vivo high-resolution synchrotron radiation-based imaging and classical histology we demonstrate that: (1) a simple low dose x-ray measurement like XLF is sensitive enough to pick up treatment response, (2) Nintedanib treatment successfully improved lung function in a bleomycin induced LF mouse model and (3) differences between the fully restored lung function and the partially reduced fibrotic burden compared to healthy and untreated mice. The presented analysis pipeline underlines the importance of a combined functional and anatomical readout to reliably measure treatment response and could easily be adapted to other preclinical lung disease models.


Asunto(s)
Fibrosis Pulmonar Idiopática , Fibrosis Pulmonar , Ratones , Animales , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/diagnóstico por imagen , Fibrosis Pulmonar/tratamiento farmacológico , Rayos X , Pulmón/patología , Fibrosis , Modelos Animales de Enfermedad , Bleomicina/uso terapéutico , Fibrosis Pulmonar Idiopática/patología
3.
Cell Death Dis ; 14(9): 641, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770435

RESUMEN

Triple-negative breast cancer (TNBC) is the most difficult breast cancer subtype to treat due to the lack of targeted therapies. Cancer stem cells (CSCs) are strongly enriched in TNBC lesions and are responsible for the rapid development of chemotherapy resistance and metastasis. Ubiquitin-based epigenetic circuits are heavily exploited by CSCs to regulate gene transcription and ultimately sustain their aggressive behavior. Therefore, therapeutic targeting of these ubiquitin-driven dependencies may reprogram the transcription of CSC and render them more sensitive to standard therapies. In this work, we identified the Ring Finger Protein 40 (RNF40) monoubiquitinating histone 2B at lysine 120 (H2Bub1) as an indispensable E3 ligase for sustaining the stem-cell-like features of the growing mammary gland. In addition, we found that the RNF40/H2Bub1-axis promotes the CSC properties and drug-tolerant state by supporting the glycolytic program and promoting pro-tumorigenic YAP1-signaling in TNBC. Collectively, this study unveils a novel tumor-supportive role of RNF40 and underpins its high therapeutic value to combat the malignant behavior of TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/patología , Histonas/genética , Histonas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Transducción de Señal , Ubiquitinas/metabolismo , Línea Celular Tumoral , Células Madre Neoplásicas/metabolismo
4.
PLoS One ; 18(8): e0290586, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37616270

RESUMEN

We describe a bilateral craniodorsal dislocation of the hip joint in a free-ranging young roe buck and the associated pathological changes in the ossa coxae and femora of the animal. The highly symmetrical dislocation, which is considered to have developed secondary to hip dysplasia, caused the formation of two false acetabula that each consist of several, partially fused bone portions. The femora exhibit symmetrical outgrowths that extend from the greater trochanter along the intertrochanteric crest to the lesser trochanter. Formation of these outgrowths is attributed to abnormal traction at muscle attachment sites due to the displacement of the femora. On radiographic examination, both femora show signs of avascular necrosis in their head regions and of fatty marrow necrosis in their shafts, which is attributed to the damage of the arterial blood supply of the femora that was associated with the dislocation. The fact that, according to the hunter who shot the buck, the animal's locomotion was inconspicuous suggests that the false hip joints functioned quite well, thereby demonstrating a remarkable capacity of the musculoskeletal system for functional recovery.


Asunto(s)
Ciervos , Luxaciones Articulares , Animales , Articulación de la Cadera/diagnóstico por imagen , Extremidad Inferior , Fémur/diagnóstico por imagen
5.
Sci Rep ; 13(1): 4788, 2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-36959233

RESUMEN

Absorption-based clinical computed tomography (CT) is the current imaging method of choice in the diagnosis of lung diseases. Many pulmonary diseases are affecting microscopic structures of the lung, such as terminal bronchi, alveolar spaces, sublobular blood vessels or the pulmonary interstitial tissue. As spatial resolution in CT is limited by the clinically acceptable applied X-ray dose, a comprehensive diagnosis of conditions such as interstitial lung disease, idiopathic pulmonary fibrosis or the characterization of small pulmonary nodules is limited and may require additional validation by invasive lung biopsies. Propagation-based imaging (PBI) is a phase sensitive X-ray imaging technique capable of reaching high spatial resolutions at relatively low applied radiation dose levels. In this publication, we present technical refinements of PBI for the characterization of different artificial lung pathologies, mimicking clinically relevant patterns in ventilated fresh porcine lungs in a human-scale chest phantom. The combination of a very large propagation distance of 10.7 m and a photon counting detector with [Formula: see text] pixel size enabled high resolution PBI CT with significantly improved dose efficiency, measured by thermoluminescence detectors. Image quality was directly compared with state-of-the-art clinical CT. PBI with increased propagation distance was found to provide improved image quality at the same or even lower X-ray dose levels than clinical CT. By combining PBI with iodine k-edge subtraction imaging we further demonstrate that, the high quality of the calculated iodine concentration maps might be a potential tool for the analysis of lung perfusion in great detail. Our results indicate PBI to be of great value for accurate diagnosis of lung disease in patients as it allows to depict pathological lesions non-invasively at high resolution in 3D. This will especially benefit patients at high risk of complications from invasive lung biopsies such as in the setting of suspected idiopathic pulmonary fibrosis (IPF).


Asunto(s)
Fibrosis Pulmonar Idiopática , Enfermedades Pulmonares Intersticiales , Animales , Porcinos , Humanos , Rayos X , Pulmón/diagnóstico por imagen , Pulmón/patología , Tomografía Computarizada por Rayos X/métodos , Enfermedades Pulmonares Intersticiales/patología , Fibrosis Pulmonar Idiopática/diagnóstico por imagen , Fibrosis Pulmonar Idiopática/patología , Fantasmas de Imagen
6.
Children (Basel) ; 9(6)2022 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-35740815

RESUMEN

(1) Background: Thermal ablation has been demonstrated to affect the bone growth of osteoid osteoma in adolescents. Growth modulation due to thermal heat in children is conceivable, but has not yet been established. We used lamb extremities as a preclinical model to examine the effect of thermal ablation on growth plates in order to evaluate its potential for axial or longitudinal growth modulation in pediatric patients. (2) Methods: Thermal ablation was performed by electrocautery on eight different growth plates of the legs and distal radii of a stillborn lamb. After treatment, target hits and the physical extent of the growth plate lesions were monitored using micro-computed tomography (micro-CT) and histology. (3) Results: Lesions and their physical extent could be quantified in 75% of the treated extremities. The histological analysis revealed that the disruption of tissue was confined to a small area and the applied heat did not cause the entire growth plate to be disrupted or obviously damaged. (4) Conclusions: Thermal ablation by electrocautery is minimally invasive and can be used for targeted disruption of small areas in growth plates in the animal model. The results suggest that thermal ablation can be developed into a suitable method to influence epiphyseal growth in children.

7.
Cell Death Dis ; 12(12): 1118, 2021 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-34845197

RESUMEN

Breast cancer (BC) is the most common cancer occurring in women but also rarely develops in men. Recent advances in early diagnosis and development of targeted therapies have greatly improved the survival rate of BC patients. However, the basal-like BC subtype (BLBC), largely overlapping with the triple-negative BC subtype (TNBC), lacks such drug targets and conventional cytotoxic chemotherapies often remain the only treatment option. Thus, the development of resistance to cytotoxic therapies has fatal consequences. To assess the involvement of epigenetic mechanisms and their therapeutic potential increasing cytotoxic drug efficiency, we combined high-throughput RNA- and ChIP-sequencing analyses in BLBC cells. Tumor cells surviving chemotherapy upregulated transcriptional programs of epithelial-to-mesenchymal transition (EMT) and stemness. To our surprise, the same cells showed a pronounced reduction of polycomb repressive complex 2 (PRC2) activity via downregulation of its subunits Ezh2, Suz12, Rbbp7 and Mtf2. Mechanistically, loss of PRC2 activity leads to the de-repression of a set of genes through an epigenetic switch from repressive H3K27me3 to activating H3K27ac mark at regulatory regions. We identified Nfatc1 as an upregulated gene upon loss of PRC2 activity and directly implicated in the transcriptional changes happening upon survival to chemotherapy. Blocking NFATc1 activation reduced epithelial-to-mesenchymal transition, aggressiveness, and therapy resistance of BLBC cells. Our data demonstrate a previously unknown function of PRC2 maintaining low Nfatc1 expression levels and thereby repressing aggressiveness and therapy resistance in BLBC.


Asunto(s)
Epigénesis Genética/genética , Complejo Represivo Polycomb 2/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Femenino , Humanos , Pronóstico , Análisis de Supervivencia , Neoplasias de la Mama Triple Negativas/mortalidad
8.
Oncogene ; 40(31): 4955-4966, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34172934

RESUMEN

A prototypic pediatric cancer that frequently shows activation of RAS signaling is embryonal rhabdomyosarcoma (ERMS). ERMS also show aberrant Hedgehog (HH)/GLI signaling activity and can be driven by germline mutations in this pathway. We show, that in ERMS cell lines derived from sporadic tumors i.e. from tumors not caused by an inherited genetic variant, HH/GLI signaling plays a subordinate role, because oncogenic mutations in HRAS, KRAS, or NRAS (collectively named oncRAS) inhibit the main HH target GLI1 via the MEK/ERK-axis, but simultaneously increase proliferation and tumorigenicity. oncRAS also modulate expression of stem cell markers in an isoform- and context-dependent manner. In Hh-driven murine ERMS that are caused by a Patched mutation, oncHRAS and mainly oncKRAS accelerate tumor development, whereas oncNRAS induces a more differentiated phenotype. These features occur when the oncRAS mutations are induced at the ERMS precursor stage, but not when induced in already established tumors. Moreover, in contrast to what is seen in human cell lines, oncRAS mutations do not alter Hh signaling activity and marginally affect expression of stem cell markers. Together, all three oncRAS mutations seem to be advantageous for ERMS cell lines despite inhibition of HH signaling and isoform-specific modulation of stem cell markers. In contrast, oncRAS mutations do not inhibit Hh-signaling in Hh-driven ERMS. In this model, oncRAS mutations seem to be advantageous for specific ERMS populations that occur within a specific time window during ERMS development. In addition, this window may be different for individual oncRAS isoforms, at least in the mouse.


Asunto(s)
Susceptibilidad a Enfermedades , Genes ras , Neoplasias/etiología , Neoplasias/metabolismo , Isoformas de Proteínas/genética , Factores de Edad , Animales , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Noqueados , Mutación , Neoplasias/patología , Células Madre Neoplásicas , Oncogenes , Receptor Patched-1/genética , Proteína con Dedos de Zinc GLI1/genética , Proteína con Dedos de Zinc GLI1/metabolismo
9.
Sci Rep ; 11(1): 10846, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34035350

RESUMEN

Although X-ray based 3D virtual histology is an emerging tool for the analysis of biological tissue, it falls short in terms of specificity when compared to conventional histology. Thus, the aim was to establish a novel approach that combines 3D information provided by microCT with high specificity that only (immuno-)histochemistry can offer. For this purpose, we developed a software frontend, which utilises an elastic transformation technique to accurately co-register various histological and immunohistochemical stainings with free propagation phase contrast synchrotron radiation microCT. We demonstrate that the precision of the overlay of both imaging modalities is significantly improved by performing our elastic registration workflow, as evidenced by calculation of the displacement index. To illustrate the need for an elastic co-registration approach we examined specimens from a mouse model of breast cancer with injected metal-based nanoparticles. Using the elastic transformation pipeline, we were able to co-localise the nanoparticles to specifically stained cells or tissue structures into their three-dimensional anatomical context. Additionally, we performed a semi-automated tissue structure and cell classification. This workflow provides new insights on histopathological analysis by combining CT specific three-dimensional information with cell/tissue specific information provided by classical histology.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Nanopartículas del Metal/administración & dosificación , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Animales , Línea Celular Tumoral , Diagnóstico por Imagen de Elasticidad , Femenino , Ratones , Trasplante de Neoplasias , Sensibilidad y Especificidad , Programas Informáticos , Microtomografía por Rayos X
10.
Schizophr Bull ; 47(5): 1409-1420, 2021 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-33871014

RESUMEN

The neuregulin 1 (NRG1) ErbB4 module is at the core of an "at risk" signaling pathway in schizophrenia. Several human studies suggest hyperstimulation of NRG1-ErbB4 signaling as a plausible pathomechanism; however, little is known about the significance of stage-, brain area-, or neural cell type-specific NRG1-ErbB4 hyperactivity for disease-relevant brain endophenotypes. To address these spatiotemporal aspects, we generated transgenic mice for Cre recombinase-mediated overexpression of cystein-rich domain (CRD) NRG1, the most prominent NRG1 isoform in the brain. A comparison of "brain-wide" vs cell type-specific CRD-NRG1 overexpressing mice revealed that pathogenic CRD-NRG1 signals for ventricular enlargement and neuroinflammation originate outside glutamatergic neurons and suggests a subcortical function of CRD-NRG1 in the control of body weight. Embryonic onset of CRD-NRG1 in glutamatergic cortical networks resulted in reduced inhibitory neurotransmission and locomotor hyperactivity. Our findings identify ventricular enlargement and locomotor hyperactivity, 2 main endophenotypes of schizophrenia, as specific consequences of spatiotemporally distinct expression profiles of hyperactivated CRD-NRG1 signaling.


Asunto(s)
Encéfalo , Endofenotipos , Ácido Glutámico/metabolismo , Red Nerviosa , Neurregulina-1/metabolismo , Agitación Psicomotora , Receptor ErbB-4/metabolismo , Esquizofrenia , Animales , Conducta Animal/fisiología , Encéfalo/metabolismo , Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Embrión de Mamíferos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Red Nerviosa/metabolismo , Red Nerviosa/fisiopatología , Agitación Psicomotora/metabolismo , Agitación Psicomotora/fisiopatología , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatología , Transducción de Señal/fisiología
12.
Eur Radiol ; 30(5): 2740-2750, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31974689

RESUMEN

OBJECTIVES: To evaluate and compare the image quality of propagation-based phase-contrast computed tomography (PB-CT) using synchrotron radiation and conventional cone-beam breast computed tomography (CBBCT) based on various radiological image quality criteria. METHODS: Eight excised breast tissue samples of various sizes and containing different lesion types were scanned using PB-CT at a synchrotron facility and using CBBCT at a university-affiliated breast imaging centre. PB-CT scans were performed at two different mean glandular dose (MGD) levels: standard (5.8 mGy) and low (1.5 mGy), for comparison with CBBCT scans at the standard MGD (5.8 mGy). Image quality assessment was carried out using six quality criteria and six independent medical imaging experts in a reading room with mammography workstations. The interobserver agreement between readers was evaluated using intraclass correlation coefficient (ICC), and image quality was compared between the two breast imaging modalities using the area under the visual grading characteristic curve (AUCVGC). RESULTS: Interobserver agreement between the readers showed moderate reliability for five image criteria (ICC: ranging from 0.488 to 0.633) and low reliability for one criterion (image noise) (ICC 0.307). For five image quality criteria (overall quality, perceptible contrast, lesion sharpness, normal tissue interfaces, and calcification visibility), both standard-dose PB-CT images (AUCVGC 0.958 to 1, p ≤ .05) and low dose PB-CT images (AUCVGC 0.785 to 0.834, p ≤ .05) were of significantly higher image quality than standard-dose CBBCT images. CONCLUSIONS: Synchrotron-based PB-CT can achieve a significantly higher radiological image quality at a substantially lower radiation dose compared with conventional CBBCT. KEY POINTS: • PB-CT using synchrotron radiation results in higher image quality than conventional CBBCT for breast imaging. • PB-CT using synchrotron radiation requires a lower radiation dose than conventional CBBCT for breast imaging. • PB-CT can help clinicians diagnose patients with breast cancer.


Asunto(s)
Enfermedades de la Mama/diagnóstico , Mama/diagnóstico por imagen , Tomografía Computarizada de Haz Cónico/métodos , Mamografía/métodos , Sincrotrones , Femenino , Humanos , Dosis de Radiación , Reproducibilidad de los Resultados
13.
Phys Med Biol ; 65(5): 055016, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-31995530

RESUMEN

K-edge subtraction (KES) imaging is a technique able to map a specific element such as e.g. a contrast agent within the tissues, by exploiting the sharp rise of its absorption coefficient at the K-edge energy. Whereas mainly explored at synchrotron radiation sources, the energy discrimination properties of modern x-ray photon counting detectors (XPCDs) pave the way for an implementation of single-shot KES imaging with conventional polychromatic sources. In this work we present an x-ray CT imaging system based on the innovative Pixie-III detector and discrete reconstruction. The results reported here show that a reliable automatic localization of Barium (above a certain concentration) is possible with a few dozens of tomographic projections for a volume having an axial slice of 512 [Formula: see text] 512 pixels. The final application is a routine high-fidelity 3D mapping of a specific element ready for further morphological quantification by means of x-ray CT with potential promising applications in vivo.


Asunto(s)
Neoplasias de la Mama/patología , Procesamiento de Imagen Asistido por Computador/métodos , Fotones , Sincrotrones/instrumentación , Tomografía Computarizada por Rayos X/instrumentación , Tomografía Computarizada por Rayos X/métodos , Animales , Neoplasias de la Mama/diagnóstico por imagen , Femenino , Humanos , Ratones , Células Tumorales Cultivadas , Rayos X , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Mol Oncol ; 14(3): 571-589, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31825135

RESUMEN

Macrophages (Mφ) are abundantly present in the tumor microenvironment and may predict outcome in solid tumors and defined lymphoma subtypes. Mφ heterogeneity, the mechanisms of their recruitment, and their differentiation into lymphoma-promoting, alternatively activated M2-like phenotypes are still not fully understood. Therefore, further functional studies are required to understand biological mechanisms associated with human tumor-associated Mφ (TAM). Here, we show that the global mRNA expression and protein abundance of human Mφ differentiated in Hodgkin lymphoma (HL)-conditioned medium (CM) differ from those of Mφ educated by conditioned media from diffuse large B-cell lymphoma (DLBCL) cells or, classically, by macrophage colony-stimulating factor (M-CSF). Conditioned media from HL cells support TAM differentiation through upregulation of surface antigens such as CD40, CD163, CD206, and PD-L1. In particular, RNA and cell surface protein expression of mannose receptor 1 (MRC1)/CD206 significantly exceed the levels induced by classical M-CSF stimulation in M2-like Mφ; this is regulated by interleukin 13 to a large extent. Functionally, high CD206 enhances mannose-dependent endocytosis and uptake of type I collagen. Together with high matrix metalloprotease9 secretion, HL-TAMs appear to be active modulators of the tumor matrix. Preclinical in ovo models show that co-cultures of HL cells with monocytes or Mφ support dissemination of lymphoma cells via lymphatic vessels, while tumor size and vessel destruction are decreased in comparison with lymphoma-only tumors. Immunohistology of human HL tissues reveals a fraction of cases feature large numbers of CD206-positive cells, with high MRC1 expression being characteristic of HL-stage IV. In summary, the lymphoma-TAM interaction contributes to matrix-remodeling and lymphoma cell dissemination.


Asunto(s)
Medios de Cultivo Condicionados/farmacología , Enfermedad de Hodgkin/metabolismo , Linfoma de Células B/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/metabolismo , Microambiente Tumoral , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Antígeno B7-H1/metabolismo , Antígenos CD40/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Embrión de Pollo , Membrana Corioalantoides/metabolismo , Membrana Corioalantoides/patología , Colágeno Tipo I/metabolismo , Medios de Cultivo Condicionados/metabolismo , Técnica del Anticuerpo Fluorescente , Enfermedad de Hodgkin/inmunología , Enfermedad de Hodgkin/patología , Humanos , Interleucina-13/metabolismo , Linfoma de Células B/inmunología , Linfoma de Células B/patología , Macrófagos/efectos de los fármacos , Glicoproteínas de Membrana/inmunología , Monocitos/metabolismo , Metástasis de la Neoplasia/inmunología , Proteoma/genética , Proteoma/metabolismo , RNA-Seq , Receptores de Superficie Celular/metabolismo , Receptores Inmunológicos/inmunología , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Acad Radiol ; 26(6): e79-e89, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30149975

RESUMEN

RATIONALE AND OBJECTIVES: This study employs clinical/radiological evaluation in establishing the optimum imaging conditions for breast cancer imaging using the X-ray propagation-based phase-contrast tomography. MATERIALS AND METHODS: Two series of experiments were conducted and in total 161 synchrotron-based computed tomography (CT) reconstructions of one breast mastectomy specimen were produced at different imaging conditions. Imaging factors include sample-to-detector distance, X-ray energy, CT reconstruction method, phase retrieval algorithm applied to the CT projection images and maximum intensity projection. Observers including breast radiologists and medical imaging experts compared the quality of the reconstructed images with reference images approximating the conventional (absorption) CT. Various radiological image quality attributes in a visual grading analysis design were used for the radiological assessments. RESULTS: The results show that the application of the longest achievable sample-to-detector distance (9.31 m), the lowest employed X-ray energy (32 keV), the full phase retrieval, and the maximum intensity projection can significantly improve the radiological quality of the image. Several combinations of imaging variables resulted in images with very high-quality scores. CONCLUSION: The results of the present study will support future experimental and clinical attempts to further optimize this innovative approach to breast cancer imaging.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Mamografía/métodos , Tomografía Computarizada por Rayos X/métodos , Anciano , Algoritmos , Mama/diagnóstico por imagen , Femenino , Humanos
16.
Crit Care Med ; 47(3): e234-e240, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30507842

RESUMEN

OBJECTIVES: The detection of microbial volatile organic compounds or host response markers in the exhaled gas could give an earlier diagnosis of ventilator-associated pneumonia. Gas chromatography-ion mobility spectrometry enables noninvasive, rapid, and sensitive analysis of exhaled gas. Using a rabbit model of ventilator-associated pneumonia we determined if gas chromatography-ion mobility spectrometry is able to detect 1) ventilator-associated pneumonia specific changes and 2) bacterial species-specific changes in the exhaled gas. DESIGN: Experimental in vivo study. SETTING: University research laboratory. SUBJECTS: Female New Zealand White rabbits. INTERVENTIONS: Animals were anesthetized and mechanically ventilated. To induce changes in the composition of exhaled gas we induced ventilator-associated pneumonia via endobronchial instillation of either Escherichia coli group (n = 11) or Pseudomonas aeruginosa group (n = 11) after 2 hours of mechanical ventilation. In a control group (n = 11) we instilled sterile lysogeny broth endobronchially. MEASUREMENTS AND MAIN RESULTS: Gas chromatography-ion mobility spectrometry gas analysis, CT scans of the lungs, and blood samples were obtained at four measurement points during the 10 hours of mechanical ventilation. The volatile organic compound patterns in the exhaled gas were compared and correlated with ventilator-associated pneumonia severity. Sixty-seven peak areas showed changes in signal intensity in the serial gas analyses. The signal intensity changes in 10 peak regions differed between the groups. Five peak areas (P_648_36, indole, P_714_278, P_700_549, and P_727_557) showed statistically significant changes of signal intensity. CONCLUSIONS: This is the first in vivo study that shows the potential of gas chromatography-ion mobility spectrometry for early detection of ventilator-associated pneumonia specific volatile organic compounds and species differentiation by noninvasive analyses of exhaled gas.


Asunto(s)
Neumonía Asociada al Ventilador/diagnóstico , Compuestos Orgánicos Volátiles/análisis , Animales , Biomarcadores/análisis , Espiración , Femenino , Cromatografía de Gases y Espectrometría de Masas , Espectrometría de Movilidad Iónica , Pulmón/patología , Neumonía Asociada al Ventilador/patología , Conejos , Índice de Severidad de la Enfermedad
17.
Front Oncol ; 8: 396, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30319965

RESUMEN

Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma with poor prognosis. RMS frequently show Hedgehog (HH) pathway activity, which is predominantly seen in the embryonal subtype (ERMS). They also show activation of Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) signaling. Here we compared the therapeutic effectiveness and the impact on HH target gene expression of Smoothened (SMO) antagonists with those of the PI3K inhibitor pictilisib in ERMS with and without mutations in the HH receptor Patched1 (PTCH). Our data demonstrate that growth of ERMS showing canonical Hh signaling activity due to Ptch germline mutations is efficiently reduced by SMO antagonists. This goes along with strong downregulation of the Hh target Gli1. Likewise Ptch mutant tumors are highly responsive toward the PI3K inhibitor pictilisib, which involves modulation of AKT and caspase activity. Pictilisib also modulates Hh target gene expression, which, however, is rather not correlated with its antitumoral effects. In contrast, sporadic ERMS, which usually express HH target genes without having PTCH mutation, apparently lack canonical HH signaling activity. Thus, stimulation by Sonic HE (SHH) or SAG (Smoothened agonist) or inhibition by SMO antagonists do not modulate HH target gene expression. In addition, SMO antagonists do not provoke efficient anticancer effects and rather exert off-target effects. In contrast, pictilisib and other PI3K/AKT/mTOR inhibitors potently inhibit cellular growth. They also efficiently inhibit HH target gene expression. However, of whether this is correlated with their antitumoral effects it is not clear. Together, these data suggest that PI3K inhibitors are a good and reliable therapeutic option for all ERMS, whereas SMO inhibitors might only be beneficial for ERMS driven by PTCH mutations.

18.
Eur J Med Res ; 23(1): 39, 2018 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-30180907

RESUMEN

BACKGROUND: Reduction of femoral shaft fractures remains a challenging problem in orthopaedic surgery. Robot-assisted reduction might ease reduction and fracture treatment. However, the influence of different reduction pathways on patients' physiology is not fully known yet. Therefore, the aim of this study was to examine the biomechanics and histology of fracture healing after direct and prolonged robot-assisted reduction in an in vivo rat model. METHODS: 144 male CD® rats were randomly assigned to 12 groups. Each animal received an external fixator and an osteotomy on the left femoral shaft. On the fourth postoperative day, the 1× reduction groups received a single reduction maneuver, whereas the 10× reduction groups received the same reduction pathway with ten repetitions. The control groups did not undergo any reduction maneuvers. Animals were killed after 1, 2, 3 and 4 weeks, respectively, and the composition of the fracture gap was analyzed by µCT and non-decalcified histology. Biomechanical properties were investigated by a three-point bending test, and the bone turnover markers PINP, bCTx, OPG, sRANKL, TRACP-5b, BALP, and OT/BGP were measured. RESULTS: One week after the reduction maneuver, µCT analysis showed a higher cortical bone volume in the 1× reduction group compared to the 10× reduction group. Biomechanically, the control group showed higher maximum force values measured by three-point bending test compared to both reduction groups. Furthermore, less collagen I formation was examined in the 10× reduction group compared to the control group after 1 week of fracture healing. PINP concentration was decreased in 10× reduction group after 1 week compared to control group. The same trend was seen after 3 weeks. CONCLUSION: A single reduction maneuver has a beneficial effect in the early phase of the fracture healing process compared to repeated reduction maneuvers. In the later phase of fracture healing, no differences were found between the groups.


Asunto(s)
Biomarcadores/metabolismo , Remodelación Ósea , Fracturas del Fémur/cirugía , Curación de Fractura , Microtomografía por Rayos X/métodos , Animales , Fenómenos Biomecánicos , Fracturas del Fémur/diagnóstico por imagen , Fracturas del Fémur/metabolismo , Masculino , Ratas
19.
J Synchrotron Radiat ; 25(Pt 5): 1460-1466, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30179186

RESUMEN

The aim of this study was to highlight the advantages that propagation-based phase-contrast computed tomography (PB-CT) with synchrotron radiation can provide in breast cancer diagnostics. For the first time, a fresh and intact mastectomy sample from a 60 year old patient was scanned on the IMBL beamline at the Australian Synchrotron in PB-CT mode and reconstructed. The clinical picture was described and characterized by an experienced breast radiologist, who underlined the advantages of providing diagnosis on a PB-CT volume rather than conventional two-dimensional modalities. Subsequently, the image quality was assessed by 11 breast radiologists and medical imaging experts using a radiological scoring system. The results indicate that, with the radiation dose delivered to the sample being equal, the accuracy of a diagnosis made on PB-CT images is significantly higher than one using conventional techniques.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Sincrotrones , Tomografía Computarizada por Rayos X/métodos , Neoplasias de la Mama/cirugía , Femenino , Humanos , Técnicas In Vitro , Mastectomía , Persona de Mediana Edad , Dosis de Radiación , Interpretación de Imagen Radiográfica Asistida por Computador , Relación Señal-Ruido
20.
J Synchrotron Radiat ; 25(Pt 4): 1153-1161, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29979177

RESUMEN

Synchrotron radiation micro-computed tomography (SRµCT) based virtual histology, in combination with dedicated ex vivo staining protocols and/or phase contrast, is an emerging technology that makes use of three-dimensional images to provide novel insights into the structure of tissue samples at microscopic resolution with short acquisition times of the order of minutes or seconds. However, the high radiation dose creates special demands on sample preparation and staining. As a result of the lack of specific staining in virtual histology, it can supplement but not replace classical histology. Therefore, the aim of this study was to establish and compare optimized ex vivo staining and acquisition protocols for SRµCT-based virtual histology of soft-tissue samples, which could be integrated into the standard workflow of classical histology. The high grade of coherence of synchrotron radiation allows the application of propagation-based phase contrast imaging (PBI). In this study, PBI yielded a strong increase in image quality even at lower radiation doses and consequently prevented any damage to the tissue samples or the embedding material. This work has demonstrated that the improvement in contrast-to-noise ratio by PBI enabled label-free virtual histology of soft-tissue specimens embedded in paraffin to a level of detail that exceeds that achieved with staining protocols.


Asunto(s)
Encéfalo/anatomía & histología , Carcinoma Ductal Pancreático/patología , Corazón/anatomía & histología , Pulmón/anatomía & histología , Neoplasias Pancreáticas/patología , Coloración y Etiquetado , Sincrotrones , Microtomografía por Rayos X/métodos , Animales , Xenoinjertos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Dosis de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA