Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sci Rep ; 14(1): 7468, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553487

RESUMEN

Among the Enhanced Oil Recovery (EOR) methods, gas-based EOR methods are very popular all over the world. The gas injection has a high ability to increase microscopic sweep efficiency and can increase production efficiency well. However, it should be noted that in addition to all the advantages of these methods, they have disadvantages such as damage due to asphaltene deposition, unfavorable mobility ratio, and reduced efficiency of macroscopic displacement. In this paper, the gas injection process and its challenges were investigated. Then the overcoming methods of these challenges were investigated. To inhibit asphaltene deposition during gas injection, the use of nanoparticles was proposed, which were examined in two categories: liquid-soluble and gas-soluble, and the limitations of each were examined. Various methods were used to overcome the problem of unfavorable mobility ratio and their advantages and disadvantages were discussed. Gas-phase modification has the potential to reduce the challenges and limitations of direct gas injection and significantly increase recovery efficiency. In the first part, the introduction of gas injection and the enhanced oil recovery mechanisms during gas injection were mentioned. In the next part, the challenges of gas injection, which included unfavorable mobility ratio and asphaltene deposition, were investigated. In the third step, gas-phase mobility control methods investigate, emphasizing thickeners, thickening mechanisms, and field applications of mobility control methods. In the last part, to investigate the effect of nanoparticles on asphaltene deposition and reducing the minimum miscible pressure in two main subsets: 1- use of nanoparticles indirectly to prevent asphaltene deposition and reduce surface tension and 2- use of nanoparticles as a direct asphaltene inhibitor and Reduce MMP of the gas phase in crude oil was investigated.

2.
Sci Rep ; 12(1): 3965, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35273266

RESUMEN

Asphaltene often produces problems in upstream and downstream sections of crude oil transportation and processing equipment. These issues are directly related to the asphaltene precipitation in transportation pipelines, separation columns, heat exchangers, and storage tanks. This research investigates the impact of angular frequency and n-heptane concentration on asphaltene precipitation and rheological behavior of two oil samples from the Mansouri oil field in Iran, i.e., 23 and 71. The viscosity tests revealed that these oil samples and their mixtures with n-heptane exhibit Newtonian behavior. Moreover, increasing the n-heptane concentration increases the asphaltene precipitation and dramatically decreases crude oil viscosity. The frequency tests revealed that the presence of n-heptane has an unfavorable effect on crude oil's viscoelastic behavior. Therefore, it is necessary to find the optimum range of angular frequency and n-heptane concentration to minimize the asphaltene content of crude oil and provide them with appropriate viscoelastic behavior. Increasing the angular frequency continuously increases all oil samples' loss modulus and strengthens their liquid-like manner. The experimental results confirmed that the angular frequency higher than 33.6 rad/s and 75% volume concentration of n-heptane is the best condition for the oil sample of 23. On the other hand, the angular frequency higher than 23.4 rad/s and 75% volume concentration of n-heptane is the best condition for the oil sample of 71. In these conditions, the oil samples of 23 and 71 not only have appropriate viscoelastic behavior, but they also experience 97.2% and 96.3% reductions in their viscosity, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA