Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Tipo de estudio
Intervalo de año de publicación
1.
ACS Nano ; 16(3): 3522-3537, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35157804

RESUMEN

We report the development, as well as the in vitro and in vivo testing, of a sprayable nanotherapeutic that uses surface engineered custom-designed multiarmed peptide grafted nanogold for on-the-spot coating of an infarcted myocardial surface. When applied to mouse hearts, 1 week after infarction, the spray-on treatment resulted in an increase in cardiac function (2.4-fold), muscle contractility, and myocardial electrical conductivity. The applied nanogold remained at the treatment site 28 days postapplication with no off-target organ infiltration. Further, the infarct size in the mice that received treatment was found to be <10% of the total left ventricle area, while the number of blood vessels, prohealing macrophages, and cardiomyocytes increased to levels comparable to that of a healthy animal. Our cumulative data suggest that the therapeutic action of our spray-on nanotherapeutic is highly effective, and in practice, its application is simpler than other regenerative approaches for treating an infarcted heart.


Asunto(s)
Infarto del Miocardio , Animales , Modelos Animales de Enfermedad , Conductividad Eléctrica , Macrófagos , Ratones , Infarto del Miocardio/tratamiento farmacológico , Miocardio , Miocitos Cardíacos
2.
ACS Biomater Sci Eng ; 6(8): 4614-4622, 2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-33455166

RESUMEN

As cell therapies emerged, it was quickly realized that pro-regenerative cells directly injected into injured tissue struggled within the inflammatory microenvironment. By using microencapsulation, i.e., encapsulating cells within polymeric biomaterials, they are henceforth protected from the harmful extracellular cues, while still being able to receive oxygen and nutrients and release secreted factors. Previous work showed that stem cells encapsulated within a biologically inert material (agarose) were able to significantly improve the function of the infarcted mouse heart. With the aim of using more bioresponsive microcapsules, we sought to develop an enzymatically degradable, type I collagen-based microcapsule for the intramyocardial delivery of bone marrow-derived mesenchymal stromal cells in a murine model of myocardial infarction.


Asunto(s)
Células Madre Mesenquimatosas , Miocardio , Animales , Cápsulas , Colágeno , Ratones , Células Madre
3.
Bioconjug Chem ; 30(9): 2417-2426, 2019 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-31415164

RESUMEN

Cadherins are vital for cell-to-cell interactions during tissue growth, migration, and differentiation processes. Both biophysical and biochemical inputs are generated upon cell-to-cell adhesions, which determine the fate of the mesenchymal stem cells (MSCs). The effect of cadherin interactions on the MSC differentiation still remains elusive. Here we combined the N-Cadherin mimetic peptide (HAV-PA) with the self-assembling E-PA and the resultant N-cadherin mimetic peptide nanofibers promoted chondrogenic differentiation of MSCs in conjunction with chondrogenic factors as a synthetic extracellular matrix system. Self-assembly of the precursor peptide amphiphile molecules HAV-PA and E-PA enable the organization of HAV peptide residues in close proximity to the cell interaction site, forming a supramolecular N-cadherin-like system. These bioactive peptide nanofibers not only promoted viability and enhanced adhesion of MSCs but also augmented the expression of cartilage specific matrix components compared to the nonbioactive control nanofibers. Overall, the N-cadherin mimetic peptide nanofiber system facilitated MSC commitment into the chondrogenic lineage presenting an alternative bioactive platform for stem-cell-based cartilage regeneration.


Asunto(s)
Cadherinas/química , Diferenciación Celular/efectos de los fármacos , Condrogénesis/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Nanofibras/química , Peptidomiméticos/química , Peptidomiméticos/farmacología , Secuencia de Aminoácidos , Animales , Interacciones Hidrofóbicas e Hidrofílicas , Células Madre Mesenquimatosas/efectos de los fármacos , Ratas
4.
Acta Biomater ; 73: 263-274, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29656073

RESUMEN

Osteoarthritis (OA) is a condition where tissue function is lost through a combination of secondary inflammation and deterioration in articular cartilage. One of the most common causes of OA is age-related tissue impairment because of wear and tear due to mechanical erosion. Hyaluronic acid-based viscoelastic supplements have been widely used for the treatment of knee injuries. However, the current formulations of hyaluronic acid are unable to provide efficient healing and recovery. Here, a nanofiber-hyaluronic acid membrane system that was prepared by using a quarter of the concentration of commercially available hyaluronic acid supplement, Hyalgan®, was used for the treatment of an osteoarthritis model, and Synvisc®, which is another commercially available hyaluronic acid containing viscoelastic supplement, was used as a control. The results show that this system provides efficient protection of arthritic cartilage tissue through the preservation of cartilage morphology with reduced osteophyte formation, protection of the subchondral region from deterioration, and maintenance of cartilage specific matrix proteins in vivo. In addition, the hybrid nanofiber membrane enabled chondrocyte encapsulation and provided a suitable culturing environment for stem cell growth in vitro. Overall, our results suggest that this hybrid nanofibrous scaffold provides a potential platform the treatment of OA. STATEMENT OF SIGNIFICANCE: Osteoarthritis is a debilitating joint disease affecting millions of people worldwide. It occurs especially in knees due to aging, sport injuries or obesity. Although hyaluronic acid-based viscoelastic supplements are widely used, there is still no effective treatment method for osteoarthritis, which necessitates surgical operation as an only choice for severe cases. Therefore, there is an urgent need for efficient therapeutics. In this study, a nanofiber-HA membrane system was developed for the efficient protection of arthritic cartilage tissue from degeneration. This hybrid nanofiber system provided superior therapeutic activity at a relatively lower concentration of hyaluronic acid than Hyalgan® and Synvisc® gels, which are currently used in clinics. This work demonstrates for the first time that this hybrid nanofiber membrane scaffold can be utilized as a potential candidate for osteoarthritis treatment.


Asunto(s)
Cartílago Articular/efectos de los fármacos , Ácido Hialurónico/administración & dosificación , Nanofibras/administración & dosificación , Osteoartritis/terapia , Péptidos/administración & dosificación , Animales , Cartílago Articular/química , Supervivencia Celular , Condrocitos/citología , Cromatografía Liquida , Dicroismo Circular , Miembro Posterior/patología , Inflamación , Masculino , Espectrometría de Masas , Células Madre Mesenquimatosas/metabolismo , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Oscilometría , Osteoartritis/fisiopatología , Ratas , Ratas Sprague-Dawley , Reología , Estrés Mecánico , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA