Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
bioRxiv ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39314281

RESUMEN

Rare inherited diseases caused by mutations in the copper transporters SLC31A1 (CTR1) or ATP7A induce copper deficiency in the brain and throughout the body, causing seizures and neurodegeneration in infancy. The mechanistic underpinnings of such neuropathology remains unclear. Here, we characterized the molecular mechanisms by which neuronal cells respond to copper depletion in multiple genetic model systems. Targeted deletion of CTR1 in neuroblastoma clonal cell lines produced copper deficiency that was associated with compromised copper-dependent Golgi and mitochondrial enzymes and a metabolic shift favoring glycolysis over oxidative phosphorylation. Proteomic and transcriptomic analysis revealed simultaneous upregulation of mTORC1 and S6K signaling, along with reduced PERK signaling in CTR1 KO cells. Patterns of gene and protein expression and pharmacogenomics show increased activation of the mTORC1-S6K pathway as a pro-survival mechanism, ultimately resulting in increased protein synthesis as measured by puromycin labeling. These effects of copper depletion were corroborated by spatial transcriptomic profiling of the cerebellum of Atp7a flx/Y :: Vil1 Cre/+ mice, in which copper-deficient Purkinje cells exhibited upregulated protein synthesis machinery and expression of mTORC1-S6K pathway genes. We tested whether increased activity of mTOR in copper-deficient neurons was adaptive or deleterious by genetic epistasis experiments in Drosophila. Copper deficiency dendritic phenotypes in class IV neurons are partially rescued by increased S6k expression or 4E-BP1 (Thor) RNAi, while epidermis phenotypes are exacerbated by Akt, S6k, or raptor RNAi. Overall, we demonstrate that increased mTORC1-S6K pathway activation and protein synthesis is an adaptive mechanism by which neuronal cells respond to copper depletion.

2.
Sci Transl Med ; 16(734): eadg7162, 2024 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-38277467

RESUMEN

Functional loss of TDP-43, an RNA binding protein genetically and pathologically linked to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), leads to the inclusion of cryptic exons in hundreds of transcripts during disease. Cryptic exons can promote the degradation of affected transcripts, deleteriously altering cellular function through loss-of-function mechanisms. Here, we show that mRNA transcripts harboring cryptic exons generated de novo proteins in TDP-43-depleted human iPSC-derived neurons in vitro, and de novo peptides were found in cerebrospinal fluid (CSF) samples from patients with ALS or FTD. Using coordinated transcriptomic and proteomic studies of TDP-43-depleted human iPSC-derived neurons, we identified 65 peptides that mapped to 12 cryptic exons. Cryptic exons identified in TDP-43-depleted human iPSC-derived neurons were predictive of cryptic exons expressed in postmortem brain tissue from patients with TDP-43 proteinopathy. These cryptic exons produced transcript variants that generated de novo proteins. We found that the inclusion of cryptic peptide sequences in proteins altered their interactions with other proteins, thereby likely altering their function. Last, we showed that 18 de novo peptides across 13 genes were present in CSF samples from patients with ALS/FTD spectrum disorders. The demonstration of cryptic exon translation suggests new mechanisms for ALS/FTD pathophysiology downstream of TDP-43 dysfunction and may provide a potential strategy to assay TDP-43 function in patient CSF.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Humanos , Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Demencia Frontotemporal/genética , Péptidos , Proteómica
3.
Mol Neurobiol ; 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37989983

RESUMEN

microRNA-29a (miR-29a) increases with age in humans and mice, and, in the brain, it has a role in neuronal maturation and response to inflammation. We previously found higher miR-29a levels in the human brain to be associated with faster antemortem cognitive decline, suggesting that lowering miR-29a levels could ameliorate memory impairment in the 5×FAD AD mouse model. To test this, we generated an adeno-associated virus (AAV) expressing GFP and a miR-29a "sponge" or empty vector. We found that the AAV expressing miR-29a sponge functionally reduced miR-29a levels and improved measures of memory in the Morris water maze and fear condition paradigms when delivered to the hippocampi of 5×FAD and WT mice. miR-29a sponge significantly reduced hippocampal beta-amyloid deposition in 5×FAD mice and lowered astrocyte and microglia activation in both 5×FAD and WT mice. Using transcriptomic and proteomic sequencing, we identified Plxna1 and Wdfy1 as putative effectors at the transcript and protein level in WT and 5×FAD mice, respectively. These data indicate that lower miR-29a levels mitigate cognitive decline, making miR-29a and its target genes worth further evaluation as targets to mitigate Alzheimer's disease (AD).

4.
Neurobiol Dis ; 186: 106286, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37689213

RESUMEN

Cognitive impairment in the elderly features complex molecular pathophysiology extending beyond the hallmark pathologies of traditional disease classification. Molecular subtyping using large-scale -omic strategies can help resolve this biological heterogeneity. Using quantitative mass spectrometry, we measured ∼8000 proteins across >600 dorsolateral prefrontal cortex tissues with clinical diagnoses of no cognitive impairment (NCI), mild cognitive impairment (MCI), and Alzheimer's disease (AD) dementia. Unbiased classification of MCI and AD cases based on individual proteomic profiles resolved three classes with expression differences across numerous cell types and biological ontologies. Two classes displayed molecular signatures atypical of AD neurodegeneration, such as elevated synaptic and decreased inflammatory markers. In one class, these atypical proteomic features were associated with clinical and pathological hallmarks of cognitive resilience. We were able to replicate these classes and their clinicopathological phenotypes across two additional tissue cohorts. These results promise to better define the molecular heterogeneity of cognitive impairment and meaningfully impact its diagnostic and therapeutic precision.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Anciano , Humanos , Proteoma , Proteómica , Encéfalo
5.
Cell Rep ; 42(8): 112994, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37611586

RESUMEN

SORL1 is implicated in the pathogenesis of Alzheimer's disease (AD) through genetic studies. To interrogate the roles of SORL1 in human brain cells, SORL1-null induced pluripotent stem cells (iPSCs) were differentiated to neuron, astrocyte, microglial, and endothelial cell fates. Loss of SORL1 leads to alterations in both overlapping and distinct pathways across cell types, with the greatest effects in neurons and astrocytes. SORL1 loss induces a neuron-specific reduction in apolipoprotein E (APOE) and clusterin (CLU) and altered lipid profiles. Analyses of iPSCs derived from a large cohort reveal a neuron-specific association between SORL1, APOE, and CLU levels, a finding validated in postmortem brain. Enhancement of retromer-mediated trafficking rescues tau phenotypes observed in SORL1-null neurons but does not rescue APOE levels. Pathway analyses implicate transforming growth factor ß (TGF-ß)/SMAD signaling in SORL1 function, and modulating SMAD signaling in neurons alters APOE RNA levels in a SORL1-dependent manner. Taken together, these data provide a mechanistic link between strong genetic risk factors for AD.


Asunto(s)
Enfermedad de Alzheimer , Clusterina , Humanos , Clusterina/genética , Enfermedad de Alzheimer/genética , Neuronas , Procesos de Crecimiento Celular , Apolipoproteínas E/genética , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas de Transporte de Membrana
6.
Res Sq ; 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37645711

RESUMEN

microRNA-29a (miR-29a) increases with age in humans and mice, and, in the brain, it has a role in neuronal maturation and response to inflammation. We previously associated higher miR-29a levels in human brain with faster antemortem cognitive decline, suggesting that lowering miR-29a levels could ameliorate memory impairment in the 5xFAD AD mouse model. To test this hypothesis, we generated an adeno-associated virus (AAV) expressing GFP and a miR-29a "sponge" or empty vector. We found that the AAV expressing miR-29a sponge functionally reduced miR-29a levels, and improved measures of memory in the Morris water maze and fear condition paradigms when sponge delivered to hippocampi of 5XFAD and WT mice. miR-29a sponge expression significantly reduced hippocampal beta-amyloid deposition in 5XFAD mice and lowered astrocyte and microglia activation in both 5XFAD and WT mice. Using transcriptomic and proteomic sequencing, we identified Plxna1 and Wdfy1 as putative effectors at the transcript and protein level in WT and 5XFAD mice, respectively. These data indicate that miR-29a promotes AD-like neuropathology and negatively regulates cognition, making it and its target genes attractive therapeutic targets for the treatment of neurodegenerative disease.

7.
Nucleic Acids Res ; 51(15): 7972-7987, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37395399

RESUMEN

DNA-dependent protein kinase (DNA-PK) plays a critical role in non-homologous end joining (NHEJ), the predominant pathway that repairs DNA double-strand breaks (DSB) in response to ionizing radiation (IR) to govern genome integrity. The interaction of the catalytic subunit of DNA-PK (DNA-PKcs) with the Ku70/Ku80 heterodimer on DSBs leads to DNA-PK activation; however, it is not known if upstream signaling events govern this activation. Here, we reveal a regulatory step governing DNA-PK activation by SIRT2 deacetylation, which facilitates DNA-PKcs localization to DSBs and interaction with Ku, thereby promoting DSB repair by NHEJ. SIRT2 deacetylase activity governs cellular resistance to DSB-inducing agents and promotes NHEJ. SIRT2 furthermore interacts with and deacetylates DNA-PKcs in response to IR. SIRT2 deacetylase activity facilitates DNA-PKcs interaction with Ku and localization to DSBs and promotes DNA-PK activation and phosphorylation of downstream NHEJ substrates. Moreover, targeting SIRT2 with AGK2, a SIRT2-specific inhibitor, augments the efficacy of IR in cancer cells and tumors. Our findings define a regulatory step for DNA-PK activation by SIRT2-mediated deacetylation, elucidating a critical upstream signaling event initiating the repair of DSBs by NHEJ. Furthermore, our data suggest that SIRT2 inhibition may be a promising rationale-driven therapeutic strategy for increasing the effectiveness of radiation therapy.


Asunto(s)
Roturas del ADN de Doble Cadena , Proteínas Quinasas , ADN/genética , ADN/metabolismo , Reparación del ADN por Unión de Extremidades , Reparación del ADN , Proteína Quinasa Activada por ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Autoantígeno Ku/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Quinasas/genética , Sirtuina 2/genética , Sirtuina 2/metabolismo , Humanos
8.
Mol Cell Proteomics ; 22(6): 100546, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37061046

RESUMEN

Different brain cell types play distinct roles in brain development and disease. Molecular characterization of cell-specific mechanisms using cell type-specific approaches at the protein (proteomic) level can provide biological and therapeutic insights. To overcome the barriers of conventional isolation-based methods for cell type-specific proteomics, in vivo proteomic labeling with proximity-dependent biotinylation of cytosolic proteins using biotin ligase TurboID, coupled with mass spectrometry (MS) of labeled proteins, emerged as a powerful strategy for cell type-specific proteomics in the native state of cells without the need for cellular isolation. To complement in vivo proximity labeling approaches, in vitro studies are needed to ensure that cellular proteomes using the TurboID approach are representative of the whole-cell proteome and capture cellular responses to stimuli without disruption of cellular processes. To address this, we generated murine neuroblastoma (N2A) and microglial (BV2) lines stably expressing cytosolic TurboID to biotinylate the cellular proteome for downstream purification and analysis using MS. TurboID-mediated biotinylation captured 59% of BV2 and 65% of N2A proteomes under homeostatic conditions. TurboID labeled endolysosome, translation, vesicle, and signaling proteins in BV2 microglia and synaptic, neuron projection, and microtubule proteins in N2A neurons. TurboID expression and biotinylation minimally impacted homeostatic cellular proteomes of BV2 and N2A cells and did not affect lipopolysaccharide-mediated cytokine production or resting cellular respiration in BV2 cells. MS analysis of the microglial biotin-labeled proteins captured the impact of lipopolysaccharide treatment (>500 differentially abundant proteins) including increased canonical proinflammatory proteins (Il1a, Irg1, and Oasl1) and decreased anti-inflammatory proteins (Arg1 and Mgl2).


Asunto(s)
Microglía , Proteoma , Animales , Ratones , Microglía/metabolismo , Proteoma/metabolismo , Biotina/metabolismo , Proteómica/métodos , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Línea Celular , Neuronas/metabolismo , Biotinilación
9.
Proc Natl Acad Sci U S A ; 119(24): e2119804119, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35666874

RESUMEN

Single-cell transcriptomics has revealed specific glial activation states associated with the pathogenesis of neurodegenerative diseases, such as Alzheimer's and Parkinson's disease. While these findings may eventually lead to new therapeutic opportunities, little is known about how these glial responses are reflected by biomarker changes in bodily fluids. Such knowledge, however, appears crucial for patient stratification, as well as monitoring disease progression and treatment responses in clinical trials. Here, we took advantage of well-described mouse models of ß-amyloidosis and α-synucleinopathy to explore cerebrospinal fluid (CSF) proteome changes related to their respective proteopathic lesions. Nontargeted liquid chromatography-mass spectrometry revealed that the majority of proteins that undergo age-related changes in CSF of either mouse model were linked to microglia and astrocytes. Specifically, we identified a panel of more than 20 glial-derived proteins that were increased in CSF of aged ß-amyloid precursor protein- and α-synuclein-transgenic mice and largely overlap with previously described disease-associated glial genes identified by single-cell transcriptomics. Our results also show that enhanced shedding is responsible for the increase of several of the identified glial CSF proteins as exemplified for TREM2. Notably, the vast majority of these proteins can also be quantified in human CSF and reveal changes in Alzheimer's disease cohorts. The finding that cellular transcriptome changes translate into corresponding changes of CSF proteins is of clinical relevance, supporting efforts to identify fluid biomarkers that reflect the various functional states of glial responses in cerebral proteopathies, such as Alzheimer's and Parkinson's disease.


Asunto(s)
Enfermedad de Alzheimer , Líquido Cefalorraquídeo , Neuroglía , Enfermedad de Parkinson , Proteoma , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/metabolismo , Animales , Biomarcadores/líquido cefalorraquídeo , Líquido Cefalorraquídeo/metabolismo , Perfilación de la Expresión Génica , Humanos , Ratones , Neuroglía/metabolismo , Enfermedad de Parkinson/líquido cefalorraquídeo , Enfermedad de Parkinson/metabolismo , Proteoma/metabolismo , Análisis de la Célula Individual , Proteínas tau
10.
Nat Commun ; 13(1): 2927, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35614064

RESUMEN

Proteomic profiling of brain cell types using isolation-based strategies pose limitations in resolving cellular phenotypes representative of their native state. We describe a mouse line for cell type-specific expression of biotin ligase TurboID, for in vivo biotinylation of proteins. Using adenoviral and transgenic approaches to label neurons, we show robust protein biotinylation in neuronal soma and axons throughout the brain, allowing quantitation of over 2000 neuron-derived proteins spanning synaptic proteins, transporters, ion channels and disease-relevant druggable targets. Next, we contrast Camk2a-neuron and Aldh1l1-astrocyte proteomes and identify brain region-specific proteomic differences within both cell types, some of which might potentially underlie the selective vulnerability to neurological diseases. Leveraging the cellular specificity of proteomic labeling, we apply an antibody-based approach to uncover differences in neuron and astrocyte-derived signaling phospho-proteins and cytokines. This approach will facilitate the characterization of cell-type specific proteomes in a diverse number of tissues under both physiological and pathological states.


Asunto(s)
Biotina , Proteómica , Animales , Astrocitos/metabolismo , Biotina/metabolismo , Biotinilación , Encéfalo/metabolismo , Ratones , Neuronas/metabolismo , Proteoma/metabolismo
11.
Sci Rep ; 12(1): 3822, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35264593

RESUMEN

Sirtuin 2 (SIRT2) is a NAD+-dependent deacetylase, which regulates multiple biological processes, including genome maintenance, aging, tumor suppression, and metabolism. While a number of substrates involved in these processes have been identified, the global landscape of the SIRT2 acetylome remains unclear. Using a label-free quantitative proteomic approach following enrichment for acetylated peptides from SIRT2-depleted and SIRT2-overexpressing HCT116 human colorectal cancer cells, we identified a total of 2,846 unique acetylation sites from 1414 proteins. 896 sites from 610 proteins showed a > 1.5-fold increase in acetylation with SIRT2 knockdown, and 509 sites from 361 proteins showed a > 1.5-fold decrease in acetylation with SIRT2 overexpression, with 184 proteins meeting both criteria. Sequence motif analyses identified several site-specific consensus sequence motifs preferentially recognized by SIRT2, most commonly KxxxxK(ac). Gene Ontology, KEGG, and MetaCore pathway analyses identified SIRT2 substrates involved in diverse pathways, including carbon metabolism, glycolysis, spliceosome, RNA transport, RNA binding, transcription, DNA damage response, the cell cycle, and colorectal cancer. Collectively, our findings expand on the number of known acetylation sites, substrates, and cellular pathways targeted by SIRT2, providing support for SIRT2 in regulating networks of proteins in diverse pathways and opening new avenues of investigation into SIRT2 function.


Asunto(s)
Neoplasias Colorrectales , Proteómica , Sirtuina 2 , Acetilación , Neoplasias Colorrectales/genética , Humanos , Lisina/metabolismo , Proteínas/metabolismo , Sirtuina 2/genética
12.
Brain ; 145(6): 1924-1938, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34919634

RESUMEN

The locus coeruleus is the initial site of Alzheimer's disease neuropathology, with hyperphosphorylated Tau appearing in early adulthood followed by neurodegeneration in dementia. Locus coeruleus dysfunction contributes to Alzheimer's pathobiology in experimental models, which can be rescued by increasing norepinephrine transmission. To test norepinephrine augmentation as a potential disease-modifying therapy, we performed a biomarker-driven phase II trial of atomoxetine, a clinically-approved norepinephrine transporter inhibitor, in subjects with mild cognitive impairment due to Alzheimer's disease. The design was a single-centre, 12-month double-blind crossover trial. Thirty-nine participants with mild cognitive impairment and biomarker evidence of Alzheimer's disease were randomized to atomoxetine or placebo treatment. Assessments were collected at baseline, 6- (crossover) and 12-months (completer). Target engagement was assessed by CSF and plasma measures of norepinephrine and metabolites. Prespecified primary outcomes were CSF levels of IL1α and TECK. Secondary/exploratory outcomes included clinical measures, CSF analyses of amyloid-ß42, Tau, and pTau181, mass spectrometry proteomics and immune-based targeted inflammation-related cytokines, as well as brain imaging with MRI and fluorodeoxyglucose-PET. Baseline demographic and clinical measures were similar across trial arms. Dropout rates were 5.1% for atomoxetine and 2.7% for placebo, with no significant differences in adverse events. Atomoxetine robustly increased plasma and CSF norepinephrine levels. IL-1α and TECK were not measurable in most samples. There were no significant treatment effects on cognition and clinical outcomes, as expected given the short trial duration. Atomoxetine was associated with a significant reduction in CSF Tau and pTau181 compared to placebo, but not associated with change in amyloid-ß42. Atomoxetine treatment also significantly altered CSF abundances of protein panels linked to brain pathophysiologies, including synaptic, metabolism and glial immunity, as well as inflammation-related CDCP1, CD244, TWEAK and osteoprotegerin proteins. Treatment was also associated with significantly increased brain-derived neurotrophic factor and reduced triglycerides in plasma. Resting state functional MRI showed significantly increased inter-network connectivity due to atomoxetine between the insula and the hippocampus. Fluorodeoxyglucose-PET showed atomoxetine-associated increased uptake in hippocampus, parahippocampal gyrus, middle temporal pole, inferior temporal gyrus and fusiform gyrus, with carry-over effects 6 months after treatment. In summary, atomoxetine treatment was safe, well tolerated and achieved target engagement in prodromal Alzheimer's disease. Atomoxetine significantly reduced CSF Tau and pTau, normalized CSF protein biomarker panels linked to synaptic function, brain metabolism and glial immunity, and increased brain activity and metabolism in key temporal lobe circuits. Further study of atomoxetine is warranted for repurposing the drug to slow Alzheimer's disease progression.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Adolescente , Adulto , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides , Antígenos de Neoplasias , Clorhidrato de Atomoxetina/uso terapéutico , Biomarcadores , Moléculas de Adhesión Celular , Disfunción Cognitiva/patología , Estudios Cruzados , Método Doble Ciego , Reposicionamiento de Medicamentos , Humanos , Inflamación , Persona de Mediana Edad , Neuroprotección , Norepinefrina , Proteínas tau
13.
Elife ; 102021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34018922

RESUMEN

Neurofibrillary tangles composed of hyperphosphorylated tau and synaptic dysfunction are characteristics of Alzheimer's disease (AD). However, the underlying molecular mechanisms remain poorly understood. Here, we identified Amphiphysin I mediates both tau phosphorylation and synaptic dysfunction in AD. Amphiphysin I is cleaved by a cysteine proteinase asparagine endopeptidase (AEP) at N278 in the brains of AD patients. The amount of AEP-generated N-terminal fragment of Amphiphysin I (1-278) is increased with aging. Amphiphysin I (1-278) inhibits clathrin-mediated endocytosis and induces synaptic dysfunction. Furthermore, Amphiphysin I (1-278) binds p35 and promotes its transition to p25, thus activates CDK5 and enhances tau hyperphosphorylation. Overexpression of Amphiphysin I (1-278) in the hippocampus of Tau P301S mice induces synaptic dysfunction, tau hyperphosphorylation, and cognitive deficits. However, overexpression of the N278A mutant Amphiphysin I, which resists the AEP-mediated cleavage, alleviates the pathological and behavioral defects. These findings suggest a mechanism of tau hyperphosphorylation and synaptic dysfunction in AD.


Asunto(s)
Enfermedad de Alzheimer/enzimología , Encéfalo/enzimología , Cisteína Endopeptidasas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/enzimología , Sinapsis/enzimología , Proteínas tau/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Animales , Conducta Animal , Encéfalo/fisiopatología , Encéfalo/ultraestructura , Células COS , Estudios de Casos y Controles , Chlorocebus aethiops , Cognición , Quinasa 5 Dependiente de la Ciclina/metabolismo , Cisteína Endopeptidasas/genética , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Aprendizaje por Laberinto , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Neuronas/ultraestructura , Fosforilación , Ratas , Sinapsis/ultraestructura , Proteínas tau/genética
14.
Alzheimers Dement ; 17(6): 984-1004, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33480174

RESUMEN

Intron retention (IR) has been implicated in the pathogenesis of complex diseases such as cancers; its association with Alzheimer's disease (AD) remains unexplored. We performed genome-wide analysis of IR through integrating genetic, transcriptomic, and proteomic data of AD subjects and mouse models from the Accelerating Medicines Partnership-Alzheimer's Disease project. We identified 4535 and 4086 IR events in 2173 human and 1736 mouse genes, respectively. Quantitation of IR enabled the identification of differentially expressed genes that conventional exon-level approaches did not reveal. There were significant correlations of intron expression within innate immune genes, like HMBOX1, with AD in humans. Peptides with a high probability of translation from intron-retained mRNAs were identified using mass spectrometry. Further, we established AD-specific intron expression Quantitative Trait Loci, and identified splicing-related genes that may regulate IR. Our analysis provides a novel resource for the search for new AD biomarkers and pathological mechanisms.


Asunto(s)
Enfermedad de Alzheimer , Autopsia , Encéfalo/patología , Modelos Animales de Enfermedad , Genómica , Intrones/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales , Proteínas de Homeodominio/genética , Humanos , Ratones , Proteómica , Sitios de Carácter Cuantitativo , Transcriptoma
15.
Mol Neurodegener ; 15(1): 28, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32381088

RESUMEN

BACKGROUND: Proteomic characterization of microglia provides the most proximate assessment of functionally relevant molecular mechanisms of neuroinflammation. However, microglial proteomics studies have been limited by low cellular yield and contamination by non-microglial proteins using existing enrichment strategies. METHODS: We coupled magnetic-activated cell sorting (MACS) and fluorescence activated cell sorting (FACS) of microglia with tandem mass tag-mass spectrometry (TMT-MS) to obtain a highly-pure microglial proteome and identified a core set of highly-abundant microglial proteins in adult mouse brain. We interrogated existing human proteomic data for Alzheimer's disease (AD) relevance of highly-abundant microglial proteins and performed immuno-histochemical and in-vitro validation studies. RESULTS: Quantitative multiplexed proteomics by TMT-MS of CD11b + MACS-enriched (N = 5 mice) and FACS-isolated (N = 5 mice), from adult wild-type mice, identified 1791 proteins. A total of 203 proteins were highly abundant in both datasets, representing a core-set of highly abundant microglial proteins. In addition, we found 953 differentially enriched proteins comparing MACS and FACS-based approaches, indicating significant differences between both strategies. The FACS-isolated microglia proteome was enriched with cytosolic, endoplasmic reticulum, and ribosomal proteins involved in protein metabolism and immune system functions, as well as an abundance of canonical microglial proteins. Conversely, the MACS-enriched microglia proteome was enriched with mitochondrial and synaptic proteins and higher abundance of neuronal, oligodendrocytic and astrocytic proteins. From the 203 consensus microglial proteins with high abundance in both datasets, we confirmed microglial expression of moesin (Msn) in wild-type and 5xFAD mouse brains as well as in human AD brains. Msn expression is nearly exclusively found in microglia that surround Aß plaques in 5xFAD brains. In in-vitro primary microglial studies, Msn silencing by siRNA decreased Aß phagocytosis and increased lipopolysaccharide-induced production of the pro-inflammatory cytokine, tumor necrosis factor (TNF). In network analysis of human brain proteomic data, Msn was a hub protein of an inflammatory co-expression module positively associated with AD neuropathological features and cognitive dysfunction. CONCLUSIONS: Using FACS coupled with TMT-MS as the method of choice for microglial proteomics, we define a core set of highly-abundant adult microglial proteins. Among these, we validate Msn as highly-abundant in plaque-associated microglia with relevance to human AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Citometría de Flujo , Macrófagos/metabolismo , Proteínas de Microfilamentos/metabolismo , Microglía/metabolismo , Animales , Encéfalo/metabolismo , Disfunción Cognitiva/patología , Modelos Animales de Enfermedad , Retículo Endoplásmico/metabolismo , Citometría de Flujo/métodos , Humanos , Ratones , Proteómica/métodos
16.
Oncogene ; 39(25): 4798-4813, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32457468

RESUMEN

Small cell lung cancer (SCLC) is a highly aggressive malignancy with poor outcomes associated with resistance to cisplatin-based chemotherapy. Enhancer of zeste homolog 2 (EZH2) is the catalytic subunit of polycomb repressive complex 2 (PRC2), which silences transcription through trimethylation of histone H3 lysine 27 (H3K27me3) and has emerged as an important therapeutic target with inhibitors targeting its methyltransferase activity under clinical investigation. Here, we show that EZH2 has a non-catalytic and PRC2-independent role in stabilizing DDB2 to promote nucleotide excision repair (NER) and govern cisplatin resistance in SCLC. Using a synthetic lethality screen, we identified important regulators of cisplatin resistance in SCLC cells, including EZH2. EZH2 depletion causes cellular cisplatin and UV hypersensitivity in an epistatic manner with DDB1-DDB2. EZH2 complexes with DDB1-DDB2 and promotes DDB2 stability by impairing its ubiquitination independent of methyltransferase activity or PRC2, thereby facilitating DDB2 localization to cyclobutane pyrimidine dimer crosslinks to govern their repair. Furthermore, targeting EZH2 for depletion with DZNep strongly sensitizes SCLC cells and tumors to cisplatin. Our findings reveal a non-catalytic and PRC2-independent function for EZH2 in promoting NER through DDB2 stabilization, suggesting a rationale for targeting EZH2 beyond its catalytic activity for overcoming cisplatin resistance in SCLC.


Asunto(s)
Reparación del ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Cisplatino/uso terapéutico , ADN/genética , ADN/metabolismo , Reparación del ADN/efectos de los fármacos , Proteínas de Unión al ADN/genética , Resistencia a Antineoplásicos/genética , Proteína Potenciadora del Homólogo Zeste 2/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Complejo Represivo Polycomb 2/genética , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/metabolismo
17.
Sci Rep ; 9(1): 12546, 2019 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-31467399

RESUMEN

While evidence supporting the notion that exposures to heavy ion radiation increase the risk for cancer and other disease development is accumulating, the underlying biological mechanisms remain poorly understood. To identify novel phenotypes that persist over time that may be related to increased disease development risk, we performed a quantitative global proteome analysis of immortalized human bronchial epithelial cells (HBEC3-KT) at day 7 post exposure to 0.5 Gy Fe ion (600 MeV/nucleon, Linear Energy Transfer (LET) = 175 keV/µm). The analysis revealed a significant increase in the expression of 4 enzymes of the cholesterol biosynthesis pathway. Elevated expression of enzymes of the cholesterol pathway was associated with increased cholesterol levels in irradiated cells and in lung tissue measured by a biochemical method and by filipin staining of cell-bound cholesterol. While a 1 Gy dose of Fe ion was sufficient to induce a robust response, a dose of 5 Gy X-rays was necessary to induce a similar cholesterol accumulation in HBEC3-KT cells. Radiation-increased cholesterol levels were reduced by treatment with inhibitors affecting the activity of enzymes in the biosynthesis pathway. To examine the implications of this finding for radiotherapy exposures, we screened a panel of lung cancer cell lines for cholesterol levels following exposure to X-rays. We identified a subset of cell lines that increased cholesterol levels in response to 5 Gy X-rays. Survival studies revealed that statin treatment is radioprotective, suggesting that cholesterol increases are associated with cytotoxicity. In summary, our findings uncovered a novel radiation-induced response, which may modify radiation treatment outcomes and contribute to risk for radiation-induced cardiovascular disease and carcinogenesis.


Asunto(s)
Colesterol/biosíntesis , Pulmón/metabolismo , Pulmón/efectos de la radiación , Línea Celular , Humanos , Pulmón/citología , Fenotipo
18.
Nat Commun ; 10(1): 3213, 2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-31324785

RESUMEN

Ribonucleotide reductase (RNR) catalyzes the de novo synthesis of deoxyribonucleoside diphosphates (dNDPs) to provide dNTP precursors for DNA synthesis. Here, we report that acetylation and deacetylation of the RRM2 subunit of RNR acts as a molecular switch that impacts RNR activity, dNTP synthesis, and DNA replication fork progression. Acetylation of RRM2 at K95 abrogates RNR activity by disrupting its homodimer assembly. RRM2 is directly acetylated by KAT7, and deacetylated by Sirt2, respectively. Sirt2, which level peak in S phase, sustains RNR activity at or above a threshold level required for dNTPs synthesis. We also find that radiation or camptothecin-induced DNA damage promotes RRM2 deacetylation by enhancing Sirt2-RRM2 interaction. Acetylation of RRM2 at K95 results in the reduction of the dNTP pool, DNA replication fork stalling, and the suppression of tumor cell growth in vitro and in vivo. This study therefore identifies acetylation as a regulatory mechanism governing RNR activity.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Ribonucleótido Reductasas/metabolismo , Acetilación , Camptotecina/farmacología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/genética , Daño del ADN/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Histona Acetiltransferasas/metabolismo , Humanos , Ribonucleósido Difosfato Reductasa/metabolismo , Ribonucleótido Reductasas/genética , Fase S/efectos de los fármacos , Sirtuina 2/metabolismo
19.
Nat Commun ; 10(1): 701, 2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30741923

RESUMEN

Polyubiquitination promotes proteasomal degradation, or signaling and localization, of targeted proteins. Here we show that the E3 ubiquitin ligase Hectd3 is necessary for pathogenic Th17 cell generation in experimental autoimmune encephalomyelitis (EAE), a mouse model for human multiple sclerosis. Hectd3-deficient mice have lower EAE severity, reduced Th17 program and inefficient Th17 cell differentiation. However, Stat3, but not RORγt, has decreased polyubiquitination, as well as diminished tyrosine-705 activating phosphorylation. Additionally, non-degradative polyubiquitination of Malt1, critical for NF-κB activation and Th17 cell function, is reduced. Mechanistically, Hectd3 promotes K27-linked and K29-linked polyubiquitin chains on Malt1, and K27-linked polyubiquitin chains on Stat3. Moreover, Stat3 K180 and Malt1 K648 are targeted by Hectd3 for non-degradative polyubiquitination to mediate robust generation of RORγt+IL-17Ahi effector CD4+ T cells. Thus, our studies delineate a mechanism connecting signaling related polyubiquitination of Malt1 and Stat3, leading to NF-kB activation and RORγt expression, to pathogenic Th17 cell function in EAE.


Asunto(s)
Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/metabolismo , Factor de Transcripción STAT3/metabolismo , Células Th17/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Linfocitos T CD4-Positivos/metabolismo , Diferenciación Celular/efectos de los fármacos , Encefalomielitis Autoinmune Experimental/metabolismo , Femenino , Células HEK293 , Humanos , Células Jurkat , Masculino , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/metabolismo , FN-kappa B/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Fosforilación , Proteómica , Transducción de Señal/efectos de los fármacos , Médula Espinal/metabolismo , Médula Espinal/patología , Células Th17/efectos de los fármacos , Ubiquitina-Proteína Ligasas/farmacología , Ubiquitinación , Virulencia
20.
Nat Neurosci ; 21(2): 228-239, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29311743

RESUMEN

The cytoplasmic mislocalization and aggregation of TAR DNA-binding protein-43 (TDP-43) is a common histopathological hallmark of the amyotrophic lateral sclerosis and frontotemporal dementia disease spectrum (ALS/FTD). However, the composition of aggregates and their contribution to the disease process remain unknown. Here we used proximity-dependent biotin identification (BioID) to interrogate the interactome of detergent-insoluble TDP-43 aggregates and found them enriched for components of the nuclear pore complex and nucleocytoplasmic transport machinery. Aggregated and disease-linked mutant TDP-43 triggered the sequestration and/or mislocalization of nucleoporins and transport factors, and interfered with nuclear protein import and RNA export in mouse primary cortical neurons, human fibroblasts and induced pluripotent stem cell-derived neurons. Nuclear pore pathology is present in brain tissue in cases of sporadic ALS and those involving genetic mutations in TARDBP and C9orf72. Our data strongly implicate TDP-43-mediated nucleocytoplasmic transport defects as a common disease mechanism in ALS/FTD.


Asunto(s)
Transporte Activo de Núcleo Celular/fisiología , Esclerosis Amiotrófica Lateral , Corteza Cerebral/citología , Proteínas de Unión al ADN/metabolismo , Demencia Frontotemporal , Poro Nuclear/metabolismo , Transporte Activo de Núcleo Celular/genética , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Animales Modificados Genéticamente , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Proteína C9orf72/ultraestructura , Células Cultivadas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/ultraestructura , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrión no Mamífero , Femenino , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/patología , Humanos , Larva , Masculino , Ratones , Ratones Endogámicos C57BL , Neuroblastoma/patología , Membrana Nuclear/patología , Membrana Nuclear/ultraestructura , Poro Nuclear/genética , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA