Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Asunto principal
Intervalo de año de publicación
1.
J Gen Virol ; 104(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37342971

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a newly emerged beta-coronavirus that enter cells via two routes, direct fusion at the plasma membrane or endocytosis followed by fusion with the late endosome/lysosome. While the viral receptor, ACE2, multiple entry factors and the mechanism of fusion of the virus at the plasma membrane have been investigated extensively, viral entry via the endocytic pathway is less understood. By using a human hepatocarcinoma cell line, Huh-7, which is resistant to the antiviral action of the TMPRSS2 inhibitor camostat, we discovered that SARS-CoV-2 entry is not dependent on dynamin but on cholesterol. ADP-ribosylation factor 6 (ARF6) has been described as a host factor for SARS-CoV-2 replication and is involved in the entry and infection of several pathogenic viruses. Using CRISPR/Cas9 genetic deletion, a modest reduction in SARS-CoV-2 uptake and infection in Huh-7 was observed. In addition, pharmacological inhibition of ARF6 with the small molecule NAV-2729 showed a dose-dependent reduction of viral infection. Importantly, NAV-2729 also reduced SARS-CoV-2 viral loads in more physiological models of infection: Calu-3 cells and kidney organoids. This highlighted a role for ARF6 in multiple cell contexts. Together, these experiments point to ARF6 as a putative target to develop antiviral strategies against SARS-CoV-2.


Asunto(s)
COVID-19 , Humanos , Factor 6 de Ribosilación del ADP , Antivirales/farmacología , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus
2.
bioRxiv ; 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-35702152

RESUMEN

SARS-CoV-2 is a newly emerged beta-coronavirus that enter cells via two routes, direct fusion at the plasma membrane or endocytosis followed by fusion with the late endosome/lysosome. While the viral receptor, ACE2, multiple entry factors, and the mechanism of fusion of the virus at the plasma membrane have been extensively investigated, viral entry via the endocytic pathway is less understood. By using a human hepatocarcinoma cell line, Huh-7, which is resistant to the antiviral action of the TMPRSS2 inhibitor camostat, we discovered that SARS-CoV-2 entry is not dependent on dynamin but dependent on cholesterol. ADP-ribosylation factor 6 (ARF6) has been described as a host factor for SARS-CoV-2 replication and it is involved in the entry and infection of several pathogenic viruses. Using CRISPR-Cas9 genetic deletion, we observed that ARF6 is important for SARS-CoV-2 uptake and infection in Huh-7. This finding was corroborated using a pharmacologic inhibitor, whereby the ARF6 inhibitor NAV-2729 showed a dose-dependent inhibition of viral infection. Importantly, NAV-2729 reduced SARS-CoV-2 viral loads also in more physiologic models of infection: Calu-3 and kidney organoids. This highlighted the importance of ARF6 in multiple cell contexts. Together, these experiments points to ARF6 as a putative target to develop antiviral strategies against SARS-CoV-2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA