Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Mol Sci ; 21(15)2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32731361

RESUMEN

Given the enormous social and health impact of the pandemic triggered by severe acute respiratory syndrome 2 (SARS-CoV-2), the scientific community made a huge effort to provide an immediate response to the challenges posed by Coronavirus disease 2019 (COVID-19). One of the most important proteins of the virus is an enzyme, called 3CLpro or main protease, already identified as an important pharmacological target also in SARS and Middle East respiratory syndrome virus (MERS) viruses. This protein triggers the production of a whole series of enzymes necessary for the virus to carry out its replicating and infectious activities. Therefore, it is crucial to gain a deeper understanding of 3CLpro structure and function in order to effectively target this enzyme. All-atoms molecular dynamics (MD) simulations were performed to examine the different conformational behaviors of the monomeric and dimeric form of SARS-CoV-2 3CLpro apo structure, as revealed by microsecond time scale MD simulations. Our results also shed light on the conformational dynamics of the loop regions at the entry of the catalytic site. Studying, at atomic level, the characteristics of the active site and obtaining information on how the protein can interact with its substrates will allow the design of molecules able to block the enzymatic function crucial for the virus.


Asunto(s)
Betacoronavirus/metabolismo , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/metabolismo , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Betacoronavirus/química , Dominio Catalítico , Proteasas 3C de Coronavirus , Humanos , Modelos Moleculares , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Multimerización de Proteína , SARS-CoV-2
3.
Toxicol Appl Pharmacol ; 330: 93-99, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28733203

RESUMEN

Natalizumab is a humanized monoclonal antibody to α4ß1 integrin and is approved for the treatment of Multiple Sclerosis. In patients there is a great variation in drug response and there is much evidence that genetic contributors play an important role in defining an individual's susceptibility. Natalizumab binds to α4-residues Gln-152, Lys-201, Lys256, and these seem to be essential for its activity. Studies on a range of species in disease model have showed a loss of reactivity when any one of those three residues were different to human. Based on these animal studies, we thought that the single nucleotide polymorphism in the ITGA4 human gene causing a lysine to arginine transversion at amino acid position 256 require further investigations in the context of individual drug susceptibility. So, the aim of our study was to investigate the association between this genetic polymorphism and the resistance to natalizumab. We had applied molecular dynamics simulation to study the possible conformational changes induced by Lys256Arg transversion on the overall structure of integrin and we have analyzed the binding affinities of natalizumab in the non-mutated and mutated structures through HINT score. We found that this SNP does not affect the VLA4-natalizumab interaction. Instead, the binding affinities are slightly higher in the mutated complex than in the wild-type. We reported one of the first work in which MD simulation was applied in the pharmacogenetic context, and this approach is rapid and cost effective, since a population survey is carried out only after the positive prediction of simulation.


Asunto(s)
Antineoplásicos/farmacología , Natalizumab/farmacología , Farmacogenética/métodos , Algoritmos , Antineoplásicos/química , Simulación por Computador , Resistencia a Antineoplásicos/genética , Humanos , Simulación del Acoplamiento Molecular , Natalizumab/química , Polimorfismo Genético/genética , Polimorfismo de Nucleótido Simple , Unión Proteica
4.
Neoplasia ; 14(11): 1087-96, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23226102

RESUMEN

mRNA chimeras from chromosomal translocations often play a role as transforming oncogenes. However, cancer transcriptomes also contain mRNA chimeras that may play a role in tumor development, which arise as transcriptional or post-transcriptional events. To identify such chimeras, we developed a deterministic screening strategy for long-range sequence analysis. High-throughput, long-read sequencing was then performed on cDNA libraries from major tumor histotypes and corresponding normal tissues. These analyses led to the identification of 378 chimeras, with an unexpectedly high frequency of expression (≈2 x 10(-5) of all mRNA). Functional assays in breast and ovarian cancer cell lines showed that a large fraction of mRNA chimeras regulates cell replication. Strikingly, chimeras were shown to include both positive and negative regulators of cell growth, which functioned as such in a cell-type-specific manner. Replication-controlling chimeras were found to be expressed by most cancers from breast, ovary, colon, uterus, kidney, lung, and stomach, suggesting a widespread role in tumor development.


Asunto(s)
Proteínas Mutantes Quiméricas/genética , Neoplasias/genética , ARN Mensajero/genética , Transcriptoma , Secuencia de Bases , Línea Celular Tumoral , Proliferación Celular , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Datos de Secuencia Molecular , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA