Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4325, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773071

RESUMEN

Hematopoietic stem cell (HSC) mutations can result in clonal hematopoiesis (CH) with heterogeneous clinical outcomes. Here, we investigate how the cell state preceding Tet2 mutation impacts the pre-malignant phenotype. Using an inducible system for clonal analysis of myeloid progenitors, we find that the epigenetic features of clones at similar differentiation status are highly heterogeneous and functionally respond differently to Tet2 mutation. Cell differentiation stage also influences Tet2 mutation response indicating that the cell of origin's epigenome modulates clone-specific behaviors in CH. Molecular features associated with higher risk outcomes include Sox4 that sensitizes cells to Tet2 inactivation, inducing dedifferentiation, altered metabolism and increasing the in vivo clonal output of mutant cells, as confirmed in primary GMP and HSC models. Our findings validate the hypothesis that epigenetic features can predispose specific clones for dominance, explaining why identical genetic mutations can result in different phenotypes.


Asunto(s)
Proteínas de Unión al ADN , Dioxigenasas , Epigénesis Genética , Células Madre Hematopoyéticas , Mutación , Proteínas Proto-Oncogénicas , Dioxigenasas/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Animales , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Humanos , Hematopoyesis/genética , Ratones , Diferenciación Celular/genética
2.
Cell ; 186(18): 3882-3902.e24, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37597510

RESUMEN

Inflammation can trigger lasting phenotypes in immune and non-immune cells. Whether and how human infections and associated inflammation can form innate immune memory in hematopoietic stem and progenitor cells (HSPC) has remained unclear. We found that circulating HSPC, enriched from peripheral blood, captured the diversity of bone marrow HSPC, enabling investigation of their epigenomic reprogramming following coronavirus disease 2019 (COVID-19). Alterations in innate immune phenotypes and epigenetic programs of HSPC persisted for months to 1 year following severe COVID-19 and were associated with distinct transcription factor (TF) activities, altered regulation of inflammatory programs, and durable increases in myelopoiesis. HSPC epigenomic alterations were conveyed, through differentiation, to progeny innate immune cells. Early activity of IL-6 contributed to these persistent phenotypes in human COVID-19 and a mouse coronavirus infection model. Epigenetic reprogramming of HSPC may underlie altered immune function following infection and be broadly relevant, especially for millions of COVID-19 survivors.


Asunto(s)
COVID-19 , Memoria Epigenética , Síndrome Post Agudo de COVID-19 , Animales , Humanos , Ratones , Diferenciación Celular , COVID-19/inmunología , Modelos Animales de Enfermedad , Células Madre Hematopoyéticas , Inflamación/genética , Inmunidad Entrenada , Monocitos/inmunología , Síndrome Post Agudo de COVID-19/genética , Síndrome Post Agudo de COVID-19/inmunología , Síndrome Post Agudo de COVID-19/patología
3.
bioRxiv ; 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37034577

RESUMEN

Cis-regulatory elements control gene expression and are dynamic in their structure, reflecting changes to the composition of diverse effector proteins over time1-3. Here we sought to connect the structural changes at cis-regulatory elements to alterations in cellular fate and function. To do this we developed PRINT, a computational method that uses deep learning to correct sequence bias in chromatin accessibility data and identifies multi-scale footprints of DNA-protein interactions. We find that multi-scale footprints enable more accurate inference of TF and nucleosome binding. Using PRINT with single-cell multi-omics, we discover wide-spread changes to the structure and function of candidate cis-regulatory elements (cCREs) across hematopoiesis, wherein nucleosomes slide, expose DNA for TF binding, and promote gene expression. Activity segmentation using the co-variance across cell states identifies "sub-cCREs" as modular cCRE subunits of regulatory DNA. We apply this single-cell and PRINT approach to characterize the age-associated alterations to cCREs within hematopoietic stem cells (HSCs). Remarkably, we find a spectrum of aging alterations among HSCs corresponding to a global gain of sub-cCRE activity while preserving cCRE accessibility. Collectively, we reveal the functional importance of cCRE structure across cell states, highlighting changes to gene regulation at single-cell and single-base-pair resolution.

4.
Nature ; 601(7891): 85-91, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34912115

RESUMEN

The state and behaviour of a cell can be influenced by both genetic and environmental factors. In particular, tumour progression is determined by underlying genetic aberrations1-4 as well as the makeup of the tumour microenvironment5,6. Quantifying the contributions of these factors requires new technologies that can accurately measure the spatial location of genomic sequence together with phenotypic readouts. Here we developed slide-DNA-seq, a method for capturing spatially resolved DNA sequences from intact tissue sections. We demonstrate that this method accurately preserves local tumour architecture and enables the de novo discovery of distinct tumour clones and their copy number alterations. We then apply slide-DNA-seq to a mouse model of metastasis and a primary human cancer, revealing that clonal populations are confined to distinct spatial regions. Moreover, through integration with spatial transcriptomics, we uncover distinct sets of genes that are associated with clone-specific genetic aberrations, the local tumour microenvironment, or both. Together, this multi-modal spatial genomics approach provides a versatile platform for quantifying how cell-intrinsic and cell-extrinsic factors contribute to gene expression, protein abundance and other cellular phenotypes.


Asunto(s)
Células Clonales/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Genómica/métodos , Animales , Células Clonales/patología , Variaciones en el Número de Copia de ADN/genética , Humanos , Ratones , Fenotipo , RNA-Seq , Análisis de Secuencia de ADN , Transcripción Genética , Transcriptoma
5.
Sci Adv ; 6(17): eaaz4370, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32494643

RESUMEN

During stress, global translation is reduced, but specific transcripts are actively translated. How stress-responsive mRNAs are selectively translated is unknown. We show that METL-5 methylates adenosine 1717 on 18S ribosomal RNA in C. elegans, enhancing selective ribosomal binding and translation of specific mRNAs. One of these mRNAs, CYP-29A3, oxidizes the omega-3 polyunsaturated fatty acid eicosapentaenoic acid to eicosanoids, key stress signaling molecules. While metl-5-deficient animals grow normally under homeostatic conditions, they are resistant to a variety of stresses. metl-5 mutant worms also show reduced bioactive lipid eicosanoids and dietary supplementation of eicosanoid products of CYP-29A3 restores stress sensitivity of metl-5 mutant worms. Thus, methylation of a specific residue of 18S rRNA by METL-5 selectively enhances translation of cyp-29A3 to increase production of eicosanoids, and blocking this pathway increases stress resistance. This study suggests that ribosome methylation can facilitate selective translation, providing another layer of regulation of the stress response.

6.
Oncogene ; 38(13): 2337-2350, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30510232

RESUMEN

Emerging evidence has shown that both prostatic basal and luminal cells are able to initiate oncogenic transformation. However, despite the diversity of tumor-initiating cells, most prostate cancer cells express the androgen receptor (AR) and depend on androgens for their growth and expansion, implicating an essential role of androgen signaling in prostate tumorigenesis. Prostatic basal cells express p63 and are able to differentiate into luminal, neuroendocrine, and basal cells. Here, we directly assessed the essential role of androgen signaling in prostatic p63-expressing cell initiated oncogenic transformation and tumor formation. Using novel and relevant mouse models, we demonstrated that, with stabilized ß-catenin expression, prostatic p63-expressing cells possess the ability to initiate oncogenic transformation and, in the presence of androgens, they further transdifferentiate into luminal-like tumor cells and develop adenocarcinomas. Castration prior to activating stabilized ß-catenin sensitizes p63-expressing cells and increases their sensitivity to androgens, resulting in aggressive and fast growing tumor phenotypes. These findings are consistent with what have been observed in human prostate cancers, demonstrating an essential role for androgen signaling in prostate cancer initiation and progression. This study also provides fresh insight into developing new therapeutic strategies for better treating prostate cancer patients.


Asunto(s)
Andrógenos/fisiología , Transformación Celular Neoplásica , Células Madre Neoplásicas/fisiología , Neoplasias de la Próstata/patología , Andrógenos/metabolismo , Animales , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Progresión de la Enfermedad , Embrión de Mamíferos , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Células Madre Neoplásicas/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Células del Estroma/patología , Células del Estroma/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA