Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Mol Sci ; 22(3)2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33572987

RESUMEN

Glycosyltransferases (GTs) catalyze the synthesis of glycosidic linkages and are essential in the biosynthesis of glycans, glycoconjugates (glycolipids and glycoproteins), and glycosides. Plant genomes generally encode many more GTs than animal genomes due to the synthesis of a cell wall and a wide variety of glycosylated secondary metabolites. The Arabidopsis thaliana genome is predicted to encode over 573 GTs that are currently classified into 42 diverse families. The biochemical functions of most of these GTs are still unknown. In this study, we updated the JBEI Arabidopsis GT clone collection by cloning an additional 105 GT cDNAs, 508 in total (89%), into Gateway-compatible vectors for downstream characterization. We further established a functional analysis pipeline using transient expression in tobacco (Nicotiana benthamiana) followed by enzymatic assays, fractionation of enzymatic products by reversed-phase HPLC (RP-HPLC) and characterization by mass spectrometry (MS). Using the GT14 family as an exemplar, we outline a strategy for identifying effective substrates of GT enzymes. By addition of UDP-GlcA as donor and the synthetic acceptors galactose-nitrobenzodiazole (Gal-NBD), ß-1,6-galactotetraose (ß-1,6-Gal4) and ß-1,3-galactopentose (ß-1,3-Gal5) to microsomes expressing individual GT14 enzymes, we verified the ß-glucuronosyltransferase (GlcAT) activity of three members of this family (AtGlcAT14A, B, and E). In addition, a new family member (AT4G27480, 248) was shown to possess significantly higher activity than other GT14 enzymes. Our data indicate a likely role in arabinogalactan-protein (AGP) biosynthesis for these GT14 members. Together, the updated Arabidopsis GT clone collection and the biochemical analysis pipeline present an efficient means to identify and characterize novel GT catalytic activities.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Glicosiltransferasas/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Pared Celular/genética , Pared Celular/metabolismo , Genoma de Planta , Glicosiltransferasas/metabolismo , Mucoproteínas/genética , Mucoproteínas/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especificidad por Sustrato
2.
Hum Mol Genet ; 28(21): 3543-3551, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31423530

RESUMEN

We report the case of a consanguineous couple who lost four pregnancies associated with skeletal dysplasia. Radiological examination of one fetus was inconclusive. Parental exome sequencing showed that both parents were heterozygous for a novel missense variant, p.(Pro133Leu), in the SLC35D1 gene encoding a nucleotide sugar transporter. The affected fetus was homozygous for the variant. The radiological features were reviewed, and being similar, but atypical, the phenotype was classified as a 'Schneckenbecken-like dysplasia.' The effect of the missense change was assessed using protein modelling techniques and indicated alterations in the mouth of the solute channel. A detailed biochemical investigation of SLC35D1 transport function and that of the missense variant p.(Pro133Leu) revealed that SLC35D1 acts as a general UDP-sugar transporter and that the p.(Pro133Leu) mutation resulted in a significant decrease in transport activity. The reduced transport activity observed for p.(Pro133Leu) was contrasted with in vitro activity for SLC35D1 p.(Thr65Pro), the loss-of-function mutation was associated with Schneckenbecken dysplasia. The functional classification of SLC35D1 as a general nucleotide sugar transporter of the endoplasmic reticulum suggests an expanded role for this transporter beyond chondroitin sulfate biosynthesis to a variety of important glycosylation reactions occurring in the endoplasmic reticulum.


Asunto(s)
Enfermedades Fetales/genética , Proteínas de Transporte de Monosacáridos/genética , Osteocondrodisplasias/genética , Alelos , Animales , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Femenino , Enfermedades Fetales/metabolismo , Enfermedades Fetales/patología , Heterocigoto , Humanos , Mutación con Pérdida de Función , Masculino , Ratones , Proteínas de Transporte de Monosacáridos/metabolismo , Mutación Missense , Osteocondrodisplasias/embriología , Osteocondrodisplasias/metabolismo
3.
J Biol Chem ; 294(26): 10042-10054, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31118275

RESUMEN

Nucleotide sugar transporters (NSTs) regulate the flux of activated sugars from the cytosol into the lumen of the Golgi apparatus where glycosyltransferases use them for the modification of proteins, lipids, and proteoglycans. It has been well-established that NSTs are antiporters that exchange nucleotide sugars with the respective nucleoside monophosphate. Nevertheless, information about the molecular basis of ligand recognition and transport is scarce. Here, using topology predictors, cysteine-scanning mutagenesis, expression of GFP-tagged protein variants, and phenotypic complementation of the yeast strain Kl3, we identified residues involved in the activity of a mouse UDP-GlcNAc transporter, murine solute carrier family 35 member A3 (mSlc35a3). We specifically focused on the putative transmembrane helix 2 (TMH2) and observed that cells expressing E47C or K50C mSlc35a3 variants had lower levels of GlcNAc-containing glycoconjugates than WT cells, indicating impaired UDP-GlcNAc transport activity of these two variants. A conservative substitution analysis revealed that single or double substitutions of Glu-47 and Lys-50 do not restore GlcNAc glycoconjugates. Analysis of mSlc35a3 and its genetic variants reconstituted into proteoliposomes disclosed the following: (i) all variants act as UDP-GlcNAc/UMP antiporters; (ii) conservative substitutions (E47D, E47Q, K50R, or K50H) impair UDP-GlcNAc uptake; and (iii) substitutions of Glu-47 and Lys-50 dramatically alter kinetic parameters, consistent with a critical role of these two residues in mSlc35a3 function. A bioinformatics analysis revealed that an EXXK motif in TMH2 is highly conserved across SLC35 A subfamily members, and a 3D-homology model predicted that Glu-47 and Lys-50 are facing the central cavity of the protein.


Asunto(s)
Ácido Glutámico/metabolismo , Lisina/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIc/metabolismo , Uridina Difosfato N-Acetilglucosamina/metabolismo , Uridina Monofosfato/metabolismo , Secuencia de Aminoácidos , Animales , Aparato de Golgi/metabolismo , Transporte Iónico , Ratones , Modelos Moleculares , Conformación Proteica , Homología de Secuencia , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIc/química , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIc/genética , Uridina Difosfato N-Acetilglucosamina/genética
4.
Plant Cell Physiol ; 59(12): 2624-2636, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30184190

RESUMEN

Pectin is a major component of primary cell walls and performs a plethora of functions crucial for plant growth, development and plant-defense responses. Despite the importance of pectic polysaccharides their biosynthesis is poorly understood. Several genes have been implicated in pectin biosynthesis by mutant analysis, but biochemical activity has been shown for very few. We used reverse genetics and biochemical analysis to study members of Glycosyltransferase Family 92 (GT92) in Arabidopsis thaliana. Biochemical analysis gave detailed insight into the properties of GALS1 (Galactan synthase 1) and showed galactan synthase activity of GALS2 and GALS3. All proteins are responsible for adding galactose onto existing galactose residues attached to the rhamnogalacturonan-I (RG-I) backbone. Significant GALS activity was observed with galactopentaose as acceptor but longer acceptors are favored. Overexpression of the GALS proteins in Arabidopsis resulted in accumulation of unbranched ß-1, 4-galactan. Plants in which all three genes were inactivated had no detectable ß-1, 4-galactan, and surprisingly these plants exhibited no obvious developmental phenotypes under standard growth conditions. RG-I in the triple mutants retained branching indicating that the initial Gal substitutions on the RG-I backbone are added by enzymes different from GALS.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Galactanos/metabolismo , Glicosiltransferasas/metabolismo , Arabidopsis/genética , Pared Celular/metabolismo , Genes de Plantas , Aparato de Golgi/metabolismo , Hojas de la Planta/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Fracciones Subcelulares/metabolismo , Especificidad por Sustrato , Nicotiana/metabolismo
5.
Methods Mol Biol ; 1696: 217-234, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29086407

RESUMEN

The purification of a functional soluble protein from biological or in vitro expression systems can be problematic and the enrichment of a functional membrane protein for biochemical analyses can be a serious technical challenge. Recently we have been characterizing plant endomembrane nucleotide sugar transporters using a yeast expression system. However, rather than enriching these in vitro expressed proteins to homogeneity, we have been conducting biochemical characterization of these transport proteins in yeast microsomal fractions. While this approach has enabled us to estimate a variety of kinetic parameters, the accurate determination of the turnover number of an enzyme-substrate complex (k cat) requires that the catalytic site concentration (amount of protein) in the total reaction volume is known. As a result, we have been employing targeted proteomics (multiple reaction monitoring) with peptide standards and a triple quadrupole mass spectrometer to estimate the absolute amount of protein in a mixed protein microsomal fraction. The following method details the steps required to define the absolute quantitation of an in vitro expressed membrane protein to define complete kinetic parameters.


Asunto(s)
Proteínas de la Membrana/análisis , Proteínas de Plantas/análisis , Proteómica/métodos , Saccharomyces cerevisiae/crecimiento & desarrollo , Cromatografía Liquida , Técnicas In Vitro , Cinética , Péptidos/análisis , Proteínas de Plantas/genética , Saccharomyces cerevisiae/genética , Espectrometría de Masas en Tándem
6.
BMC Plant Biol ; 16: 90, 2016 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-27091363

RESUMEN

BACKGROUND: Pectins are a group of structurally complex plant cell wall polysaccharides whose biosynthesis and function remain poorly understood. The pectic polysaccharide rhamnogalacturonan-I (RG-I) has two types of arabinogalactan side chains, type-I and type-II arabinogalactans. To date few enzymes involved in the biosynthesis of pectin have been described. Here we report the identification of a highly conserved putative glycosyltransferase encoding gene, Pectic ArabinoGalactan synthesis-Related (PAGR), affecting the biosynthesis of RG-I arabinogalactans and critical for pollen tube growth. RESULTS: T-DNA insertions in PAGR were identified in Arabidopsis thaliana and were found to segregate at a 1:1 ratio of heterozygotes to wild type. We were unable to isolate homozygous pagr mutants as pagr mutant alleles were not transmitted via pollen. In vitro pollen germination assays revealed reduced rates of pollen tube formation in pollen from pagr heterozygotes. To characterize a loss-of-function phenotype for PAGR, the Nicotiana benthamiana orthologs, NbPAGR-A and B, were transiently silenced using Virus Induced Gene Silencing. NbPAGR-silenced plants exhibited reduced internode and petiole expansion. Cell wall materials from NbPAGR-silenced plants had reduced galactose content compared to the control. Immunological and linkage analyses support that RG-I has reduced type-I arabinogalactan content and reduced branching of the RG-I backbone in NbPAGR-silenced plants. Arabidopsis lines overexpressing PAGR exhibit pleiotropic developmental phenotypes and the loss of apical dominance as well as an increase in RG-I type-II arabinogalactan content. CONCLUSIONS: Together, results support a function for PAGR in the biosynthesis of RG-I arabinogalactans and illustrate the essential roles of these polysaccharides in vegetative and reproductive plant growth.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glicosiltransferasas/metabolismo , Pectinas/biosíntesis , Polen/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Fertilidad/genética , Galactanos/biosíntesis , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Genotipo , Glicosiltransferasas/genética , Aparato de Golgi/metabolismo , Immunoblotting , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Mutación , Fenotipo , Plantas Modificadas Genéticamente , Polen/genética , Polen/crecimiento & desarrollo , Tubo Polínico/genética , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Nicotiana/citología , Nicotiana/genética , Nicotiana/metabolismo
7.
Plant Cell ; 26(8): 3314-25, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25122154

RESUMEN

Glycosyl inositol phosphorylceramide (GIPC) sphingolipids are a major class of lipids in fungi, protozoans, and plants. GIPCs are abundant in the plasma membrane in plants, comprising around a quarter of the total lipids in these membranes. Plant GIPCs contain unique glycan decorations that include a conserved glucuronic acid (GlcA) residue and various additional sugars; however, no proteins responsible for glycosylating GIPCs have been identified to date. Here, we show that the Arabidopsis thaliana protein INOSITOL PHOSPHORYLCERAMIDE GLUCURONOSYLTRANSFERASE1 (IPUT1) transfers GlcA from UDP-GlcA to GIPCs. To demonstrate IPUT1 activity, we introduced the IPUT1 gene together with genes for a UDP-glucose dehydrogenase from Arabidopsis and a human UDP-GlcA transporter into a yeast mutant deficient in the endogenous inositol phosphorylceramide (IPC) mannosyltransferase. In this engineered yeast strain, IPUT1 transferred GlcA to IPC. Overexpression or silencing of IPUT1 in Nicotiana benthamiana resulted in an increase or a decrease, respectively, in IPC glucuronosyltransferase activity in vitro. Plants in which IPUT1 was silenced accumulated IPC, the immediate precursor, as well as ceramides and glucosylceramides. Plants overexpressing IPUT1 showed an increased content of GIPCs. Mutations in IPUT1 are not transmitted through pollen, indicating that these sphingolipids are essential in plants.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Ácido Glucurónico/metabolismo , Glucuronosiltransferasa/fisiología , Polen/fisiología , Esfingolípidos/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Silenciador del Gen , Glucuronosiltransferasa/genética , Glucuronosiltransferasa/metabolismo , Humanos , Polen/enzimología , Polen/metabolismo , Saccharomyces cerevisiae/genética , Nicotiana/genética , Nicotiana/metabolismo
8.
Protoplasma ; 241(1-4): 29-36, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20101514

RESUMEN

Gene expression levels of several transcription factors from Arabidopsis thaliana that were described previously to be involved in leaf development and trichome formation were analysed in trichome, basal and pavement cells of mature leaves. Single cell samples of these three cells types were collected by glass micro-capillaries. Real-time reverse transcription (RT)-PCR was used to analyse expression patterns of the following transcription factors: MYB23, MYB55, AtHB1, FILAMENTOUS FLOWER (FIL)/YABBY1 (YAB1), TRIPTYCHON (TRY) and CAPRICE (CPC). A difference in the expression patterns of TRY and CPC was revealed. Contrary to the CPC expression pattern, no transcripts of TRY could be detected in pavement cells. FIL/YAB1 was exclusively expressed in trichome cells. AtHB1 was highly expressed throughout all three cell types. MYB55 was higher expressed in basal cells than in trichome and pavement cells. MYB23 showed a pattern of low expression in pavement cells, medium in basal cells and high expression in trichomes. Expression patterns obtained by single cell sampling and real-time RT-PCR were compared to promoter GUS fusions of the selected transcription factors. Therefore, we regenerated two transgenic Arabidopsis lines that expressed the GUS reporter gene under control of the promoters of MYB55 and YAB1. In conclusion, despite their function in leaf morphogenesis, all six transcription factors were detected in mature leaves. Furthermore, single cell sampling and promoter GUS staining patterns demonstrated the predominant presence of MYB55 in basal cells as compared to pavement cells and trichomes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Hojas de la Planta/citología , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Modelos Biológicos , Hojas de la Planta/genética , Plantas Modificadas Genéticamente/citología , Plantas Modificadas Genéticamente/genética , Proteínas Proto-Oncogénicas c-myb/genética , Proteínas Proto-Oncogénicas c-myb/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética
9.
Phytochemistry ; 65(11): 1641-9, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15276459

RESUMEN

Metabolite, protein, and transcript analysis at the cellular level gives unparalleled insight into the complex roles tissues play in the plant system. However, while capillary electrophoresis and PCR amplification strategies make the profiling of metabolites and transcripts in specific cell types possible, the profiling of proteins in small samples represents a bottleneck. Here for the first time protein profiling has been achieved in a specific plant cell type: The application of specific cell sampling and shotgun peptide sequencing (nano LC/MS/MS) resulted in the identification of 63 unique proteins from pooled Arabidopsis trichome cells. A complete S-adenosylmethionine pathway cluster, two S-adenosylmethionine synthase isoforms, a glutathione S-conjugate translocator and other proteins involved in sulfur metabolism and detoxification are shown to be present in these cells, in agreement with previous work done at the level of trichome transcript analysis. The technology described here brings the simultaneous identification and localization of physiologically relevant cellular proteins within reach.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Perfilación de la Expresión Génica , Espectrometría de Masas/métodos , Azufre/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/análisis , Proteínas de Arabidopsis/genética , Bases de Datos de Proteínas , Regulación de la Expresión Génica de las Plantas , Modelos Biológicos , Epidermis de la Planta/citología , Epidermis de la Planta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA