Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Tipo de estudio
Intervalo de año de publicación
1.
J Natl Compr Canc Netw ; 21(10): 1097-1105, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37643637

RESUMEN

Medulloblastoma in infants and young children is a major challenge to treat because craniospinal irradiation (CSI), a cornerstone of therapy for older children, is disproportionately damaging to very young children. As a result, trials have attempted to delay, omit, and replace this therapy. Although success has been limited, the approach has not been a complete failure. In fact, this approach has cured a significant number of children with medulloblastoma. However, many children have endured intensive regimens of chemotherapy only to experience relapse and undergo salvage treatment with CSI, often at higher doses and with worse morbidity than they would have initially experienced. Recent advancements in molecular diagnostics have proven that response to therapy is biologically driven. Medulloblastoma in infants and young children is divided into 2 molecular groups: Sonic Hedgehog (SHH) and group 3 (G3). Both are chemotherapy-sensitive, but only the SHH medulloblastomas are reliably cured with chemotherapy alone. Moreover, SHH can be molecularly parsed into 2 groups: SHH-1 and SHH-2, with SHH-2 showing higher cure rates with less intensive chemotherapy and SHH-1 requiring more intensive regimens. G3 medulloblastoma, on the other hand, has a near universal relapse rate after chemotherapy-only regimens. This predictability represents a significant breakthrough and affords oncologists the ability to properly risk-stratify therapy in such a way that the most curative and least toxic therapy is selected. This review examines the treatment of medulloblastoma in infants and young children, discusses the molecular advancements, and proposes how to use this information to structure the future management of this disease.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Niño , Lactante , Humanos , Adolescente , Preescolar , Meduloblastoma/diagnóstico , Meduloblastoma/genética , Meduloblastoma/terapia , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/terapia , Proteínas Hedgehog/genética , Proteínas Hedgehog/uso terapéutico , Recurrencia Local de Neoplasia , Recurrencia
2.
Nat Commun ; 12(1): 4089, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34215733

RESUMEN

Pediatric high-grade glioma (pHGG) is a major contributor to cancer-related death in children. In vitro and in vivo disease models reflecting the intimate connection between developmental context and pathogenesis of pHGG are essential to advance understanding and identify therapeutic vulnerabilities. Here we report establishment of 21 patient-derived pHGG orthotopic xenograft (PDOX) models and eight matched cell lines from diverse groups of pHGG. These models recapitulate histopathology, DNA methylation signatures, mutations and gene expression patterns of the patient tumors from which they were derived, and include rare subgroups not well-represented by existing models. We deploy 16 new and existing cell lines for high-throughput screening (HTS). In vitro HTS results predict variable in vivo response to PI3K/mTOR and MEK pathway inhibitors. These unique new models and an online interactive data portal for exploration of associated detailed molecular characterization and HTS chemical sensitivity data provide a rich resource for pediatric brain tumor research.


Asunto(s)
Heterogeneidad Genética/efectos de los fármacos , Glioma/tratamiento farmacológico , Glioma/genética , Animales , Neoplasias Encefálicas , Línea Celular Tumoral , Proliferación Celular , Niño , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Glioma/patología , Ensayos Analíticos de Alto Rendimiento , Humanos , Ratones , Mutación , Inhibidores de Proteínas Quinasas/uso terapéutico , Serina-Treonina Quinasas TOR , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Acta Neuropathol ; 140(2): 209-225, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32519082

RESUMEN

Pediatric brain tumors are the leading cause of cancer-related death in children. Patient-derived orthotopic xenografts (PDOX) of childhood brain tumors have recently emerged as a biologically faithful vehicle for testing novel and more effective therapies. Herein, we provide the histopathological and molecular analysis of 37 novel PDOX models generated from pediatric brain tumor patients treated at St. Jude Children's Research Hospital. Using a combination of histopathology, whole-genome and whole-exome sequencing, RNA-sequencing, and DNA methylation arrays, we demonstrate the overall fidelity and inter-tumoral molecular heterogeneity of pediatric brain tumor PDOX models. These models represent frequent as well as rare childhood brain tumor entities, including medulloblastoma, ependymoma, atypical teratoid rhabdoid tumor, and embryonal tumor with multi-layer rosettes. PDOX models will be valuable platforms for evaluating novel therapies and conducting pre-clinical trials to accelerate progress in the treatment of brain tumors in children. All described PDOX models and associated datasets can be explored using an interactive web-based portal and will be made freely available to the research community upon request.


Asunto(s)
Neoplasias Encefálicas , Modelos Animales de Enfermedad , Xenoinjertos , Animales , Niño , Humanos , Ratones
4.
Infect Immun ; 86(4)2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29358333

RESUMEN

Ehrlichia chaffeensis has a group of well-characterized type I secreted tandem repeat protein (TRP) effectors that have moonlighting capabilities. TRPs modulate various cellular processes, reprogram host gene transcription as nucleomodulins, function as ubiquitin ligases, and directly activate conserved host cell signaling pathways to promote E. chaffeensis infection. One TRP-interacting host target is polycomb group ring finger protein 5 (PCGF5), a member of the polycomb group (PcG) protein family and a component of the polycomb repressive complex 1 (PRC1). The current study demonstrates that during early infection, PCGF5 strongly colocalizes with TRP120 in the nucleus and later dramatically redistributes to the ehrlichial vacuole along with other PCGF isoforms. Ectopic expression and immunoprecipitation of TRP120 confirmed the interaction of TRP120 with multiple different PCGF isoforms. At 48 h postinfection, a dramatic redistribution of PCGF isoforms from the nucleus to the ehrlichial vacuole was observed, which also temporally coincided with proteasomal degradation of PCGF isoforms and TRP120 expression on the vacuole. A decrease in PRC1-mediated repressive chromatin mark and an altered transcriptional activity in PRC1-associated Hox genes primarily from HOXB and HOXC clusters were observed along with the degradation of PCGF isoforms, suggesting disruption of the PRC1 in E. chaffeensis-infected cells. Notably, small interfering RNA (siRNA)-mediated knockdown of PCGF isoforms resulted in significantly increased E. chaffeensis infection. This study demonstrates a novel strategy in which E. chaffeensis manipulates PRC complexes through interactions between TRP120 and PCGF isoforms to promote infection.


Asunto(s)
Ehrlichia chaffeensis/fisiología , Ehrlichiosis/metabolismo , Ehrlichiosis/microbiología , Interacciones Huésped-Patógeno , Proteínas del Grupo Polycomb/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Rastreo Celular , Ehrlichiosis/genética , Genes Homeobox , Histonas/metabolismo , Interacciones Huésped-Patógeno/genética , Humanos , Macrófagos/metabolismo , Macrófagos/microbiología , Proteínas del Grupo Polycomb/genética , Isoformas de Proteínas , Proteolisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA