Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Front Radiol ; 4: 1357341, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38840717

RESUMEN

Standard treatment of patients with glioblastoma includes surgical resection of the tumor. The extent of resection (EOR) achieved during surgery significantly impacts prognosis and is used to stratify patients in clinical trials. In this study, we developed a U-Net-based deep-learning model to segment contrast-enhancing tumor on post-operative MRI exams taken within 72 h of resection surgery and used these segmentations to classify the EOR as either maximal or submaximal. The model was trained on 122 multiparametric MRI scans from our institution and achieved a mean Dice score of 0.52 ± 0.03 on an external dataset (n = 248), a performance -on par with the interrater agreement between expert annotators as reported in literature. We obtained an EOR classification precision/recall of 0.72/0.78 on the internal test dataset (n = 462) and 0.90/0.87 on the external dataset. Furthermore, Kaplan-Meier curves were used to compare the overall survival between patients with maximal and submaximal resection in the internal test dataset, as determined by either clinicians or the model. There was no significant difference between the survival predictions using the model's and clinical EOR classification. We find that the proposed segmentation model is capable of reliably classifying the EOR of glioblastoma tumors on early post-operative MRI scans. Moreover, we show that stratification of patients based on the model's predictions offers at least the same prognostic value as when done by clinicians.

2.
Neuro Oncol ; 2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38070147

RESUMEN

BACKGROUND: We recently conducted a phase 2 trial (NCT028865685) evaluating intracranial efficacy of pembrolizumab for brain metastases (BM) of diverse histologies. Our study met its primary efficacy endpoint and illustrates that pembrolizumab exerts promising activity in a select group of patients with BM. Given the importance of aberrant vasculature in mediating immunosuppression, we explored the relationship between checkpoint inhibitor (ICI) efficacy and vascular architecture in the hopes of identifying potential mechanisms of intracranial ICI response or resistance for BM. METHODS: Using Vessel Architectural Imaging (VAI), a histologically validated quantitative metric for in vivo tumor vascular physiology, we analyzed dual echo DSC/DCE MRI for 44 patients on trial. Tumor and peri-tumor cerebral blood volume/flow, vessel size, arterial- and venous-dominance, and vascular permeability were measured before and after treatment with pembrolizumab. RESULTS: BM that progressed on ICI were characterized by a highly aberrant vasculature dominated by large-caliber vessels. In contrast, ICI-responsive BM possessed a more structurally balanced vasculature consisting of both small and large vessels, and there was a trend towards a decrease in under-perfused tissue, suggesting a reversal of the negative effects of hypoxia. In the peri-tumor region, development of smaller blood vessels, consistent with neo-angiogenesis, was associated with tumor growth before radiographic evidence of contrast enhancement on anatomical MRI. CONCLUSIONS: This study, one of the largest functional imaging studies for BM, suggests that vascular architecture is linked with ICI efficacy. Studies identifying modulators of vascular architecture, and effects on immune activity, are warranted and may inform future combination treatments.

3.
BMC Med Inform Decis Mak ; 23(1): 225, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37853371

RESUMEN

BACKGROUND: Saliency-based algorithms are able to explain the relationship between input image pixels and deep-learning model predictions. However, it may be difficult to assess the clinical value of the most important image features and the model predictions derived from the raw saliency map. This study proposes to enhance the interpretability of saliency-based deep learning model for survival classification of patients with gliomas, by extracting domain knowledge-based information from the raw saliency maps. MATERIALS AND METHODS: Our study includes presurgical T1-weighted (pre- and post-contrast), T2-weighted and T2-FLAIR MRIs of 147 glioma patients from the BraTs 2020 challenge dataset aligned to the SRI 24 anatomical atlas. Each image exam includes a segmentation mask and the information of overall survival (OS) from time of diagnosis (in days). This dataset was divided into training ([Formula: see text]) and validation ([Formula: see text]) datasets. The extent of surgical resection for all patients was gross total resection. We categorized the data into 42 short (mean [Formula: see text] days), 30 medium ([Formula: see text] days), and 46 long ([Formula: see text] days) survivors. A 3D convolutional neural network (CNN) trained on brain tumour MRI volumes classified all patients based on expected prognosis of either short-term, medium-term, or long-term survival. We extend the popular 2D Gradient-weighted Class Activation Mapping (Grad-CAM), for the generation of saliency map, to 3D and combined it with the anatomical atlas, to extract brain regions, brain volume and probability map that reveal domain knowledge-based information. RESULTS: For each OS class, a larger tumor volume was associated with a shorter OS. There were 10, 7 and 27 tumor locations in brain regions that uniquely associate with the short-term, medium-term, and long-term survival, respectively. Tumors located in the transverse temporal gyrus, fusiform, and palladium are associated with short, medium and long-term survival, respectively. The visual and textual information displayed during OS prediction highlights tumor location and the contribution of different brain regions to the prediction of OS. This algorithm design feature assists the physician in analyzing and understanding different model prediction stages. CONCLUSIONS: Domain knowledge-based information extracted from the saliency map can enhance the interpretability of deep learning models. Our findings show that tumors overlapping eloquent brain regions are associated with short patient survival.


Asunto(s)
Aprendizaje Profundo , Glioma , Humanos , Glioma/diagnóstico por imagen , Glioma/patología , Redes Neurales de la Computación , Imagen por Resonancia Magnética/métodos , Neuroimagen
4.
bioRxiv ; 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37693537

RESUMEN

Structurally and functionally aberrant vasculature is a hallmark of tumor angiogenesis and treatment resistance. Given the synergistic link between aberrant tumor vasculature and immunosuppression, we analyzed perfusion MRI for 44 patients with brain metastases (BM) undergoing treatment with pembrolizumab. To date, vascular-immune communication, or the relationship between immune checkpoint inhibitor (ICI) efficacy and vascular architecture, has not been well-characterized in human imaging studies. We found that ICI-responsive BM possessed a structurally balanced vascular makeup, which was linked to improved vascular efficiency and an immune-stimulatory microenvironment. In contrast, ICI-resistant BM were characterized by a lack of immune cell infiltration and a highly aberrant vasculature dominated by large-caliber vessels. Peri-tumor region analysis revealed early functional changes predictive of ICI resistance before radiographic evidence on conventional MRI. This study was one of the largest functional imaging studies for BM and establishes a foundation for functional studies that illuminate the mechanisms linking patterns of vascular architecture with immunosuppression, as targeting these aspects of cancer biology may serve as the basis for future combination treatments.

5.
Nat Commun ; 14(1): 1900, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-37019892

RESUMEN

Blood-brain barrier disruption marks the onset of cerebral adrenoleukodystrophy (CALD), a devastating cerebral demyelinating disease caused by loss of ABCD1 gene function. The underlying mechanism are not well understood, but evidence suggests that microvascular dysfunction is involved. We analyzed cerebral perfusion imaging in boys with CALD treated with autologous hematopoietic stem-cells transduced with the Lenti-D lentiviral vector that contains ABCD1 cDNA as part of a single group, open-label phase 2-3 safety and efficacy study (NCT01896102) and patients treated with allogeneic hematopoietic stem cell transplantation. We found widespread and sustained normalization of white matter permeability and microvascular flow. We demonstrate that ABCD1 functional bone marrow-derived cells can engraft in the cerebral vascular and perivascular space. Inverse correlation between gene dosage and lesion growth suggests that corrected cells contribute long-term to remodeling of brain microvascular function. Further studies are needed to explore the longevity of these effects.


Asunto(s)
Adrenoleucodistrofia , Trasplante de Células Madre Hematopoyéticas , Sustancia Blanca , Masculino , Humanos , Adrenoleucodistrofia/genética , Sustancia Blanca/patología , Células Madre Hematopoyéticas/patología , Terapia Genética , Trasplante de Células Madre Hematopoyéticas/métodos
6.
J Magn Reson Imaging ; 57(6): 1676-1695, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36912262

RESUMEN

Preoperative clinical MRI protocols for gliomas, brain tumors with dismal outcomes due to their infiltrative properties, still rely on conventional structural MRI, which does not deliver information on tumor genotype and is limited in the delineation of diffuse gliomas. The GliMR COST action wants to raise awareness about the state of the art of advanced MRI techniques in gliomas and their possible clinical translation. This review describes current methods, limits, and applications of advanced MRI for the preoperative assessment of glioma, summarizing the level of clinical validation of different techniques. In this second part, we review magnetic resonance spectroscopy (MRS), chemical exchange saturation transfer (CEST), susceptibility-weighted imaging (SWI), MRI-PET, MR elastography (MRE), and MR-based radiomics applications. The first part of this review addresses dynamic susceptibility contrast (DSC) and dynamic contrast-enhanced (DCE) MRI, arterial spin labeling (ASL), diffusion-weighted MRI, vessel imaging, and magnetic resonance fingerprinting (MRF). EVIDENCE LEVEL: 3. TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Neoplasias Encefálicas , Glioma , Imagen por Resonancia Magnética , Humanos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/patología , Medios de Contraste , Glioma/diagnóstico por imagen , Glioma/cirugía , Glioma/patología , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Periodo Preoperatorio
7.
J Magn Reson Imaging ; 57(6): 1655-1675, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36866773

RESUMEN

Preoperative clinical magnetic resonance imaging (MRI) protocols for gliomas, brain tumors with dismal outcomes due to their infiltrative properties, still rely on conventional structural MRI, which does not deliver information on tumor genotype and is limited in the delineation of diffuse gliomas. The GliMR COST action wants to raise awareness about the state of the art of advanced MRI techniques in gliomas and their possible clinical translation or lack thereof. This review describes current methods, limits, and applications of advanced MRI for the preoperative assessment of glioma, summarizing the level of clinical validation of different techniques. In this first part, we discuss dynamic susceptibility contrast and dynamic contrast-enhanced MRI, arterial spin labeling, diffusion-weighted MRI, vessel imaging, and magnetic resonance fingerprinting. The second part of this review addresses magnetic resonance spectroscopy, chemical exchange saturation transfer, susceptibility-weighted imaging, MRI-PET, MR elastography, and MR-based radiomics applications. Evidence Level: 3 Technical Efficacy: Stage 2.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Imagen por Resonancia Magnética/métodos , Glioma/diagnóstico por imagen , Glioma/cirugía , Glioma/patología , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/patología , Espectroscopía de Resonancia Magnética/métodos , Imagen de Difusión por Resonancia Magnética
8.
Proc Natl Acad Sci U S A ; 120(6): e2219199120, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36724255

RESUMEN

Immune checkpoint blockers (ICBs) have failed in all phase III glioblastoma trials. Here, we found that ICBs induce cerebral edema in some patients and mice with glioblastoma. Through single-cell RNA sequencing, intravital imaging, and CD8+ T cell blocking studies in mice, we demonstrated that this edema results from an inflammatory response following antiprogrammed death 1 (PD1) antibody treatment that disrupts the blood-tumor barrier. Used in lieu of immunosuppressive corticosteroids, the angiotensin receptor blocker losartan prevented this ICB-induced edema and reprogrammed the tumor microenvironment, curing 20% of mice which increased to 40% in combination with standard of care treatment. Using a bihemispheric tumor model, we identified a "hot" tumor immune signature prior to losartan+anti-PD1 therapy that predicted long-term survival. Our findings provide the rationale and associated biomarkers to test losartan with ICBs in glioblastoma patients.


Asunto(s)
Glioblastoma , Animales , Ratones , Glioblastoma/patología , Losartán/farmacología , Losartán/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Linfocitos T CD8-positivos , Edema , Microambiente Tumoral
9.
Front Neurol ; 13: 932219, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35968292

RESUMEN

For patients suffering from brain tumor, prognosis estimation and treatment decisions are made by a multidisciplinary team based on a set of preoperative MR scans. Currently, the lack of standardized and automatic methods for tumor detection and generation of clinical reports, incorporating a wide range of tumor characteristics, represents a major hurdle. In this study, we investigate the most occurring brain tumor types: glioblastomas, lower grade gliomas, meningiomas, and metastases, through four cohorts of up to 4,000 patients. Tumor segmentation models were trained using the AGU-Net architecture with different preprocessing steps and protocols. Segmentation performances were assessed in-depth using a wide-range of voxel and patient-wise metrics covering volume, distance, and probabilistic aspects. Finally, two software solutions have been developed, enabling an easy use of the trained models and standardized generation of clinical reports: Raidionics and Raidionics-Slicer. Segmentation performances were quite homogeneous across the four different brain tumor types, with an average true positive Dice ranging between 80 and 90%, patient-wise recall between 88 and 98%, and patient-wise precision around 95%. In conjunction to Dice, the identified most relevant other metrics were the relative absolute volume difference, the variation of information, and the Hausdorff, Mahalanobis, and object average symmetric surface distances. With our Raidionics software, running on a desktop computer with CPU support, tumor segmentation can be performed in 16-54 s depending on the dimensions of the MRI volume. For the generation of a standardized clinical report, including the tumor segmentation and features computation, 5-15 min are necessary. All trained models have been made open-access together with the source code for both software solutions and validation metrics computation. In the future, a method to convert results from a set of metrics into a final single score would be highly desirable for easier ranking across trained models. In addition, an automatic classification of the brain tumor type would be necessary to replace manual user input. Finally, the inclusion of post-operative segmentation in both software solutions will be key for generating complete post-operative standardized clinical reports.

10.
Cancers (Basel) ; 14(7)2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35406497

RESUMEN

The compression of peritumoral healthy tissue in brain tumor patients is considered a major cause of the life-threatening neurologic symptoms. Although significant deformations caused by the tumor growth can be observed radiologically, the quantification of minor tissue deformations have not been widely investigated. In this study, we propose a method to quantify subtle peritumoral deformations. A total of 127 MRI longitudinal studies from 23 patients with high-grade glioma were included. We estimate longitudinal displacement fields based on a symmetric normalization algorithm and we propose four biomarkers. We assess the interpatient and intrapatient association between proposed biomarkers and the survival based on Cox analyses, and the potential of the biomarkers to stratify patients according to their survival based on Kaplan−Meier analysis. Biomarkers show a significant intrapatient association with survival (p < 0.05); however, only compression biomarkers show the ability to stratify patients between those with higher and lower overall survival (AUC = 0.83, HR = 6.30, p < 0.05 for CompCH). The compression biomarkers present three times higher Hazard Ratios than those representing only displacement. Our study provides a robust and automated method for quantifying and delineating compression in the peritumoral area. Based on the proposed methodology, we found an association between lower compression in the peritumoral area and good prognosis in high-grade glial tumors.

11.
Cancers (Basel) ; 14(4)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35205632

RESUMEN

The purpose of this study is to develop a methodology that incorporates a more accurate assessment of tissue mechanical properties compared to current mathematical modeling by use of biomechanical data from magnetic resonance elastography. The elastography data were derived from five glioblastoma patients and a healthy subject and used in a model that simulates tumor growth, vascular changes due to mechanical stresses and delivery of therapeutic agents. The model investigates the effect of tumor-specific biomechanical properties on tumor anisotropic growth, vascular density heterogeneity and chemotherapy delivery. The results showed that including elastography data provides a more realistic distribution of the mechanical stresses in the tumor and induces anisotropic tumor growth. Solid stress distribution differs among patients, which, in turn, induces a distinct functional vascular density distribution-owing to the compression of tumor vessels-and intratumoral drug distribution for each patient. In conclusion, incorporating elastography data results in a more accurate calculation of intratumoral mechanical stresses and enables a better mathematical description of subsequent events, such as the heterogeneous development of the tumor vasculature and intrapatient variations in tumor perfusion and delivery of drugs.

12.
MAGMA ; 35(1): 163-186, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34919195

RESUMEN

Cancer therapy for both central nervous system (CNS) and non-CNS tumors has been previously associated with transient and long-term cognitive deterioration, commonly referred to as 'chemo fog'. This therapy-related damage to otherwise normal-appearing brain tissue is reported using post-mortem neuropathological analysis. Although the literature on monitoring therapy effects on structural magnetic resonance imaging (MRI) is well established, such macroscopic structural changes appear relatively late and irreversible. Early quantitative MRI biomarkers of therapy-induced damage would potentially permit taking these treatment side effects into account, paving the way towards a more personalized treatment planning.This systematic review (PROSPERO number 224196) provides an overview of quantitative tomographic imaging methods, potentially identifying the adverse side effects of cancer therapy in normal-appearing brain tissue. Seventy studies were obtained from the MEDLINE and Web of Science databases. Studies reporting changes in normal-appearing brain tissue using MRI, PET, or SPECT quantitative biomarkers, related to radio-, chemo-, immuno-, or hormone therapy for any kind of solid, cystic, or liquid tumor were included. The main findings of the reviewed studies were summarized, providing also the risk of bias of each study assessed using a modified QUADAS-2 tool. For each imaging method, this review provides the methodological background, and the benefits and shortcomings of each method from the imaging perspective. Finally, a set of recommendations is proposed to support future research.


Asunto(s)
Trastornos del Conocimiento , Neoplasias , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Humanos , Imagen por Resonancia Magnética , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico
14.
NMR Biomed ; 34(4): e4462, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33470039

RESUMEN

INTRODUCTION: IDH1/2 wt glioblastoma (GB) represents the most lethal tumour of the central nervous system. Tumour vascularity is associated with overall survival (OS), and the clinical relevance of vascular markers, such as rCBV, has already been validated. Nevertheless, molecular and clinical factors may have different influences on the beneficial effect of a favourable vascular signature. PURPOSE: To evaluate the association between the rCBV and OS of IDH1/2 wt GB patients for long-term survivors (LTSs) and short-term survivors (STSs). Given that initial high rCBV may affect the patient's OS in follow-up stages, we will assess whether a moderate vascularity is beneficial for OS in both groups of patients. MATERIALS AND METHODS: Ninety-nine IDH1/2 wt GB patients were divided into LTSs (OS ≥ 400 days) and STSs (OS < 400 days). Mann-Whitney and Fisher, uni- and multiparametric Cox, Aalen's additive regression and Kaplan-Meier tests were carried out. Tumour vascularity was represented by the mean rCBV of the high angiogenic tumour (HAT) habitat computed through the haemodynamic tissue signature methodology (available on the ONCOhabitats platform). RESULTS: For LTSs, we found a significant association between a moderate value of rCBVmean and higher OS (uni- and multiparametric Cox and Aalen's regression) (p = 0.0140, HR = 1.19; p = 0.0085, HR = 1.22) and significant stratification capability (p = 0.0343). For the STS group, no association between rCBVmean and survival was observed. Moreover, no significant differences (p > 0.05) in gender, age, resection status, chemoradiation, or MGMT methylation were observed between LTSs and STSs. CONCLUSION: We have found different prognostic and stratification effects of the vascular marker for the LTS and STS groups. We propose the use of rCBVmean at HAT as a vascular marker clinically relevant for LTSs with IDH1/2 wt GB and maybe as a potential target for randomized clinical trials focused on this group of patients.


Asunto(s)
Neoplasias Encefálicas/irrigación sanguínea , Supervivientes de Cáncer , Glioblastoma/irrigación sanguínea , Isocitrato Deshidrogenasa/genética , Volumen Sanguíneo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidad , Circulación Cerebrovascular , Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Femenino , Glioblastoma/genética , Glioblastoma/mortalidad , Humanos , Masculino , Persona de Mediana Edad , Modelos de Riesgos Proporcionales , Proteínas Supresoras de Tumor/genética
15.
J Med Biol Eng ; 41(2): 115-125, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33293909

RESUMEN

Purpose: There is an annual incidence of 50,000 glioma cases in Europe. The optimal treatment strategy is highly personalised, depending on tumour type, grade, spatial localization, and the degree of tissue infiltration. In research settings, advanced magnetic resonance imaging (MRI) has shown great promise as a tool to inform personalised treatment decisions. However, the use of advanced MRI in clinical practice remains scarce due to the downstream effects of siloed glioma imaging research with limited representation of MRI specialists in established consortia; and the associated lack of available tools and expertise in clinical settings. These shortcomings delay the translation of scientific breakthroughs into novel treatment strategy. As a response we have developed the network "Glioma MR Imaging 2.0" (GliMR) which we present in this article. Methods: GliMR aims to build a pan-European and multidisciplinary network of experts and accelerate the use of advanced MRI in glioma beyond the current "state-of-the-art" in glioma imaging. The Action Glioma MR Imaging 2.0 (GliMR) was granted funding by the European Cooperation in Science and Technology (COST) in June 2019. Results: GliMR's first grant period ran from September 2019 to April 2020, during which several meetings were held and projects were initiated, such as reviewing the current knowledge on advanced MRI; developing a General Data Protection Regulation (GDPR) compliant consent form; and setting up the website. Conclusion: The Action overcomes the pre-existing limitations of glioma research and is funded until September 2023. New members will be accepted during its entire duration.

16.
Eur Radiol ; 31(3): 1738-1747, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33001310

RESUMEN

OBJECTIVES: To assess the combined role of tumor vascularity, estimated from perfusion MRI, and MGMT methylation status on overall survival (OS) in patients with glioblastoma. METHODS: A multicentric international dataset including 96 patients from NCT03439332 clinical study were used to study the prognostic relationships between MGMT and perfusion markers. Relative cerebral blood volume (rCBV) in the most vascularized tumor regions was automatically obtained from preoperative MRIs using ONCOhabitats online analysis service. Cox survival regression models and stratification strategies were conducted to define a subpopulation that is particularly favored by MGMT methylation in terms of OS. RESULTS: rCBV distributions did not differ significantly (p > 0.05) in the methylated and the non-methylated subpopulations. In patients with moderately vascularized tumors (rCBV < 10.73), MGMT methylation was a positive predictive factor for OS (HR = 2.73, p = 0.003, AUC = 0.70). In patients with highly vascularized tumors (rCBV > 10.73), however, there was no significant effect of MGMT methylation (HR = 1.72, p = 0.10, AUC = 0.56). CONCLUSIONS: Our results indicate the existence of complementary prognostic information provided by MGMT methylation and rCBV. Perfusion markers could identify a subpopulation of patients who will benefit the most from MGMT methylation. Not considering this information may lead to bias in the interpretation of clinical studies. KEY POINTS: • MRI perfusion provides complementary prognostic information to MGMT methylation. • MGMT methylation improves prognosis in glioblastoma patients with moderate vascular profile. • Failure to consider these relations may lead to bias in the interpretation of clinical studies.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Antineoplásicos Alquilantes/uso terapéutico , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Metilación de ADN , Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Glioblastoma/diagnóstico por imagen , Glioblastoma/genética , Humanos , Pronóstico , Regiones Promotoras Genéticas , Temozolomida/uso terapéutico , Proteínas Supresoras de Tumor/genética
17.
Breast Cancer Res ; 22(1): 131, 2020 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-33256829

RESUMEN

BACKGROUND: We aimed to examine the safety and efficacy of bevacizumab and carboplatin in patients with breast cancer brain metastases. METHODS: We enrolled patients with breast cancer and > 1 measurable new or progressive brain metastasis. Patients received bevacizumab 15 mg/kg intravenously (IV) on cycle 1 day 1 and carboplatin IV AUC = 5 on cycle 1 day 8. Patients with HER2-positive disease also received trastuzumab. In subsequent cycles, all drugs were administered on day 1 of each cycle. Contrast-enhanced brain MRI was performed at baseline, 24-96 h after the first bevacizumab dose (day + 1), and every 2 cycles. The primary endpoint was objective response rate in the central nervous system (CNS ORR) by composite criteria. Associations between germline VEGF single nucleotide polymorphisms (rs699947, rs2019063, rs1570360, rs833061) and progression-free survival (PFS) and overall survival (OS) were explored, as were associations between early (day + 1) MRI changes and outcomes. RESULTS: Thirty-eight patients were enrolled (29 HER2-positive, 9 HER2-negative); all were evaluable for response. The CNS ORR was 63% (95% CI, 46-78). Median PFS was 5.62 months and median OS was 14.10 months. As compared with an Eastern Cooperative Oncology Group performance status (ECOG PS) of 0, patients with ECOG PS 1-2 had significantly worse PFS and OS (all P < 0.01). No significant associations between VEGF genotypes or early MRI changes and clinical outcomes were observed. CONCLUSIONS: The combination of bevacizumab and carboplatin results in a high rate of durable objective response in patients with brain metastases from breast cancer. This regimen warrants further investigation. TRIAL REGISTRATION: NCT01004172 . Registered 28 October 2009.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Bevacizumab/administración & dosificación , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias de la Mama/tratamiento farmacológico , Carboplatino/administración & dosificación , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Bevacizumab/efectos adversos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/secundario , Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Carboplatino/efectos adversos , Femenino , Técnicas de Genotipaje , Humanos , Estimación de Kaplan-Meier , Imagen por Resonancia Magnética , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Supervivencia sin Progresión , Trastuzumab/administración & dosificación , Trastuzumab/efectos adversos , Factor A de Crecimiento Endotelial Vascular/genética
18.
Phys Med Biol ; 65(22): 225020, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33200748

RESUMEN

Dynamic susceptibility contrast (DSC) imaging is a widely used technique for assessment of cerebral blood volume (CBV). With combined gradient-echo and spin-echo DSC techniques, measures of the underlying vessel size and vessel architecture can be obtained from the vessel size index (VSI) and vortex area, respectively. However, how noise, and specifically the contrast-to-noise ratio (CNR), affect the estimations of these parameters has largely been overlooked. In order to address this issue, we have performed simulations to generate DSC signals with varying levels of CNR, defined by the peak of relaxation rate curve divided by the standard deviation of the baseline. Moreover, DSC data from 59 brain cancer patients were acquired at two different 3 T-scanners (N = 29 and N = 30, respectively), where CNR and relative parameter maps were obtained. Our simulations showed that the measured parameters were affected by CNR in different ways, where low CNR led to overestimations of CBV and underestimations of VSI and vortex area. In addition, a higher noise-sensitivity was found in vortex area than in CBV and VSI. Results from clinical data were consistent with simulations, and indicated that CNR < 4 gives highly unreliable measurements. Moreover, we have shown that the distribution of values in the tumour regions could change considerably when voxels with CNR below a given cut off are excluded when generating the relative parameter maps. The widespread use of CBV and attractive potential of VSI and vortex area, makes the noise-sensitivity of these parameters found in our study relevant for further use and development of the DSC imaging technique. Our results suggest that the CNR has considerable impact on the measured parameters, with the potential to affect the clinical interpretation of DSC-MRI, and should therefore be taken into account in the clinical decision-making process.


Asunto(s)
Vasos Sanguíneos/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Relación Señal-Ruido , Adulto , Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/diagnóstico por imagen , Femenino , Humanos , Masculino , Persona de Mediana Edad
19.
Eur J Radiol ; 132: 109289, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33002815

RESUMEN

PURPOSE: We studied the ability of Restriction Spectrum Imaging (RSI), a novel advanced diffusion imaging technique, to estimate levels of cellularity in different glioblastoma regions, evaluated their prognostic value compared with established clinical diffusion metrics such as fractional anisotropy (FA) and mean diffusivity (MD). METHODS: Forty-two patients with untreated glioblastoma, IDH-wildtype, were examined with an advanced MRI tumor protocol. The region of interest (ROI) was obtained from the contrast-enhancing part of tumor and the peritumoral brain zones and then co-registered with RSI-cellularity index, FA and MD maps. Histogram parameters of diffusion metrics were assessed for all ROI locations and compared to MGMT promoter methylation status and survival. The ability of RSI-cellularity index, FA, and MD to stratify survival and were assessed by Cox proportional hazard regression, adjusted for significant clinical predictors. RESULTS: The highest RSI-cellularity index was measured in contrast-enhancing tumor core with a negative gradient from tumor core to the periphery of peritumoral zone with predictive accuracy 81 % (P < 0.001). Shorter overall survival was significant associated with higher RSI-cellularity index (hazard ratio (HR) 3.6, 95 % confidence interval (CI) 1.3-9.5, P = 0.002) with synchronal decrease in MD (HR 0.31, 95 %CI 0.1-0.8, P = 0.008) in the contrast-enhanced tumor core. This association was also consistent for RSI-cellularity index value measured in the peri-enhancing zone (HR 3.6, 95 % CI 1.0-12.3, P = 0.041). No statistically significant differences were noted between RSI-cellularity index, FA, nor MD and MGMT promoter methylation. CONCLUSION: RSI-cellularity index may be used as prognostic biomarker to improve risk stratification in patients with glioblastoma.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Encéfalo/diagnóstico por imagen , Neoplasias Encefálicas/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Glioblastoma/diagnóstico por imagen , Humanos , Supervivencia sin Progresión
20.
Eur J Radiol ; 132: 109278, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33010685

RESUMEN

PURPOSE: Relative cerebral blood volume (rCBV) from dynamic susceptibility contrast (DSC)-MRI is a valuable biomarker in patients with glioblastoma for assessing treatment response and predicting overall survival. DSC-MRI based on echo planar images (EPI) may possess severe geometric distortions from magnetic field inhomogeneities up to the order of centimeters. The aim of this study is to assess how much two readily available EPI-based geometric distortion correction methods, FSL TOPUP and EPIC, affect rCBV values from DSC-MRI in patients with confirmed glioblastoma. METHOD: We used a combined single-shot 2D gradient-echo (T2*), spin-echo (T2) EPI sequence to estimate both T2* and T2-weighted rCBV from the same contrast agent injection. Effects of distortion correction on the positive phase-encoded T2- and T2*-images were assessed in healthy anatomical brain regions in terms of Wilcoxon signed rank tests on median rCBV change and on Dice coefficients, as well as in tumor lesions in terms of Wilcoxon signed rank tests on median rCBV change. RESULTS: Our results show that following distortion correction, both gradient-echo and spin-echo rCBV increased in cortical areas of the frontal, temporal and occipital lobe, including the posterior orbital gyri in the frontal lobe and middle frontal gyri (p < 0.0008). Similar, improved Dice coefficients were observed for gradient-echo EPI in temporal, occipital and frontal lobe. Only spin-echo rCBV in enhancing lesion increased with correction (p = 0.0002). CONCLUSION: Our study sheds light on the importance of performing geometric distortion correction on EPI-based MRI data before assessing functional information such as rCBV values. Our findings may indicate that uncorrected rCBV values can be underestimated from positive phase-encoding EPI and that geometric distortion correction is warranted when comparing EPI-based data to conventional MRI.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Encéfalo , Neoplasias Encefálicas/diagnóstico por imagen , Volumen Sanguíneo Cerebral , Medios de Contraste , Imagen Eco-Planar , Glioblastoma/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA