Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Intervalo de año de publicación
1.
Elife ; 132024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38251707

RESUMEN

Mitochondrial membrane potential directly powers many critical functions of mitochondria, including ATP production, mitochondrial protein import, and metabolite transport. Its loss is a cardinal feature of aging and mitochondrial diseases, and cells closely monitor membrane potential as an indicator of mitochondrial health. Given its central importance, it is logical that cells would modulate mitochondrial membrane potential in response to demand and environmental cues, but there has been little exploration of this question. We report that loss of the Sit4 protein phosphatase in yeast increases mitochondrial membrane potential, both by inducing the electron transport chain and the phosphate starvation response. Indeed, a similarly elevated mitochondrial membrane potential is also elicited simply by phosphate starvation or by abrogation of the Pho85-dependent phosphate sensing pathway. This enhanced membrane potential is primarily driven by an unexpected activity of the ADP/ATP carrier. We also demonstrate that this connection between phosphate limitation and enhancement of mitochondrial membrane potential is observed in primary and immortalized mammalian cells as well as in Drosophila. These data suggest that mitochondrial membrane potential is subject to environmental stimuli and intracellular signaling regulation and raise the possibility for therapeutic enhancement of mitochondrial function even in defective mitochondria.


Asunto(s)
Fosfatos , Saccharomyces cerevisiae , Animales , Potencial de la Membrana Mitocondrial , Fosfatos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo , Respiración , Mamíferos/metabolismo
2.
Sci Adv ; 8(46): eabq5234, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36399564

RESUMEN

A stop codon within the mRNA facilitates coordinated termination of protein synthesis, releasing the nascent polypeptide from the ribosome. This essential step in gene expression is impeded with transcripts lacking a stop codon, generating nonstop ribosome complexes. Here, we use deep sequencing to investigate sources of nonstop mRNAs generated from the human mitochondrial genome. We identify diverse types of nonstop mRNAs on mitochondrial ribosomes that are resistant to translation termination by canonical release factors. Failure to resolve these aberrations by the mitochondrial release factor in rescue (MTRFR) imparts a negative regulatory effect on protein synthesis that is associated with human disease. Our findings reveal a source of underlying noise in mitochondrial gene expression and the importance of responsive ribosome quality control mechanisms for cell fitness and human health.

3.
Membranes (Basel) ; 12(8)2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-36005667

RESUMEN

Proteins can be targeted to organellar membranes by using a tail anchor (TA), a stretch of hydrophobic amino acids found at the polypeptide carboxyl-terminus. The Fis1 protein (Fis1p), which promotes mitochondrial and peroxisomal division in the yeast Saccharomyces cerevisiae, is targeted to those organelles by its TA. Substantial evidence suggests that Fis1p insertion into the mitochondrial outer membrane can occur without the need for a translocation machinery. However, recent findings raise the possibility that Fis1p insertion into mitochondria might be promoted by a proteinaceous complex. Here, we have performed atomistic and coarse-grained molecular dynamics simulations to analyze the adsorption, conformation, and orientation of the Fis1(TA). Our results support stable insertion at the mitochondrial outer membrane in a monotopic, rather than a bitopic (transmembrane), configuration. Once inserted in the monotopic orientation, unassisted transition to the bitopic orientation is expected to be blocked by the highly charged nature of the TA carboxyl-terminus and by the Fis1p cytosolic domain. Our results are consistent with a model in which Fis1p does not require a translocation machinery for insertion at mitochondria.

4.
Curr Opin Genet Dev ; 58-59: 9-16, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31476715

RESUMEN

Many functions of eukaryotic cells are compartmentalized within membrane-bound organelles. One or more cis-encoded signals within a polypeptide sequence typically govern protein targeting to and within destination organelles. Perhaps unexpectedly, organelle targeting does not occur with high specificity, but instead is characterized by considerable degeneracy and inefficiency. Indeed, the same peptide signals can target proteins to more than one location, randomized sequences can easily direct proteins to organelles, and many enzymes appear to traverse different subcellular settings across eukaryotic phylogeny. We discuss the potential benefits provided by flexibility in organelle targeting, with a special emphasis on horizontally transferred and de novo proteins. Moreover, we consider how these new organelle residents can be protected and maintained before they contribute to the needs of the cell and promote fitness.


Asunto(s)
Eucariontes/genética , Transferencia de Gen Horizontal/genética , Mitocondrias/metabolismo , Señales de Clasificación de Proteína/genética , Secuencia de Aminoácidos/genética , Amoeba/genética , Amoeba/metabolismo , Retículo Endoplásmico/metabolismo , Eucariontes/metabolismo , Evolución Molecular , Mitocondrias/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Filogenia , Señales de Clasificación de Proteína/fisiología , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología
5.
Biol Direct ; 12(1): 16, 2017 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-28738827

RESUMEN

BACKGROUND: During the generation and evolution of the eukaryotic cell, a proteobacterial endosymbiont was re-fashioned into the mitochondrion, an organelle that appears to have been present in the ancestor of all present-day eukaryotes. Mitochondria harbor proteomes derived from coding information located both inside and outside the organelle, and the rate-limiting step toward the formation of eukaryotic cells may have been development of an import apparatus allowing protein entry to mitochondria. Currently, a widely conserved translocon allows proteins to pass from the cytosol into mitochondria, but how proteins encoded outside of mitochondria were first directed to these organelles at the dawn of eukaryogenesis is not clear. Because several proteins targeted by a carboxyl-terminal tail anchor (TA) appear to have the ability to insert spontaneously into the mitochondrial outer membrane (OM), it is possible that self-inserting, tail-anchored polypeptides obtained from bacteria might have formed the first gate allowing proteins to access mitochondria from the cytosol. RESULTS: Here, we tested whether bacterial TAs are capable of targeting to mitochondria. In a survey of proteins encoded by the proteobacterium Escherichia coli, predicted TA sequences were directed to specific subcellular locations within the yeast Saccharomyces cerevisiae. Importantly, TAs obtained from DUF883 family members ElaB and YqjD were abundantly localized to and inserted at the mitochondrial OM. CONCLUSIONS: Our results support the notion that eukaryotic cells are able to utilize membrane-targeting signals present in bacterial proteins obtained by lateral gene transfer, and our findings make plausible a model in which mitochondrial protein translocation was first driven by tail-anchored proteins. REVIEWERS: This article was reviewed by Michael Ryan and Thomas Simmen.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Membranas Mitocondriales/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Escherichia coli/química , Células Eucariotas/metabolismo , Células Eucariotas/ultraestructura , Mitocondrias/metabolismo , Biogénesis de Organelos , Señales de Clasificación de Proteína/fisiología , Transporte de Proteínas , Saccharomyces cerevisiae/ultraestructura
6.
PLoS One ; 11(1): e0146511, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26751567

RESUMEN

Damage to the mitochondrial genome (mtDNA) can lead to diseases for which there are no clearly effective treatments. Since mitochondrial function and biogenesis are controlled by the nutrient environment of the cell, it is possible that perturbation of conserved, nutrient-sensing pathways may successfully treat mitochondrial disease. We found that restricting glucose or otherwise reducing the activity of the protein kinase A (PKA) pathway can lead to improved proliferation of Saccharomyces cerevisiae cells lacking mtDNA and that the transcriptional response to mtDNA loss is reduced in cells with diminished PKA activity. We have excluded many pathways and proteins from being individually responsible for the benefits provided to cells lacking mtDNA by PKA inhibition, and we found that robust import of mitochondrial polytopic membrane proteins may be required in order for cells without mtDNA to receive the full benefits of PKA reduction. Finally, we have discovered that the transcription of genes involved in arginine biosynthesis and aromatic amino acid catabolism is altered after mtDNA damage. Our results highlight the potential importance of nutrient detection and availability on the outcome of mitochondrial dysfunction.


Asunto(s)
ADN Mitocondrial/genética , Glucosa/metabolismo , Saccharomyces cerevisiae/genética , Arginina/química , Proliferación Celular , Medios de Cultivo/química , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Citosol/metabolismo , Daño del ADN , Fermentación , Eliminación de Gen , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Fluorescente , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Mutación , Fosforilación , Plásmidos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal
7.
Proc Natl Acad Sci U S A ; 107(13): 5907-12, 2010 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-20220101

RESUMEN

The cytosolic domain of Notch is a membrane-tethered transcription factor. Ligand binding ultimately leads to gamma-secretase cleavage within the transmembrane domain, allowing the intracellular domain to translocate to the nucleus and activate target gene transcription. Constitutive Notch signaling has been associated with human cancers such as T cell acute lymphoblastic leukemia (T-ALL). As tetraspanins have been implicated in many different signaling processes, we assessed their potential contribution to Notch signaling. We used a genetic assay in Caenorhabditis elegans to identify TSP-12 as a positive factor for Notch activity in several cellular contexts. Then, using a cell culture system, we showed that two human TSP-12 orthologs, TSPAN33 and TSPAN5, promote Notch activity and are likely to act at the gamma-secretase cleavage step. We also acquired evidence for functional redundancy among tetraspanins in both C. elegans and human cells. Selective inhibition of tetraspanins may constitute an anti-NOTCH therapeutic approach to reduce gamma-secretase activity.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Animales Modificados Genéticamente , Antígenos CD/genética , Antígenos CD/metabolismo , Secuencia de Bases , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Secuencia Conservada , Cartilla de ADN/genética , Células Germinativas/metabolismo , Células HeLa , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Interferencia de ARN , Receptor Notch1/genética , Receptor Notch1/metabolismo , Transducción de Señal , Tetraspanina 28 , Tetraspanina 29 , Tetraspaninas
8.
Mol Biol Cell ; 19(12): 5387-97, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18843051

RESUMEN

By screening yeast knockouts for their dependence upon the mitochondrial genome, we identified Mgr3p, a protein that associates with the i-AAA protease complex in the mitochondrial inner membrane. Mgr3p and Mgr1p, another i-AAA-interacting protein, form a subcomplex that bind to the i-AAA subunit Yme1p. We find that loss of Mgr3p, like the lack of Mgr1p, reduces proteolysis by Yme1p. Mgr3p and Mgr1p can bind substrate even in the absence of Yme1p, and both proteins are needed for maximal binding of an unfolded substrate by the i-AAA complex. We speculate that Mgr3p and Mgr1p function in an adaptor complex that targets substrates to the i-AAA protease for degradation.


Asunto(s)
Proteínas Portadoras/metabolismo , Endopeptidasas/metabolismo , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , Complejos Multienzimáticos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteasas ATP-Dependientes , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas Portadoras/genética , Endopeptidasas/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana Mitocondrial , Membranas Mitocondriales/enzimología , Proteínas Mitocondriales/genética , Complejos Multienzimáticos/química , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética
9.
Mol Biol Cell ; 17(1): 213-26, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16267274

RESUMEN

Unlike many other organisms, the yeast Saccharomyces cerevisiae can tolerate the loss of mitochondrial DNA (mtDNA). Although a few proteins have been identified that are required for yeast cell viability without mtDNA, the mechanism of mtDNA-independent growth is not completely understood. To probe the relationship between the mitochondrial genome and cell viability, we conducted a microarray-based, genomewide screen for mitochondrial DNA-dependent yeast mutants. Among the several genes that we discovered is MGR1, which encodes a novel subunit of the i-AAA protease complex located in the mitochondrial inner membrane. mgr1Delta mutants retain some i-AAA protease activity, yet mitochondria lacking Mgr1p contain a misassembled i-AAA protease and are defective for turnover of mitochondrial inner membrane proteins. Our results highlight the importance of the i-AAA complex and proteolysis at the inner membrane in cells lacking mitochondrial DNA.


Asunto(s)
Genoma Fúngico/genética , Metaloendopeptidasas/química , Metaloendopeptidasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteasas ATP-Dependientes , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , ADN Mitocondrial/genética , Pruebas Genéticas , Metaloendopeptidasas/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación/genética , Fenotipo , Unión Proteica , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Saccharomyces cerevisiae/clasificación , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Genetics ; 165(1): 35-45, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-14504216

RESUMEN

The TIM22 complex, required for the insertion of imported polytopic proteins into the mitochondrial inner membrane, contains the nonessential Tim18p subunit. To learn more about the function of Tim18p, we screened for high-copy suppressors of the inability of tim18Delta mutants to live without mitochondrial DNA (mtDNA). We identified several genes encoding cytosolic proteins, including CCT6, SSB1, ICY1, TIP41, and PBP1, which, when overproduced, rescue the mtDNA dependence of tim18Delta cells. Furthermore, these same plasmids rescue the petite-negative phenotype of cells lacking other components of the mitochondrial protein import machinery. Strikingly, disruption of the genes identified by the different suppressors produces cells that are unable to grow without mtDNA. We speculate that loss of mtDNA leads to a lowered inner membrane potential, and subtle changes in import efficiency can no longer be tolerated. Our results suggest that increased amounts of Cct6p, Ssb1p, Icy1p, Tip41p, and Pbp1p help overcome the problems resulting from a defect in protein import.


Asunto(s)
Antiportadores/genética , ADN Mitocondrial , Péptidos y Proteínas de Señalización Intracelular , Mitocondrias/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Antiportadores/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Chaperonina con TCP-1 , Chaperoninas/genética , Chaperoninas/metabolismo , Citosol/metabolismo , Dosificación de Gen , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Mutación , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología , Proteínas/metabolismo , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA