Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
PLoS Negl Trop Dis ; 16(10): e0010419, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36215334

RESUMEN

The World Health Organization's revised NTD Roadmap and the newly launched Guidelines target elimination of schistosomiasis as a public health problem in all endemic areas by 2030. Key to meeting this goal is elucidating how selective pressures imposed by interventions shape parasite populations. Our aim was to identify any differential impact of a unique cluster-randomized tri-armed elimination intervention (biannual mass drug administration (MDA) applied alone or in association with either mollusciciding (snail control) or behavioural change interventions) across two Zanzibarian islands (Pemba and Unguja) on the population genetic composition of Schistosoma haematobium over space and time. Fifteen microsatellite loci were used to analyse individual miracidia collected from infected individuals across islands and intervention arms at the start (2012 baseline: 1,522 miracidia from 176 children; 303 from 43 adults; age-range 6-75, mean 12.7 years) and at year 5 (2016: 1,486 miracidia from 146 children; 214 from 25 adults; age-range 9-46, mean 12.4 years). Measures of genetic diversity included allelic richness (Ar), Expected (He) and Observed heterozygosity (Ho), inbreeding coefficient (FST), parentage analysis, estimated worm burden, worm fecundity, and genetic sub-structuring. There was little evidence of differential selective pressures on population genetic diversity, inbreeding or estimated worm burdens by treatment arm, with only the MDA+snail control arm within Unguja showing trends towards reduced diversity and altered inbreeding over time. The greatest differences overall, both in terms of parasite fecundity and genetic sub-structuring, were observed between the islands, consistent with Pemba's persistently higher mean infection intensities compared to neighbouring Unguja, and within islands in terms of infection hotspots (across three definitions). These findings highlight the important contribution of population genetic analyses to elucidate extensive genetic diversity and biological drivers, including potential gene-environmental factors, that may override short term selective pressures imposed by differential disease control strategies. Trial Registration: ClinicalTrials.gov ISRCTN48837681.


Asunto(s)
Antihelmínticos , Esquistosomiasis Urinaria , Animales , Antihelmínticos/uso terapéutico , Genética de Población , Islas , Praziquantel/uso terapéutico , Schistosoma haematobium/genética , Esquistosomiasis Urinaria/tratamiento farmacológico , Esquistosomiasis Urinaria/epidemiología , Esquistosomiasis Urinaria/prevención & control , Caracoles/genética , Caracoles/parasitología , Tanzanía/epidemiología
2.
PLoS Pathog ; 18(2): e1010288, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35167626

RESUMEN

Urogenital schistosomiasis is caused by the blood fluke Schistosoma haematobium and is one of the most neglected tropical diseases worldwide, afflicting > 100 million people. It is characterised by granulomata, fibrosis and calcification in urogenital tissues, and can lead to increased susceptibility to HIV/AIDS and squamous cell carcinoma of the bladder. To complement available treatment programs and break the transmission of disease, sound knowledge and understanding of the biology and ecology of S. haematobium is required. Hybridisation/introgression events and molecular variation among members of the S. haematobium-group might effect important biological and/or disease traits as well as the morbidity of disease and the effectiveness of control programs including mass drug administration. Here we report the first chromosome-contiguous genome for a well-defined laboratory line of this blood fluke. An exploration of this genome using transcriptomic data for all key developmental stages allowed us to refine gene models (including non-coding elements) and annotations, discover 'new' genes and transcription profiles for these stages, likely linked to development and/or pathogenesis. Molecular variation within S. haematobium among some geographical locations in Africa revealed unique genomic 'signatures' that matched species other than S. haematobium, indicating the occurrence of introgression events. The present reference genome (designated Shae.V3) and the findings from this study solidly underpin future functional genomic and molecular investigations of S. haematobium and accelerate systematic, large-scale population genomics investigations, with a focus on improved and sustained control of urogenital schistosomiasis.


Asunto(s)
Variación Genética , Genoma de Protozoos , Schistosoma haematobium/genética , Esquistosomiasis Urinaria/parasitología , Transcriptoma , Animales , Cromosomas/parasitología , Genes Protozoarios , Genoma , Estudio de Asociación del Genoma Completo , Análisis de Secuencia de ADN
3.
PLoS Negl Trop Dis ; 16(1): e0010088, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35100291

RESUMEN

Schistosomiasis remains a public health concern across sub-Saharan Africa; current control programmes rely on accurate mapping and high mass drug administration (MDA) coverage to attempt disease elimination. Inter-species hybridisation can occur between certain species, changing epidemiological dynamics within endemic regions, which has the potential to confound control interventions. The impact of hybridisation on disease dynamics is well illustrated in areas of Cameroon where urogenital schistosomiasis, primarily due to Schistosoma haematobium and hybrid infections, now predominate over intestinal schistosomiasis caused by Schistosoma guineensis. Genetic markers have shown the ability to identify hybrids, however the underlying genomic architecture of divergence and introgression between these species has yet to be established. In this study, restriction site associated DNA sequencing (RADseq) was used on archived adult worms initially identified as; Schistosoma bovis (n = 4), S. haematobium (n = 9), S. guineensis (n = 3) and S. guineensis x S. haematobium hybrids (n = 4) from Mali, Senegal, Niger, São Tomé and Cameroon. Genome-wide evidence supports the existence of S. guineensis and S. haematobium hybrid populations across Cameroon. The hybridisation of S. guineensis x S. haematobium has not been demonstrated on the island of São Tomé, where all samples showed no introgression with S. haematobium. Additionally, all S. haematobium isolates from Nigeria, Mali and Cameroon indicated signatures of genomic introgression from S. bovis. Adaptive loci across the S. haematobium group showed that voltage-gated calcium ion channels (Cav) could play a key role in the ability to increase the survivability of species, particularly in host systems. Where admixture has occurred between S. guineensis and S. haematobium, the excess introgressive influx of tegumental (outer helminth body) and antigenic genes from S. haematobium has increased the adaptive response in hybrids, leading to increased hybrid population fitness and viability.


Asunto(s)
Canales de Calcio/genética , Quimera/genética , Schistosoma haematobium/genética , Esquistosomiasis Urinaria/epidemiología , Esquistosomiasis Urinaria/transmisión , Animales , Antihelmínticos/uso terapéutico , Canales de Calcio/metabolismo , Camerún/epidemiología , ADN Protozoario/genética , Humanos , Masculino , Praziquantel/uso terapéutico , Schistosoma haematobium/clasificación , Schistosoma haematobium/efectos de los fármacos , Schistosoma haematobium/aislamiento & purificación , Esquistosomiasis Urinaria/tratamiento farmacológico , Análisis de Secuencia de ADN , Enfermedades Transmitidas por el Agua/parasitología
4.
Sci Transl Med ; 13(625): eabj9114, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34936381

RESUMEN

Mass drug administration with praziquantel (PZQ) monotherapy is considered the mainstay for control and elimination of the parasites causing schistosomiasis in humans. This drug shows imperfect cure rates in the field, and parasites showing reduced PZQ response can be selected in the laboratory, but the extent of resistance in Schistosoma mansoni populations is unknown. We examined the genetic basis of the variation in response in a PZQ-selected S. mansoni population (SmLE-PZQ-R) in which 35% of the parasitic worms survive high-dose PZQ (73 micrograms per milliliter) treatment. We used genome-wide association to map loci underlying PZQ response and identified a transient receptor potential (Sm.TRPMPZQ) channel (Smp_246790) within the major chromosome 3 peak that is activated by nanomolar concentrations of PZQ. The PZQ response showed recessive inheritance and marker-assisted selection of parasites at a single Sm.TRPMPZQ SNP that produced populations of PZQ-enriched resistant (PZQ-ER) and PZQ-enriched sensitive (PZQ-ES) parasites, exhibiting >377-fold difference in PZQ response. The PZQ-ER parasites survived treatment in rodents at higher frequencies compared with PZQ-ES, and resistant parasites exhibited 2.25-fold lower expression of Sm.TRPMPZQ relative to sensitive parasites. Specific chemical blockers of Sm.TRPMPZQ enhanced PZQ resistance, whereas Sm.TRPMPZQ activators increased sensitivity. We surveyed Sm.TRPMPZQ sequence variations in 259 parasites from different global sites and identified one nonsense mutation that resulted in a truncated protein with no PZQ binding site. Our results demonstrate that Sm.TRPMPZQ underlies variation in PZQ responses in S. mansoni and provides an approach for monitoring emerging PZQ-resistant alleles in schistosome elimination programs.


Asunto(s)
Antihelmínticos , Parásitos , Esquistosomiasis mansoni , Canales de Potencial de Receptor Transitorio , Animales , Antihelmínticos/farmacología , Antihelmínticos/uso terapéutico , Estudio de Asociación del Genoma Completo , Parásitos/metabolismo , Praziquantel/farmacología , Praziquantel/uso terapéutico , Esquistosomiasis mansoni/tratamiento farmacológico , Esquistosomiasis mansoni/epidemiología , Esquistosomiasis mansoni/parasitología , Canales de Potencial de Receptor Transitorio/metabolismo , Canales de Potencial de Receptor Transitorio/uso terapéutico
5.
PLoS Negl Trop Dis ; 8(6): e2924, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24921927

RESUMEN

Protein kinases C (PKCs) and extracellular signal-regulated kinases (ERKs) are evolutionary conserved cell signalling enzymes that coordinate cell function. Here we have employed biochemical approaches using 'smart' antibodies and functional screening to unravel the importance of these enzymes to Schistosoma mansoni physiology. Various PKC and ERK isotypes were detected, and were differentially phosphorylated (activated) throughout the various S. mansoni life stages, suggesting isotype-specific roles and differences in signalling complexity during parasite development. Functional kinase mapping in adult worms revealed that activated PKC and ERK were particularly associated with the adult male tegument, musculature and oesophagus and occasionally with the oesophageal gland; other structures possessing detectable activated PKC and/or ERK included the Mehlis' gland, ootype, lumen of the vitellaria, seminal receptacle and excretory ducts. Pharmacological modulation of PKC and ERK activity in adult worms using GF109203X, U0126, or PMA, resulted in significant physiological disturbance commensurate with these proteins occupying a central position in signalling pathways associated with schistosome muscular activity, neuromuscular coordination, reproductive function, attachment and pairing. Increased activation of ERK and PKC was also detected in worms following praziquantel treatment, with increased signalling associated with the tegument and excretory system and activated ERK localizing to previously unseen structures, including the cephalic ganglia. These findings support roles for PKC and ERK in S. mansoni homeostasis, and identify these kinase groups as potential targets for chemotherapeutic treatments against human schistosomiasis, a neglected tropical disease of enormous public health significance.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteína Quinasa C/metabolismo , Schistosoma mansoni/enzimología , Schistosoma mansoni/fisiología , Transducción de Señal , Estructuras Animales/enzimología , Animales , Antihelmínticos/farmacología , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Femenino , Locomoción , Masculino , Praziquantel/farmacología , Proteína Quinasa C/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Reproducción , Schistosoma mansoni/efectos de los fármacos , Cigoto
6.
PLoS Negl Trop Dis ; 7(1): e1988, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23326613

RESUMEN

Cyclic AMP (cAMP)-dependent protein kinase/protein kinase A (PKA) is the major transducer of cAMP signalling in eukaryotic cells. Here, using laser scanning confocal microscopy and 'smart' anti-phospho PKA antibodies that exclusively detect activated PKA, we provide a detailed in situ analysis of PKA signalling in intact adult Schistosoma mansoni, a causative agent of debilitating human intestinal schistosomiasis. In both adult male and female worms, activated PKA was consistently found associated with the tegument, oral and ventral suckers, oesophagus and somatic musculature. In addition, the seminal vesicle and gynaecophoric canal muscles of the male displayed activated PKA whereas in female worms activated PKA localized to the ootype wall, the ovary, and the uterus particularly around eggs during expulsion. Exposure of live worms to the PKA activator forskolin (50 µM) resulted in striking PKA activation in the central and peripheral nervous system including at nerve endings at/near the tegument surface. Such neuronal PKA activation was also observed without forskolin treatment, but only in a single batch of worms. In addition, PKA activation within the central and peripheral nervous systems visibly increased within 15 min of worm-pair separation when compared to that observed in closely coupled worm pairs. Finally, exposure of adult worms to forskolin induced hyperkinesias in a time and dose dependent manner with 100 µM forskolin significantly increasing the frequency of gross worm movements to 5.3 times that of control worms (P≤0.001). Collectively these data are consistent with PKA playing a central part in motor activity and neuronal communication, and possibly interplay between these two systems in S. mansoni. This study, the first to localize a protein kinase when exclusively in an activated state in adult S. mansoni, provides valuable insight into the intricacies of functional protein kinase signalling in the context of whole schistosome physiology.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Schistosoma mansoni/enzimología , Schistosoma mansoni/fisiología , Estructuras Animales/enzimología , Animales , Femenino , Masculino , Microscopía Confocal , Microscopía Fluorescente , Actividad Motora , Neuronas/enzimología
7.
Int J Parasitol ; 39(11): 1223-33, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19394337

RESUMEN

For schistosomes, development of the miracidium to mother sporocyst within a compatible molluscan host requires considerable physiological and morphological changes by the parasite. The molecular mechanisms controlling such development have not been explored extensively. To begin to elucidate the importance of kinase-mediated signal transduction to this process, the phosphorylation (activation) of protein kinase C (PKC) in larval stages of Schistosoma mansoni undergoing in vitro transformation was explored. Mining of the S. mansoni genomic database revealed two S. mansoni PKC proteins with high homology to human PKCbeta and containing the conserved autophosphorylation (activation) site represented by serine 660 of human PKCbeta(II). Western blotting with anti-phosphospecific antibodies directed to this site demonstrated that miracidia freshly-hatched from eggs possessed PKC (78kDa) which was phosphorylated (activated) when miracidia were exposed to phorbol ester, and dephosphorylated (inhibited) following exposure to the PKC inhibitor GF109203X. Miracidia treated with the phospholipase C (PLC) inhibitor U73122 also displayed decreased PKC phosphorylation. S. mansoni PKC was phosphorylated during the initial 24h development of miracidia into mother sporocysts; after 31h and 48h development, phosphorylation was reduced by 72% and 86%, respectively. Confocal microscopy of miracidia revealed phosphorylated PKC associated with the neural mass, excretory vesicle, tegument, ciliated plates, terebratorium and germinal cells; in larvae undergoing transformation for 31h, phosphorylated PKC was only occasionally detected, being present in regions likely corresponding to the ridge cyton. Inhibition of PKC in miracidia by GF109230X resulted in accelerated transformation, particularly to the postmiracidium stage; ciliated plates were also shed from developing larvae more rapidly. These results highlight the dynamic nature of PKC signalling during S. mansoni postembryonic development and support a role for active PKC in restricting transformation of S. mansoni miracidia into mother sporocysts.


Asunto(s)
Estadios del Ciclo de Vida/fisiología , Proteína Quinasa C/metabolismo , Schistosoma mansoni/crecimiento & desarrollo , Transducción de Señal , Análisis de Varianza , Animales , Carcinógenos/farmacología , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Genoma de los Helmintos , Humanos , Indoles/farmacología , Larva/enzimología , Larva/crecimiento & desarrollo , Estadios del Ciclo de Vida/efectos de los fármacos , Maleimidas/farmacología , Oocistos/crecimiento & desarrollo , Oocistos/metabolismo , Ésteres del Forbol/farmacología , Fosforilación/efectos de los fármacos , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/fisiología , Proteína Quinasa C beta , Schistosoma mansoni/enzimología , Análisis de Secuencia de Proteína , Homología de Secuencia , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA