Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Virol ; 94(21)2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-32817220

RESUMEN

Lassa fever (LF) is a zoonotic viral hemorrhagic fever caused by Lassa virus (LASV), which is endemic to West African countries. Previous studies have suggested an important role for T-cell-mediated immunopathology in LF pathogenesis, but the mechanisms by which T cells influence disease severity and outcome are not well understood. Here, we present a multiparametric analysis of clinical immunology data collected during the 2017-2018 Lassa fever outbreak in Nigeria. During the acute phase of LF, we observed robust activation of the polyclonal T-cell repertoire, which included LASV-specific and antigenically unrelated T cells. However, severe and fatal LF cases were characterized by poor LASV-specific effector T-cell responses. Severe LF was also characterized by the presence of circulating T cells with homing capacity to inflamed tissues, including the gut mucosa. These findings in LF patients were recapitulated in a mouse model of LASV infection, in which mucosal exposure resulted in remarkably high lethality compared to skin exposure. Taken together, our findings indicate that poor LASV-specific T-cell responses and activation of nonspecific T cells with homing capacity to inflamed tissues are associated with severe LF.IMPORTANCE Lassa fever may cause severe disease in humans, in particular in areas of endemicity like Sierra Leone and Nigeria. Despite its public health importance, the pathophysiology of Lassa fever in humans is poorly understood. Here, we present clinical immunology data obtained in the field during the 2018 Lassa fever outbreak in Nigeria indicating that severe Lassa fever is associated with activation of T cells antigenically unrelated to Lassa virus and poor Lassa virus-specific effector T-cell responses. Mechanistically, we show that these bystander T cells express defined tissue homing signatures that suggest their recruitment to inflamed tissues and a putative role of these T cells in immunopathology. These findings open a window of opportunity to consider T-cell targeting as a potential postexposure therapeutic strategy against severe Lassa fever, a hypothesis that could be tested in relevant animal models, such as nonhuman primates.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Brotes de Enfermedades , Mucosa Intestinal/inmunología , Fiebre de Lassa/inmunología , Virus Lassa/patogenicidad , Activación de Linfocitos , Adolescente , Adulto , Anciano , Animales , Linfocitos T CD4-Positivos/patología , Linfocitos T CD4-Positivos/virología , Linfocitos T CD8-positivos/patología , Linfocitos T CD8-positivos/virología , Niño , Preescolar , Femenino , Regulación de la Expresión Génica , Antígenos HLA-DR/genética , Antígenos HLA-DR/inmunología , Humanos , Lactante , Recién Nacido , Integrina beta1/genética , Integrina beta1/inmunología , Interferón gamma/genética , Interferón gamma/inmunología , Mucosa Intestinal/patología , Mucosa Intestinal/virología , Fiebre de Lassa/genética , Fiebre de Lassa/mortalidad , Fiebre de Lassa/virología , Virus Lassa/crecimiento & desarrollo , Virus Lassa/inmunología , Proteína 1 de la Membrana Asociada a los Lisosomas/genética , Proteína 1 de la Membrana Asociada a los Lisosomas/inmunología , Masculino , Ratones , Persona de Mediana Edad , Nigeria/epidemiología , Estudios Retrospectivos , Índice de Severidad de la Enfermedad , Piel/inmunología , Piel/patología , Piel/virología , Análisis de Supervivencia , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología
2.
Viruses ; 12(9)2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32825479

RESUMEN

The last seven years have seen the greatest surge of Ebola virus disease (EVD) cases in equatorial Africa, including the 2013-2016 epidemic in West Africa and the recent epidemics in the Democratic Republic of Congo (DRC). The vaccine clinical trials that took place in West Africa and the DRC, as well as follow-up studies in collaboration with EVD survivor communities, have for the first time allowed researchers to compare immune memory induced by natural infection and vaccination. These comparisons may be relevant to evaluate the putative effectiveness of vaccines and candidate medical countermeasures such as convalescent plasma transfer. In this study, we compared the long-term functionality of anti-EBOV glycoprotein (GP) antibodies from EVD survivors with that from volunteers who received the recombinant vesicular stomatitis virus vectored vaccine (rVSV-ZEBOV) during the Phase I clinical trial in Hamburg. Our study highlights important differences between EBOV vaccination and natural infection and provides a framework for comparison with other vaccine candidates.


Asunto(s)
Anticuerpos Antivirales/inmunología , Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/inmunología , Sobrevivientes , Adulto , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Vacunas contra el Virus del Ébola/administración & dosificación , Femenino , Fiebre Hemorrágica Ebola/prevención & control , Fiebre Hemorrágica Ebola/virología , Humanos , Inmunoglobulinas/sangre , Inmunoglobulinas/inmunología , Memoria Inmunológica , Masculino , Vacunación , Vesiculovirus/inmunología , Proteínas del Envoltorio Viral/inmunología , Carga Viral
3.
PLoS Pathog ; 13(9): e1006610, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28957419

RESUMEN

IFITMs are broad antiviral factors that block incoming virions in endosomal vesicles, protecting target cells from infection. In the case of HIV-1, we and others reported the existence of an additional antiviral mechanism through which IFITMs lead to the production of virions of reduced infectivity. However, whether this second mechanism of inhibition is unique to HIV or extends to other viruses is currently unknown. To address this question, we have analyzed the susceptibility of a broad spectrum of viruses to the negative imprinting of the virion particles infectivity by IFITMs. The results we have gathered indicate that this second antiviral property of IFITMs extends well beyond HIV and we were able to identify viruses susceptible to the three IFITMs altogether (HIV-1, SIV, MLV, MPMV, VSV, MeV, EBOV, WNV), as well as viruses that displayed a member-specific susceptibility (EBV, DUGV), or were resistant to all IFITMs (HCV, RVFV, MOPV, AAV). The swapping of genetic elements between resistant and susceptible viruses allowed us to point to specificities in the viral mode of assembly, rather than glycoproteins as dominant factors of susceptibility. However, we also show that, contrarily to X4-, R5-tropic HIV-1 envelopes confer resistance against IFITM3, suggesting that viral receptors add an additional layer of complexity in the IFITMs-HIV interplay. Lastly, we show that the overall antiviral effects ascribed to IFITMs during spreading infections, are the result of a bimodal inhibition in which IFITMs act both by protecting target cells from incoming viruses and in driving the production of virions of reduced infectivity. Overall, our study reports for the first time that the negative imprinting of the virion particles infectivity is a conserved antiviral property of IFITMs and establishes IFITMs as a paradigm of restriction factor capable of interfering with two distinct phases of a virus life cycle.


Asunto(s)
Antígenos de Diferenciación/metabolismo , Virión , Replicación Viral , Línea Celular , VIH-1/fisiología , Interacciones Huésped-Patógeno , Humanos , Internalización del Virus
4.
J Infect Dis ; 212 Suppl 2: S322-8, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26092855

RESUMEN

The surface glycoprotein (GP) is responsible for Ebola virus (EBOV) attachment and membrane fusion during virus entry. Surface expression of highly glycosylated GP causes marked cytotoxicity via masking of a wide range of cellular surface molecules, including integrins. Considerable amounts of surface GP are shed from virus-infected cells in a soluble truncated form by tumor necrosis factor α-converting enzyme. In this study, the role of GP shedding was investigated using a reverse genetics approach by comparing recombinant viruses possessing amino acid substitutions at the GP shedding site. Virus with an L635V substitution showed a substantial decrease in shedding, whereas a D637V substitution resulted in a striking increase in the release of shed GP. Variations in shedding efficacy correlated with observed differences in the amounts of shed GP in the medium, GP present in virus-infected cells, and GP present on virions. An increase in shedding appeared to be associated with a reduction in viral cytotoxicity, and, vice versa, the virus that shed less was more cytotoxic. An increase in shedding also resulted in a reduction in viral infectivity, whereas a decrease in shedding efficacy enhanced viral growth characteristics in vitro. Differences in shedding efficacy and, as a result, differences in the amount of mature GP available for incorporation into budding virions did not equate to differences in overall release of viral particles. Likewise, data suggest that the resulting differences in the amount of mature GP on the cell surface led to variations in the GP content of released particles and, as a consequence, in infectivity. In conclusion, fine-tuning of the levels of EBOV GP expressed at the surface of virus-infected cells via GP shedding plays an important role in EBOV replication by orchestrating the balance between optimal virion GP content and cytotoxicity caused by GP.


Asunto(s)
Ebolavirus/metabolismo , Ebolavirus/patogenicidad , Fiebre Hemorrágica Ebola/virología , Glicoproteínas de Membrana/metabolismo , Sustitución de Aminoácidos/genética , Animales , Línea Celular , Chlorocebus aethiops , Ebolavirus/genética , Glicoproteínas de Membrana/genética , Células Vero , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virión/genética , Virión/metabolismo , Virión/patogenicidad , Virulencia/genética , Internalización del Virus , Replicación Viral/genética
5.
PLoS Pathog ; 10(11): e1004509, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25412102

RESUMEN

During Ebola virus (EBOV) infection a significant amount of surface glycoprotein GP is shed from infected cells in a soluble form due to cleavage by cellular metalloprotease TACE. Shed GP and non-structural secreted glycoprotein sGP, both expressed from the same GP gene, have been detected in the blood of human patients and experimentally infected animals. In this study we demonstrate that shed GP could play a particular role during EBOV infection. In effect it binds and activates non-infected dendritic cells and macrophages inducing the secretion of pro- and anti-inflammatory cytokines (TNFα, IL1ß, IL6, IL8, IL12p40, and IL1-RA, IL10). Activation of these cells by shed GP correlates with the increase in surface expression of co-stimulatory molecules CD40, CD80, CD83 and CD86. Contrary to shed GP, secreted sGP activates neither DC nor macrophages while it could bind DCs. In this study, we show that shed GP activity is likely mediated through cellular toll-like receptor 4 (TLR4) and is dependent on GP glycosylation. Treatment of cells with anti-TLR4 antibody completely abolishes shed GP-induced activation of cells. We also demonstrate that shed GP activity is negated upon addition of mannose-binding sera lectin MBL, a molecule known to interact with sugar arrays present on the surface of different microorganisms. Furthermore, we highlight the ability of shed GP to affect endothelial cell function both directly and indirectly, demonstrating the interplay between shed GP, systemic cytokine release and increased vascular permeability. In conclusion, shed GP released from virus-infected cells could activate non-infected DCs and macrophages causing the massive release of pro- and anti-inflammatory cytokines and effect vascular permeability. These activities could be at the heart of the excessive and dysregulated inflammatory host reactions to infection and thus contribute to high virus pathogenicity.


Asunto(s)
Células Dendríticas/inmunología , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/inmunología , Células Endoteliales de la Vena Umbilical Humana/inmunología , Macrófagos/inmunología , Glicoproteínas de Membrana/inmunología , Proteínas Virales/inmunología , Animales , Antígenos CD/inmunología , Citocinas/inmunología , Células Dendríticas/patología , Células Dendríticas/virología , Cobayas , Células Endoteliales de la Vena Umbilical Humana/patología , Células Endoteliales de la Vena Umbilical Humana/virología , Humanos , Macrófagos/patología , Macrófagos/virología , Receptor Toll-Like 4/inmunología
6.
Virus Res ; 181: 77-80, 2014 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-24452140

RESUMEN

The recent discovery of a wide range of henipavirus-like viruses circulating in Megabats in Africa raises the question as to the zoonotic potential of these pathogens given the high human mortality rates seen with their pathogenic relatives Nipah virus and Hendra virus. In the absence of cultured infectious African Henipavirus we have performed experiments with recombinant F and G glycoproteins from the representative African Henipavirus strain M74a aimed at estimating its cellular tropism and capacity to use similar receptors to its highly pathogenic counterparts. The ability of the M74a virus G surface protein to use the ubiquitous Ephrin B2 host cell receptor and its heterologous cross-compatibility with Nipah virus could be expected to impart upon this virus a reasonable potential for species spillover, although differences in fusion efficiency seen with the M74a virus F protein in certain cell lines could present a barrier for zoonotic transmission.


Asunto(s)
Henipavirus/fisiología , Fusión de Membrana , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus , Animales , Línea Celular , Quirópteros , Chlorocebus aethiops , Cricetinae , Interacciones Huésped-Patógeno , Humanos , Tropismo Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA