Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Intervalo de año de publicación
1.
Heliyon ; 10(8): e29379, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38644814

RESUMEN

Psidium cattleianum Sabine (strawberry guava) is an evergreen shrub that is grown as a fruiting hedge and has received significant consideration in the food and pharmaceutical disciplines. This study aims to set a promising protocol for in vitro propagation of P. cattleianum, along with profiling the phenolic content of the original plant (OP), induced callus (IC), and regenerated plantlets (RP) extracts, ultimately, evaluating their anti-inflammatory, antioxidant, and anticancer potential. Seeds were treated with commercial bleaching, HCl, and H2O2 to enhance the germination percentage and minimize the contamination percentage. Culturing sterilized leaf explants onto Murashige and Skoog (MS) medium supplemented with benzyl adenine (BA), 2,4-dichloro phenoxy acetic acid, and kinetin showed the best callus induction, while supplementation of MS media with BA, adenine sulfate, naphthalene acetic acid, and gibberellic acid activated regeneration. Augmentation of MS media with indol-3-butyric acid recorded the maximum rooting percentage. Finally, the obtained rooted shoots were successfully acclimatized in sand and peat moss soil. HPLC-MS/MS profiles of OP, RP, and IC showed a variety of phenolic metabolites. IC extract decreased the viability of MCF-7, HepG2, and K-562 cancer cell lines. Also, OP exhibits strong antioxidant activity. P. cattleianum and its RP are profound sources of phenolic compounds promoted for promising applications in the food and pharmaceutical industries.

2.
Front Chem ; 11: 1120432, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36814544

RESUMEN

Introduction: Psidium cattleianum Sabine is a Brazilian native shrub cultivated for its edible fruit araçá (strawberry guava). P. cattleianum is recognized for health and food applications, although the essential oils (EOs) from the Egyptian inhabitant are not fully explored. The current study investigated the anti-inflammatory and cytotoxic activities of EOs from P. cattleianum leaves and flowers. Materials and methods: The EOs were obtained by three different methods viz; the conventional hydro-distillation, microwave assisted hydro-distillation, and supercritical fluid extraction, while their analysis was accomplished using GC/MS. The derived EOs were screened for their anti-inflammatory activity in the 5-lipoxygenase, COX-1, and COX-2 enzyme based assays, while the anticancer potential was deduced from MTT cytotoxic assay, cell cycle, and western blotting analysis. Results and discussion: Among other methods, supercritical fluid extraction offered the highest EO yield, 0.62% (leaves) and 1.4% (flowers). GC/MS identified ß-caryophyllene and α-humulene in both organs with high but variable percentages. The leaves demonstrated strong activity in inhibiting the 5-lipoxygenase enzyme (IC50 2.38), while the flowers, in inhibiting COX-2 (IC50 2.575). Moreover, the leaves showed potent, selective cytotoxicity to MCF-7 cells (IC50 5.32) via apoptosis by modulating the p53/Bax/Bcl2 axis. The deduced activities are possible due to the synergism between the volatile components that endorses P. cattleianum leaves' EOs in the management of breast cancer and inflammatory disorders.

3.
Front Pharmacol ; 13: 1006062, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36313355

RESUMEN

Prostate cancer (PCa) ranks as one of the most commonly diagnosed malignancies worldwide. Toxicity, lack of clinical efficacy, and development of resistance phenotypes are the main challenges in the control of prostate malignancies. Notably, castration-resistance prostate cancer (CRPCa) is a highly aggressive and metastatic phenotype of the disease with a poor prognosis and very limited therapeutic options. Herein, we report the isolation and genotypic identification of a soil-derived fungus Aspergillus neoniveus using the PCR-based internal transcribed spacer (ITS) region amplification approach. HPLC/MS investigation of the metabolic profile of the ethyl acetate extract from the fungal biomass revealed tentative identification of forty-five compounds belonging to various chemical classes including γ-butyrolactones, alkaloids, phenolics, and quinoids. Furthermore, the chromatographic purification of microbial extract enabled the identification of nervonic acid methyl ester (1) for the first time from endophytic fungi, as well as acetyl aszonalenin (2), and butyrolactone II (3) for the first time from A. neoniveus. The chemical frameworks of the isolated compounds were identified via extensive spectral analysis including 1 and 2D NMR and MS. The X-ray crystal structure and absolute configuration of acetyl aszonalenin (2) were also determined. Additionally, screening of in vitro anticancer activity of the fungal extract revealed its potential antiproliferative and anti-migratory activities against five different prostate cancer cells (PC3, PC-3M, DU-145, CWR-R1ca, and 22Rv1), including different cells with the castration-resistance phenotype. Moreover, the isolated metabolites significantly inhibited the proliferation, migration, and colonization of human prostate cancer cells at low micromolar levels, thus providing credence for future investigation of these metabolites in relevant anti-prostate cancer animal models. Furthermore, computational target prediction tools identified the cannabinoid G-protein coupled receptors type 1 (CB1) as a potential biological target mediating, at least in part, the anticancer effects of acetylaszonalenin (2). Moreover, molecular modeling and docking studies revealed a favorable binding pose at the CB1 receptor orthosteric ligand pocket aided by multiple polar and hydrophobic interactions with critical amino acids. In conclusion, the Aspergillus neoniveus-derived prenylated indole alkaloid acetylaszonalenin has promising anticancer activity and is amenable to further hit-to-lead optimization for the control of prostate malignancies via modulating CB1 receptors.

4.
J Ethnopharmacol ; 298: 115596, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35987414

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Genus Melaleuca or tea tree species are well known to be an important source of biological active oils and extracts. The biological significance appears in their usage for treatment of several clinical disorder owing to their traditional uses as anti-inflammatory, antibacterial, antifungal, and cytotoxic activities. AIM OF THE STUDY: Our study aimed to investigate the metabolic profile of the M. rugulosa polyphenol-rich fraction along with determination of its anti-inflammatory potential, free radical scavenging and antiaging activities supported with virtual understanding of the mode of action using molecular modeling strategy. MATERIALS AND METHODS: The anti-inflammatory activity of the phenolic rich fraction was investigated through measuring its inhibitory activity against inflammatory mediators viz tumor necrosing factor receptor-2 (TNF-α) and cyclooxygenases 1/2 (COX-1/2) in a cell free and cell-based assays. Moreover, the radical scavenging activity was determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH), oxygen radical absorbance capacity (ORAC) and ß-carotene assays, while the antiaging activity in anti-elastase, anti-collagenase, and anti-tyrosinase inhibitory assays. Finally, the biological findings were supported with molecular docking study using MOE software. RESULTS: The chromatographic purification of the polyphenol-rich fraction of Melaleuca rugulosa (Link) Craven afforded fourteen phytoconstituents (1-14). The anti-inflammatory gauging experiments demonstrated inhibition of inflammatory-linked enzymes COX-1/2 and the TNF-α at low µg/mL levels in the enzyme-based assays. Further investigation of the underlying mechanism was inferred from the quantification of protein levels and gene expression in the lipopolysaccharide (LPS)-activated murine macrophages (RAW264.7) in vitro model. The results revealed the reduction of protein synthesis of COX-1/2 and TNF-α with the down regulation of gene expression. The cell free in vitro radical scavenging assessment of the polyphenol-rich fraction revealed a significant DPPH reduction, peroxyl radicals scavenging, and ß-carotene peroxidation inhibition. Besides, the polyphenol-rich fraction showed a considerable inhibition of the skin aging-related enzymes as elastase, collagenase, and tyrosinase. Ultimately, the computational molecular modelling studies uncovered the potential binding poses and relevant molecular interactions of the identified polyphenols with their targeted enzymes. Particularly, terflavin C (8) which showed a favorable binding pose at the elastase binding pocket, while rosmarinic acid (14) demonstrated the best binding pose at the COX-2 catalytic domain. In short, natural polyphenols are potential candidates for the management of free radicals, inflammation, and skin aging related conditions. CONCLUSION: Natural polyphenols are potential candidates for the management of free radicals, inflammation, and skin aging related conditions.


Asunto(s)
Melaleuca , Animales , Antiinflamatorios , Antioxidantes , Radicales Libres , Humanos , Inflamación , Melaleuca/química , Ratones , Simulación del Acoplamiento Molecular , Extractos Vegetales , Polifenoles/química , Taninos , Factor de Necrosis Tumoral alfa , beta Caroteno
5.
J Ethnopharmacol ; 292: 115215, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35337921

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Melaleuca species have been used by many ethnic communities for the management and treatment of several ailments as hemorrhoids, cough, skin infections, rheumatism, sore throat, pain, inflammation, and digestive system malfunctions. However, the detailed mechanistic pharmacological effect of Melaleuca rugulosa (Link) Craven leaves in the management of liver inflammation has not been yet addressed. AIM OF THE STUDY: The present study aimed to evaluate the anti-inflammatory, antioxidant, and antiapoptotic capacities of the aqueous methanol extract of M. rugulosa leaves in relevance to their flavonoid content using an appropriate in vivo model. MATERIALS AND METHODS: The aqueous methanol extract of M. rugulosa leaves was administered to the rats at three non-toxic doses (250, 500, and 1000 mg/kg) for seven days prior to the initiation of liver-injury induced by paracetamol (3 g/kg). Liver enzymes including alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) were evaluated in serum samples. The oxidative stress markers including reduced glutathione (GSH), malondialdehyde (MDA), and nitric oxide (NO) levels as well as the inflammatory markers such as tumour necrosis factor-alpha (TNF-α) and nuclear factor-kappa B (NF-κB), were assessed in liver homogenate. The results were supported by histopathological and immuno-histochemical studies. The phytochemical investigation of the flavonoid-rich fraction of the aqueous methanol extract was accomplished using different chromatographic and spectroscopic techniques. RESULTS: The aqueous methanol extract of M. rugulosa leaves showed a powerful hepatoprotective activity evidenced by the significant reduction of MDA and NO levels, as well as increasing GSH and catalase activity. Moreover, the extract exhibited anti-inflammatory and antiapoptotic activities witnessed by decreasing TNF-α, NF-κB, iNOS, p-JNK, caspase-3, BAX, and increasing Bcl-2 levels. Moreover, the pretreatment of rats with all doses of M. rugulosa leaves extract showed a significant decrease in liver weight/body weight (LW/BW) ratio, and total bilirubin induced by paracetamol. On the other hand, the chromatographic separation of the flavonoid-rich fraction afforded twenty known flavonoids namely; iso-orientin (1), orientin (2), isovitexin (3), vitexin (4), quercetin-3-O-ß-D-glucuronid methyl ether (5), quercetin-3-O-ß-D-mannuronpyranoside (6), isoquercetin (7), quercitrin (8), kaempferol-3-O-ß-D-mannuronopyranoside (9), kaempferol-7-O-methyl ether-3-O-ß-D-glucopyranoside (10), guaijaverin (11), avicularin (12), kaempferide-3-O-ß-D-glucopyranoside (13), astragalin (14), afzelin (15), luteolin (16), apigenin (17), quercetin (18), kaempferol (19), and catechin (20). CONCLUSION: The aqueous methanol extract of M. rugulosa leaves showed potential hepatoprotective, antioxidant, and anti-inflammatory activities against paracetamol-induced liver inflammation which is correlated at least in part to its considerable phenolic content.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Melaleuca , Éteres Metílicos , Acetaminofén , Animales , Antiinflamatorios/análisis , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Flavonoides/análisis , Flavonoides/farmacología , Flavonoides/uso terapéutico , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/patología , Hígado , Metanol/farmacología , Éteres Metílicos/análisis , Éteres Metílicos/farmacología , FN-kappa B , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Hojas de la Planta/química , Quercetina/farmacología , Ratas , Factor de Necrosis Tumoral alfa/farmacología
6.
J Ethnopharmacol ; 284: 114698, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34600075

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The genus Callistemon (syn. Melaleuca) of the myrtle family (Myrtaceae) has been documented as an integral part in the ethnobotanical system of the indigenous people of Australian mainland and many of its islands. Several Callistemons including the species subulatus were used by aboriginal Australians for making rafts, roofs for shelters, bandages, and food recipes, in addition to the management of wounds, infections, pain, cough, bronchitis, and gastrointestinal tract (GIT) disorders. AIM OF THE STUDY: The current study is designed to document the therapeutic effect of the aqueous methanolic extract (AME) of C. sabulatus Chell (syn. M. sabulata) leaves in the management of diarrhea and pain. Also, its influence on additional pharmacological modalities that are related to oxidative stress just as skin aging. Ultimately, the polyphenolic profile of the extract is disclosed and correlated to the aforementioned bioactivities. MATERIALS AND METHODS: The extract was fractionated using various chromatography techniques and the structures of the isolated compounds were determined based on their chemical and spectral data. The antioxidant activity was assessed using multiple models, including 2,2-diphenyl-picrylhydrazyl (DPPH), oxygen radical absorbance capacity (ORAC) and ß-carotene bleaching assays. The anti-skin aging effect was evaluated using different relevant enzymatic assays. The antinociceptive activity was investigated using acetic acid-induced writhing, hot plate test, and formalin-induced paw licking in mice models. The antidiarrheal activity was gauge using the castor oil induced diarrhea, enter pooling and gastrointestinal motility in vivo models. RESULTS: Diverse polyphenols, including quercetin-3-O-ß-D-glucuronopyranoside (1), kaempferol-3-O-ß-D-glucuronopyranoside (2), strictinin (3), quercetin-3-O-(2``-O-galloyl)-ß-D-glucuronopyranoside (4), afzelin (5), di-galloyl glucose (6), mono-galloyl glucose (7), acacetin (8), apigenin-6,7-dimethyl ether (9), kaempferol trimethyl ether (10), dimethoxy chrysin (11), quercetin (12), kaempferol (13), methyl gallate (14), and gallic acid (15) were identified. The extract exhibited as significant antioxidant activity even better than that of Trolox or BHT. Moreover, it exerts elastase, tyrosinase, and collagenase inhibition activities, in addition to the significant peripheral and central analgesic activity in a dose-dependent manner (P < 0.0001). In castor oil induced diarrhea model, AME significantly prolonged the diarrhea onset, decreased the frequency of defecation, and weight of feces. Likewise, it exhibited a significant reduction in the gastrointestinal motility in charcoal meal model (P < 0.0001) and a considerable inhibitory effect on gastrointestinal transit and peristaltic index with all investigated doses (P < 0.0001). CONCLUSION: Ethnobotanicals are versatile resources for the management of various ailments by indigenous people and the experimental research is utmost to validate and uncover their pharmacological relevance. C. sabulatus leaves have strong antioxidant, analgesic, anti-skin aging, and antidiarrheal activities which are validated for the first time by various in vitro and in vivo models. The metabolic profile of the unprecedented AME of C. sabulatus leaves compromises a wide array of bioactive polyphenolic metabolites including, flavonoids, tannins, and phenolic acids that are correlated to the observed bioactivities. Altogether, ethnobotanicals with high and diverse contents of polyphenols are potential candidates for the management of various human aliments including neuropathies, GIT disorders, and skin aging conditions.


Asunto(s)
Myrtaceae/química , Extractos Vegetales/farmacología , Polifenoles/farmacología , Analgésicos/aislamiento & purificación , Analgésicos/farmacología , Animales , Antidiarreicos/aislamiento & purificación , Antidiarreicos/farmacología , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Diarrea/tratamiento farmacológico , Modelos Animales de Enfermedad , Egipto , Femenino , Humanos , Masculino , Ratones , Estrés Oxidativo/efectos de los fármacos , Dolor/tratamiento farmacológico , Extractos Vegetales/química , Hojas de la Planta , Polifenoles/química , Polifenoles/aislamiento & purificación , Ratas , Ratas Sprague-Dawley
7.
Front Chem ; 9: 760083, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34722462

RESUMEN

Endophytes are prolific producers of privileged secondary metabolites with diverse therapeutic potential, although their anticancer and antimicrobial potential still have a room for further investigation. Herein, seven known secondary metabolites namely, arugosin C (1), ergosterol (2), iso-emericellin (3), sterigmatocystin (4), dihydrosterigmatocystin (5), versicolorin B (6), and diorcinol (7) were isolated from the rice culture of Aspergillus sp. retrieved from Tecoma stans (L.) Juss. ex Kunth leaves. Their anticancer and antimicrobial activities were evaluated in MTT and agar well diffusion assays, respectively. The cytotoxicity results showed that metabolite 3 displayed the best viability inhibition on the MCF-7 breast cancer cells with IC50 = 225.21 µM, while 5 on the HepG2 hepatocellular carcinoma cells with IC50 = 161.81 µM. 5 demonstrated a 60% apoptotic mode of cell death which is virtually correlated to its high docking affinity to Hsp90 ATP binding cleft (binding score -8.4 Kcal/mol). On the other side, metabolites 4 and 5 displayed promising antimicrobial activity especially on Pseudomonas aeruginosa with MIC = 125 µg/ml. The observed effect may be likely related to their excellent in silico inhibition of the bacterial DNA-gyrase kinase domain (binding score -10.28 Kcal/mol). To the best of our knowledge, this study is the first to report the promising cytotoxic and antibacterial activities of metabolites 3, 4, and 5 which needs further investigation and renovation to therapeutic leads.

8.
Mol Carcinog ; 57(11): 1507-1524, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29978911

RESUMEN

The failure of chemotherapy especially in triple negative breast cancer (TNBC) patients has been correlated with the overexpression of the mesenchymal-epithelial transition factor (c-Met) receptor. Thus, the hepatocyte growth factor (HGF)/c-Met signaling axis has gained considerable attention as a valid molecular target for breast cancer therapy. This study reports for the first time the discovery of the 131 -oxophorbines pheophorbide A and protopheophorbide A along with chlorophyllide A from Ziziphus lotus, an edible typical Tunisian plant, as the potent antiproliferative compounds against the human breast cancer cells MDA-MB-231 and MCF-7. Compared to other compounds, protopheophorbide A exerted the highest light-independent antiproliferative effect against the metastatic TNBC MDA-MB-231 cells (IC50 = 6.5 µM). In silico, this compound targeted the kinase domain of multiple c-Met crystal structures. It potently inhibited the kinase domain phosphorylation of wild and mutant c-Met in Z-LYTE kinase assay. Protopheophorbide A inhibited HGF-induced downstream c-Met-dependent cell proliferation, survival, adhesion and migration through RAF/MEK/ERK and PI3K/PTEN/AKT signaling pathways modulation, ROS generation and activation of JNK and p38 pathways. Interestingly, this compound impaired the ability of the MDA-MB-231 cells to adhere at different extracellular matrix proteins by reducing the HGF-induced expression of integrins αv, ß3, α2, and ß1. Moreover, protopheophorbide A exhibited anti-migratory properties (IC50 = 2.2 µM) through impacting the expression levels of E-cadherin, vimentin, ß-catenin, FAK, Brk, Rac, and Src proteins. Importantly, treatment with protopheophorbide A significantly inhibited the MDA-MB-231 tumor growth in vivo. Our results suggest that protopheophorbide A could be a novel c-Met inhibitory lead with promise to control c-Met/HGF-dependent breast malignancies.


Asunto(s)
Neoplasias de la Mama/patología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Extractos Vegetales/farmacología , Ziziphus/química , Animales , Apoptosis/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Factor de Crecimiento de Hepatocito/metabolismo , Xenoinjertos , Humanos , Ratones , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Extractos Vegetales/química , Proteínas Proto-Oncogénicas c-met/química , Proteínas Proto-Oncogénicas c-met/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
9.
Nutr Cancer ; 69(8): 1256-1271, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29083228

RESUMEN

Triple negative breast cancer (TNBC) has high metastatic and mortality potential and lacks effective and selective therapeutic options. Aberrant dysregulation of the receptor tyrosine kinase c-Met promotes TNBC progression, motility and survival and therefore considered a valid therapeutic target. Among various identified anticancer agents, plant polyphenols (PPs) including flavonoids, have been shown to be safe and proven for their antitumor activity through modulating diverse macromolecular targets. This study reports the bioassay-guided identification of the common flavonol glycoside rutin as breast cancer cell proliferation, migration and invasion inhibitor. The cell free Z'-LYTE kinase assay, Western blot and in silico docking experiments uncovered, for the first time, c-Met kinase as a potential mechanistic target for rutin-mediated anticancer effects on TNBC cell lines. Likewise, the intraperitoneal injection of rutin at 30 mg/kg, 3X/week, significantly reduced the growth of the TNBC MDA-MB-231/GFP orthotopic xenograft in nude mouse model. These results clearly designate the functional dietary flavonoid rutin as a potential lead for the prevention and control of c-Met-dependent breast malignancies.


Asunto(s)
Antineoplásicos/farmacología , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Rutina/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Fabaceae/química , Femenino , Flavonoides/farmacología , Factor de Crecimiento de Hepatocito/genética , Factor de Crecimiento de Hepatocito/metabolismo , Humanos , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , Células MCF-7 , Ratones , Ratones Noqueados , Ratones Desnudos , Simulación del Acoplamiento Molecular , Extractos Vegetales/farmacología , Polifenoles/farmacología , Conformación Proteica , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Bioorg Med Chem ; 25(24): 6297-6312, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29066046

RESUMEN

Natural products have documented oncology success history as valuable scaffolds for selective target modulation. Herein, the sapogenin hecogenin (1) was screened for its anti-breast cancer inhibitory capacity using in vitro assays, including proliferation, cytotoxicity, migration, invasion assays, and Western blotting. The results identified 1 as a propitious hit with modest activities attributed to the concurrent down-regulation of mitogen activated protein kinase kinase/extracellular signal-regulated kinase (MEK) distinctive downstream effectors. Guided by in silico 3D-structural insights of MAPK kinase domain, an extension strategy was adopted at 1's C-3 and C-12 aimed at the design of novel hecogenin-based analogs with improved target binding affinity. Thirty-three analogs were prepared and tested, among which hecogenin 12-(3'-methylphenyl thiosemicarbazone) (30) displayed the most potent selective anticancer effects. Analog 30 demonstrated antiproliferative, antimigratory and anti-invasive activities at low µM level, compared to the negligible effect on the non-tumorigenic MCF-10A mammary epithelial cells. Durable regression of breast tumor xenografts in athymic nude mice was observed after treatments with 30, compared to its parent hecogenin at the same dose regimen, confirmed the hit-to-lead promotion of this analog. Hecogenin-12-thiosemicarbazones, represented by 30, is a novel MEK inhibitory lead class to control breast neoplasms.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Diseño de Fármacos , Inhibidores de Proteínas Quinasas/farmacología , Sapogeninas/farmacología , Tiosemicarbazonas/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Quinasas Quinasa Quinasa PAM/metabolismo , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Desnudos , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Sapogeninas/síntesis química , Sapogeninas/química , Relación Estructura-Actividad , Tiosemicarbazonas/síntesis química , Tiosemicarbazonas/química , Células Tumorales Cultivadas
11.
J Nat Prod ; 80(4): 932-952, 2017 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-28245124

RESUMEN

(+)-Usnic acid (1) is a common bioactive lichen-derived secondary metabolite with a characteristic dibenzofuran scaffold. It displayed low micromolar antiproliferative activity levels and, notably, induced autophagy in a panel of diverse breast cancer cell lines, suggesting the mechanistic (formerly "mammalian") target of rapamycin (mTOR) as a potential macromolecular target. The cellular autophagic markers were significantly upregulated due to the inhibition of mTOR downstream effectors. Additionally, 1 showed an optimal binding pose at the mTOR kinase pocket aided by multiple interactions to critical amino acids. Rationally designed benzylidene analogues of 1 displayed excellent fitting into a targeted deep hydrophobic pocket at the core of the kinase cleft, through stacking with the phenolic side chain of the Tyr2225 residue. Several potent analogues were generated, including 52, that exhibited potent (nM concentrations) antiproliferative, antimigratory, and anti-invasive activities against cells from multiple breast cancer clonal lines, without affecting the nontumorigenic MCF-10A mammary epithelial cells. Analogue 52 also exhibited potent mTOR inhibition and autophagy induction. Furthermore, 52 showed potent in vivo antitumor activity in two athymic nude mice breast cancer xenograft models. Collectively, usnic acid and analogues are potential lead mTOR inhibitors appropriate for future use to control breast malignancies.


Asunto(s)
Benzofuranos/síntesis química , Benzofuranos/farmacología , Compuestos de Bencilideno/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Sirolimus/farmacología , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Benzofuranos/química , Compuestos de Bencilideno/química , Proliferación Celular/efectos de los fármacos , Cristalografía por Rayos X , Modelos Animales de Enfermedad , Femenino , Humanos , Líquenes/química , Ratones , Ratones Desnudos , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas/química , Serina-Treonina Quinasas TOR/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Phytother Res ; 30(4): 557-66, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26744260

RESUMEN

Breast cancer is a major health problem affecting the female population worldwide. The triple-negative breast cancers (TNBCs) are characterized by malignant phenotypes, worse patient outcomes, poorest prognosis, and highest mortality rates. The proto-oncogenic receptor tyrosine kinase c-Met is usually dysregulated in TNBCs, contributing to their oncogenesis, tumor progression, and aggressive cellular invasiveness that is strongly linked to tumor metastasis. Therefore, c-Met is proposed as a promising candidate target for the control of TNBCs. Lichens-derived metabolites are characterized by their structural diversity, complexity, and novelty. The chemical space of lichen-derived metabolites has been extensively investigated, albeit their biological space is still not fully explored. The anticancer-guided fractionation of Usnea strigosa (Ach.) lichen extract led to the identification of the depsidone-derived norstictic acid as a novel bioactive hit against breast cancer cell lines. Norstictic acid significantly suppressed the TNBC MDA-MB-231 cell proliferation, migration, and invasion, with minimal toxicity to non-tumorigenic MCF-10A mammary epithelial cells. Molecular modeling, Z'-LYTE biochemical kinase assay and Western blot analysis identified c-Met as a potential macromolecular target. Norstictic acid treatment significantly suppressed MDA-MB-231/GFP tumor growth of a breast cancer xenograft model in athymic nude mice. Lichen-derived natural products are promising resources to discover novel c-Met inhibitors useful to control TNBCs.


Asunto(s)
Lactonas/farmacología , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Salicilatos/farmacología , Neoplasias de la Mama Triple Negativas/patología , Usnea/química , Animales , Línea Celular Tumoral/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Femenino , Humanos , Ratones , Ratones Desnudos , Simulación del Acoplamiento Molecular , Invasividad Neoplásica , Proteínas Proto-Oncogénicas c-met/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Bioorg Med Chem ; 24(2): 113-22, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26692349

RESUMEN

Fungi of the genus Penicillium produce unique and chemically diverse biologically active secondary metabolites, including indole alkaloids. The role of dysregulated hepatocyte growth factor (HGF) and its receptor, c-Met, in the development and progression of breast carcinoma is documented. The goal of this work is to explore the chemistry and bioactivity of the secondary metabolites of the endophytic Penicillium chrysogenum cultured from the leaf of the olive tree Olea europea, collected in its natural habitat in Egypt. This fungal extract showed good inhibitory activities against the proliferation and migration of several human breast cancer lines. The CH2Cl2 extract of P. chrysogenum mycelia was subjected to bioguided chromatographic separation to afford three known indole alkaloids; meleagrin (1), roquefortine C (2) and DHTD (3). Meleagrin inhibited the growth of the human breast cancer cell lines MDA-MB-231, MDA-468, BT-474, SK BR-3, MCF7 and MCF7-dox, while similar treatment doses were found to have no effect on the growth and viability of the non-tumorigenic human mammary epithelial cells MCF10A. Meleagrin also showed excellent ATP competitive c-Met inhibitory activity in Z-Lyte assay, which was further confirmed via molecular docking studies and Western blot analysis. In addition, meleagrin treatment caused a dose-dependent inhibition of HGF-induced cell migration, and invasion of breast cancer cell lines. Meleagrin treatment potently suppressed the invasive triple negative breast tumor cell growth in an orthotopic athymic nude mice model, promoting this unique natural product from hit to a lead rank. The indole alkaloid meleagrin is a novel lead c-Met inhibitory entity useful for the control of c-Met-dependent metastatic and invasive breast malignancies.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Alcaloides Indólicos/farmacología , Olea/microbiología , Ovomucina/farmacología , Penicillium chrysogenum/química , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Animales , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Línea Celular , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células Epiteliales/efectos de los fármacos , Femenino , Humanos , Alcaloides Indólicos/química , Alcaloides Indólicos/aislamiento & purificación , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Desnudos , Modelos Moleculares , Estructura Molecular , Invasividad Neoplásica/patología , Ovomucina/química , Ovomucina/aislamiento & purificación , Proteínas Proto-Oncogénicas c-met/metabolismo , Relación Estructura-Actividad
14.
Chem Biol Drug Des ; 85(2): 231-43, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24954090

RESUMEN

Bioassay-guided fractionation of Terminalia bentzoe L. leaves methanol extract identified the known triterpene oleanolic acid (1) as its major breast cancer cell migration inhibitor. Further chemical optimization afforded five new (9-12 and 15) and seven known (4-8, 13, and 14) semisynthetic analogues. All compounds were tested for their ability to inhibit human breast cancer MDA-MB-231 cells migration, proliferation, and invasion. The results revealed that 3-O-[N-(3'-chlorobenzenesulfonyl)-carbamoyl]-oleanolic acid (11) and 3-O-[N-(5'-fluorobenzenesulfonyl)-carbamoyl]-oleanolic acid (12) were the most active hits at low µM concentration. Western blot analysis indicated the activity of 1, 11, and 12 might be related, at least in part, to the suppression of Brk/Paxillin/Rac1 signaling pathway. Pharmacophore modeling study was conducted to better understand the common structural binding epitopes important for the antimigratory activity. The sulfonyl carbamoyl moiety with an optimal bulkiness electron-deficient phenyl ring is associated with improved activity. This study is the first to discover the antimigratory and anti-invasive activities of oleanolic acid and analogues through targeting the Brk/Paxillin/Rac1 axis.


Asunto(s)
Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Invasividad Neoplásica/prevención & control , Ácido Oleanólico/química , Ácido Oleanólico/farmacología , Transducción de Señal/efectos de los fármacos , Mama/efectos de los fármacos , Mama/metabolismo , Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Descubrimiento de Drogas , Femenino , Humanos , Modelos Moleculares , Invasividad Neoplásica/patología , Proteínas de Neoplasias/metabolismo , Paxillin/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Terminalia/química , Proteína de Unión al GTP rac1/metabolismo
15.
Eur J Pharmacol ; 740: 209-17, 2014 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-25046839

RESUMEN

Oleanolic acid (OA), a pentacyclic triterpene acid widely distributed in food and traditional herbal remedies, exhibits diverse therapeutic effects. OA has been subjected to various chemical modifications to optimize its anticancer effect. Among other analogs, 3-O-[N-(p-fluorobenzenesulfonyl)-carbamoyl]-oleanolic acid (PFOA) was semisynthesized from OA. This study evaluates the cytotoxic effects of PFOA on MDA-MB-231, MCF-7, BT-474, and T-47D human breast cancer cells. Acute treatment of PFOA inhibited breast cancer cell viability in a dose-dependent manner. Treatment of PFOA at cytotoxic doses significantly induced apoptosis in cancer cells as shown by flow cytometry analysis. Activation of apoptosis in MCF-7 and BT-474 cells seemed to be initiated through induction of Fas ligand, which resulted in activation of caspase-8 and PARP-1, whereas apoptosis in MDA-MB-231 cells was initiated by the activation of caspase-9, caspase-3 and PARP-1. The mechanism of apoptosis induction in T-47D involves activation of PARP-1. PFOA decreased the expression of EGFR, HER-2, MET and ERα in human breast cancer cell lines. These findings suggest that PFOA inhibits cell growth, activates apoptosis, and decreases the expression of key proteins involved in progression of breast cancer.


Asunto(s)
Antineoplásicos/farmacología , Ácido Oleanólico/análogos & derivados , Sulfonamidas/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Mama , Caspasas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Receptores ErbB/metabolismo , Receptor alfa de Estrógeno/metabolismo , Femenino , Humanos , Ácido Oleanólico/farmacología , Proteínas Proto-Oncogénicas c-met/metabolismo , Receptor ErbB-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA