Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sci Rep ; 11(1): 4563, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33633168

RESUMEN

Ischemia/reperfusion injury and inflammation are associated with microcirculatory dysfunction, endothelial injury and glycocalyx degradation. This study aimed to assess microcirculation in the sublingual, intestinal and the (remnant) liver in patients undergoing major liver resection, to define microcirculatory leukocyte activation and its association with glycocalyx degradation. In this prospective observational study, the microcirculation was assessed at the beginning of surgery (T0), end of surgery (T1) and 24 h after surgery (T2) using Incident Dark Field imaging. Changes in vessel density, blood flow and leukocyte behaviour were monitored, as well as clinical parameters. Syndecan-1 levels as a parameter of glycocalyx degradation were analysed. 19 patients were included. Sublingual microcirculation showed a significant increase in the number of rolling leukocytes between T0 and T1 (1.5 [0.7-1.8] vs. 3.7 [1.7-5.4] Ls/C-PCV/4 s respectively, p = 0.001), and remained high at T2 when compared to T0 (3.8 [3-8.5] Ls/C-PCV/4 s, p = 0.006). The microvascular flow decreased at T2 (2.4 ± 0.3 vs. baseline 2.8 ± 0.2, respectively, p < 0.01). Duration of vascular inflow occlusion was associated with significantly higher numbers of sublingual microcirculatory rolling leukocytes. Syndecan-1 increased from T0 to T1 (42 [25-56] vs. 107 [86-164] ng/mL, p < 0.001). The microcirculatory perfusion was characterized by low convection capacity and high number of rolling leukocytes. The ability to sublingually monitor the rolling behaviour of the microcirculatory leukocytes allows for early identification of patients at risk of increased inflammatory response following major liver resection.


Asunto(s)
Hemodinámica , Hepatectomía , Leucocitos , Hígado/irrigación sanguínea , Hígado/cirugía , Microcirculación , Imagen de Lapso de Tiempo , Anciano , Biomarcadores/sangre , Análisis de los Gases de la Sangre , Comorbilidad , Femenino , Hepatectomía/métodos , Humanos , Recuento de Leucocitos , Leucocitos/citología , Masculino , Densidad Microvascular , Persona de Mediana Edad
2.
Pathologe ; 31 Suppl 2: 263-7, 2010 Oct.
Artículo en Alemán | MEDLINE | ID: mdl-20711588

RESUMEN

Tissue samples have been routinely used for decades to distinguish healthy from diseased tissue in histopathological characterization. While nucleic acid-based methodologies have been successfully in use for many years, protein-based techniques, in contrast, are at a very early stage (with the exception of immunohistochemistry). One reason for this delay may be that the scientific community has long thought that formalin-fixed and paraffin embedded (FFPE) tissues are unfit for protein analysis. However, recent reports demonstrate that many protein methods that are routinely used for frozen tissues can also be applied for FFPE tissues, including Western blot, protein microarray, matrix-assisted laser desorption/ionization (MALDI) imaging and 2D gel electrophoresis. The present article provides an overview of recent developments in this field, focussing particular attention on quantitative analysis and high throughput technologies that have the potential to be integrated into the routine workflow of clinical pathology laboratories.


Asunto(s)
Neoplasias/patología , Análisis por Matrices de Proteínas , Bancos de Tejidos , Secciones por Congelación , Humanos , Técnicas de Diagnóstico Molecular , Adhesión en Parafina , Proteómica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Fijación del Tejido
3.
J Cell Physiol ; 225(2): 364-70, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20625992

RESUMEN

The current transition in cancer therapy from general treatment approaches, based mainly on chemotherapy and radiotherapy, to more directed approaches that aim to inhibit specific molecular targets has brought about new challenges for pathology. In the past, classical assignment of pathology consisted of tumor diagnosis and staging for further therapy decisions; nowadays, pathologists are asked to predict possible therapeutic results by detecting and quantifying therapeutic targets in tumors such as the human epidermal growth factor receptor 2 (HER2). The best approach to analyze such molecular targets is to provide a tumor-specific protein expression profile prior to therapy. To further elucidate signaling networks underlying cancer development and to identify new targets, it is necessary to implement tools that allow fast, precise, cheap, and simultaneous analysis of many network components while requiring only a small amount of clinical material. Reverse phase protein microarray (RPPA) is a promising technology that meets these requirements while enabling quantitative measurement of proteins. Recently, methods for the extraction of proteins from formalin-fixed, paraffin-embedded (FFPE) tissues have become available. In this article, we demonstrate how the use of RPPA to analyze signaling pathways from FFPE tissues may improve quantification of therapeutic targets and diagnostic markers in the near future.


Asunto(s)
Proteínas de Neoplasias/análisis , Neoplasias/terapia , Análisis por Matrices de Proteínas , Transducción de Señal/fisiología , Perfilación de la Expresión Génica , Humanos , Atención Individual de Salud
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA