Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
EMBO J ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816652

RESUMEN

In mice, γδ-T lymphocytes that express the co-stimulatory molecule, CD27, are committed to the IFNγ-producing lineage during thymic development. In the periphery, these cells play a critical role in host defense and anti-tumor immunity. Unlike αß-T cells that rely on MHC-presented peptides to drive their terminal differentiation, it is unclear whether MHC-unrestricted γδ-T cells undergo further functional maturation after exiting the thymus. Here, we provide evidence of phenotypic and functional diversity within peripheral IFNγ-producing γδ T cells. We found that CD27+ Ly6C- cells convert into CD27+Ly6C+ cells, and these CD27+Ly6C+ cells control cancer progression in mice, while the CD27+Ly6C- cells cannot. The gene signatures of these two subsets were highly analogous to human immature and mature γδ-T cells, indicative of conservation across species. We show that IL-27 supports the cytotoxic phenotype and function of mouse CD27+Ly6C+ cells and human Vδ2+ cells, while IL-27 is dispensable for mouse CD27+Ly6C- cell and human Vδ1+ cell functions. These data reveal increased complexity within IFNγ-producing γδ-T cells, comprising immature and terminally differentiated subsets, that offer new insights into unconventional T-cell biology.

2.
J Exp Med ; 220(2)2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36480166

RESUMEN

IL-17A-producing γδ T cells in mice consist primarily of Vγ6+ tissue-resident cells and Vγ4+ circulating cells. How these γδ T cell subsets are regulated during homeostasis and cancer remains poorly understood. Using single-cell RNA sequencing and flow cytommetry, we show that lung Vγ4+ and Vγ6+ cells from tumor-free and tumor-bearing mice express contrasting cell surface molecules as well as distinct co-inhibitory molecules, which function to suppress their expansion. Vγ6+ cells express constitutively high levels of PD-1, whereas Vγ4+ cells upregulate TIM-3 in response to tumor-derived IL-1ß and IL-23. Inhibition of either PD-1 or TIM-3 in mammary tumor-bearing mice increased Vγ6+ and Vγ4+ cell numbers, respectively. We found that genetic deletion of γδ T cells elicits responsiveness to anti-PD-1 and anti-TIM-3 immunotherapy in a mammary tumor model that is refractory to T cell checkpoint inhibitors, indicating that IL-17A-producing γδ T cells instigate resistance to immunotherapy. Together, these data demonstrate how lung IL-17A-producing γδ T cell subsets are differentially controlled by PD-1 and TIM-3 in steady-state and cancer.


Asunto(s)
Receptor 2 Celular del Virus de la Hepatitis A , Interleucina-17 , Neoplasias , Receptor de Muerte Celular Programada 1 , Subgrupos de Linfocitos T , Animales , Ratones , Receptor de Muerte Celular Programada 1/metabolismo , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo
3.
Discov Immunol ; 1(1): kyac002, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36277678

RESUMEN

γδT cells are unconventional T cells particularly abundant in mucosal tissues that play an important role in tissue surveillance, homeostasis, and cancer. γδT cells recognize stressed cells or cancer cells through the NKG2D receptor to kill these cells and maintain normality. Contrary to the well-established anti-tumor function of these NKG2D-expressing γδT cells, we show here that, in mice, NKG2D regulates a population of pro-tumor γδT cells capable of producing IL-17A. Germline deletion of Klrk1, the gene encoding NKG2D, reduced the frequency of γδT cells in the tumor microenvironment and delayed tumor progression. We further show that blocking NKG2D reduced the capability of γδT cells to produce IL-17A in the pre-metastatic lung and that co-culture of lung T cells with NKG2D ligand-expressing tumor cells specifically increased the frequency of γδT cells. Together, these data support the hypothesis that, in a tumor microenvironment where NKG2D ligands are constitutively expressed, γδT cells accumulate in an NKG2D-dependent manner and drive tumor progression by secreting pro-inflammatory cytokines, such as IL-17A.

4.
Br J Cancer ; 124(1): 37-48, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33262520

RESUMEN

Major advances in cancer immunotherapy have dramatically expanded the potential to manipulate immune cells in cancer patients with metastatic disease to counteract cancer spread and extend patient lifespan. One of the most successful types of immunotherapy is the immune checkpoint inhibitors, such as anti-CTLA-4 and anti-PD-1, that keep anti-tumour T cells active. However, not every patient with metastatic disease benefits from this class of drugs and patients often develop resistance to these therapies over time. Tremendous research effort is now underway to uncover new immunotherapeutic targets that can be used in patients who are refractory to anti-CTLA-4 or anti-PD-1 treatment. Here, we discuss results from experimental model systems demonstrating that modulating the immune response can negatively affect metastasis formation. We focus on molecules that boost anti-tumour immune cells and opportunities to block immunosuppression, as well as cell-based therapies with enhanced tumour recognition properties for solid tumours. We also present a list of challenges in treating metastatic disease with immunotherapy that must be considered in order to move laboratory observations into clinical practice and maximise patient benefit.


Asunto(s)
Inmunoterapia/métodos , Metástasis de la Neoplasia/terapia , Neoplasias/patología , Neoplasias/terapia , Animales , Humanos , Metástasis de la Neoplasia/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA