Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Mol Sci ; 24(17)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37686354

RESUMEN

Extracellular vesicles (EVs) are emerging as a promising field of research in liver disease. EVs are small, membrane-bound vesicles that contain various bioactive molecules, such as proteins, lipids, and nucleic acids and are involved in intercellular communication. They have been implicated in numerous physiological and pathological processes, including immune modulation and tissue repair, which make their use appealing in liver transplantation (LT). This review summarizes the current state of knowledge regarding the role of EVs in LT, including their potential use as biomarkers and therapeutic agents and their role in graft rejection. By providing a comprehensive insight into this emerging topic, this research lays the groundwork for the potential application of EVs in LT.


Asunto(s)
Vesículas Extracelulares , Trasplante de Hígado , Ácidos Nucleicos , Comunicación Celular , Rechazo de Injerto
2.
Int J Mol Sci ; 22(8)2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33921337

RESUMEN

The long-underestimated role of extracellular vesicles in cancer is now reconsidered worldwide by basic and clinical scientists, who recently highlighted novel and crucial activities of these moieties. Extracellular vesicles are now considered as king transporters of specific cargoes, including molecular components of parent cells, thus mediating a wide variety of cellular activities both in normal and neoplastic tissues. Here, we discuss the multifunctional activities and underlying mechanisms of extracellular vesicles in neuroblastoma, the most frequent common extra-cranial tumor in childhood. The ability of extracellular vesicles to cross-talk with different cells in the tumor microenvironment and to modulate an anti-tumor immune response, tumorigenesis, tumor growth, metastasis and drug resistance will be pinpointed in detail. The results obtained on the role of extracellular vesicles may represent a panel of suggestions potentially useful in practice, due to their involvement in the response to chemotherapy, and, moreover, their ability to predict resistance to standard therapies-all issues of clinical relevance.


Asunto(s)
Vesículas Extracelulares/genética , Neuroblastoma/tratamiento farmacológico , Microambiente Tumoral/efectos de los fármacos , Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/genética , Niño , Resistencia a Antineoplásicos/genética , Vesículas Extracelulares/efectos de los fármacos , Humanos , Neuroblastoma/genética , Neuroblastoma/patología , Microambiente Tumoral/genética
3.
Cells ; 9(12)2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322499

RESUMEN

Multiple myeloma (MM) is a hematological disease characterized by the proliferation and accumulation of malignant plasmacells (PCs) in the bone marrow (BM). Despite widespread use of high-dose chemotherapy in combination with autologous stem cell transplantation (ASCT) and the introduction of novel agents (immunomodulatory drugs, IMiDs, and proteasome inhibitors, PIs), the prognosis of MM patients is still poor. CD38 is a multifunctional cell-surface glycoprotein with receptor and ectoenzymatic activities. The very high and homogeneous expression of CD38 on myeloma PCs makes it an attractive target for novel therapeutic strategies. Several anti-CD38 monoclonal antibodies have been, or are being, developed for the treatment of MM, including daratumumab and isatuximab. Here we provide an in-depth look atCD38 biology, the role of CD38 in MM progression and its complex interactions with the BM microenvironment, the importance of anti-CD38 monoclonal antibodies, and the main mechanisms of antibody resistance. We then review a number of multiparametric flow cytometry techniques exploiting CD38 antigen expression on PCs to diagnose and monitor the response to treatment in MM patients.


Asunto(s)
ADP-Ribosil Ciclasa 1/metabolismo , Anticuerpos Monoclonales/uso terapéutico , Mieloma Múltiple/terapia , ADP-Ribosil Ciclasa 1/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Citotoxicidad Celular Dependiente de Anticuerpos , Humanos , Mieloma Múltiple/patología , Microambiente Tumoral
4.
Cancers (Basel) ; 12(2)2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-32012891

RESUMEN

CD22 is a surface molecule expressed early during the ontogeny of B cells in the bone marrow and spleen, and can be found on B cells isolated from the different lymphoid compartments in humans. CD22 is expressed by most blasts from the majority (60-90%) of B-cell acute lymphoblastic leukemia (B-ALL). Current therapies in adults with newly diagnosed B-ALL are associated with complete remission (CR) rates of 50-90%. However, 30-60% of these patients relapse, and only 25-40% achieve disease-free survival of three years or more. Chemotherapy regimens for patients with refractory/relapsed B-ALL are associated with CR rates ranging from 31% to 44%. Novel immune-targeted therapies, such as blinatumomab and inotuzumab (a humanized anti-CD22 monoclonal antibody conjugated to the cytotoxic antibiotic agent calicheamicin), provide potential means of circumventing chemo-refractory B-ALL cells through novel mechanisms of action. Eighty percent of inotuzumab-treated B-ALL patients may achieve a CR state. This review is focused on the biological and clinical activities of CD22 antibodies in B-ALL, and provides evidence about the potential role played by qualitative and quantitative analysis of the CD22 molecule on individual B-ALL blasts in predicting the depletion of leukemic cells, and, ultimately, leading to better clinical response rates.

5.
Cells ; 8(12)2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31783629

RESUMEN

CD38 is a multifunctional cell surface protein endowed with receptor/enzymatic functions. The protein is generally expressed at low/intermediate levels on hematological tissues and some solid tumors, scoring the highest levels on plasma cells (PC) and PC-derived neoplasia. CD38 was originally described as a receptor expressed by activated cells, mainly T lymphocytes, wherein it also regulates cell adhesion and cooperates in signal transduction mediated by major receptor complexes. Furthermore, CD38 metabolizes extracellular NAD+, generating ADPR and cyclic ADPR. This ecto-enzyme controls extra-cellular nucleotide homeostasis and intra-cellular calcium fluxes, stressing its relevance in multiple physiopathological conditions (infection, tumorigenesis and aging). In clinics, CD38 was adopted as a cell activation marker and in the diagnostic/staging of leukemias. Quantitative surface CD38 expression by multiple myeloma (MM) cells was the basic criterion used for therapeutic application of anti-CD38 monoclonal antibodies (mAbs). Anti-CD38 mAbs-mediated PC depletion in autoimmunity and organ transplants is currently under investigation. This review analyzes different aspects of CD38's role in regulatory cell populations and how these effects are obtained. Characterizing CD38 functional properties may widen the extension of therapeutic applications for anti-CD38 mAbs. The availability of therapeutic mAbs with different effects on CD38 enzymatic functions may be rapidly translated to immunotherapeutic strategies of cell immune defense.


Asunto(s)
ADP-Ribosil Ciclasa 1 , Linfocitos B Reguladores/inmunología , Vesículas Extracelulares/inmunología , Glicoproteínas de Membrana , Linfocitos T Reguladores/inmunología , ADP-Ribosil Ciclasa 1/antagonistas & inhibidores , ADP-Ribosil Ciclasa 1/fisiología , Envejecimiento/inmunología , Animales , Anticuerpos Monoclonales/uso terapéutico , Linfocitos B Reguladores/citología , Linfocitos B Reguladores/patología , Línea Celular , Humanos , Infecciones/tratamiento farmacológico , Infecciones/inmunología , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/fisiología , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/patología
6.
Clin Cancer Res ; 25(10): 2946-2948, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30846477

RESUMEN

Antibody therapy is a treatment option for several diseases, including multiple myeloma. The logic behind it is relatively simple: A target molecule is selected because of its expression on tumor cells, and the antibody delivers cytotoxic effects. Therapeutic results in multiple myeloma indicate that the anti-CD38 antibodies may have relevant immunotherapeutic properties.See related article by Moreno et al., p. 3176.


Asunto(s)
Mieloma Múltiple , ADP-Ribosil Ciclasa 1/inmunología , Anticuerpos Monoclonales , Humanos , Factores Inmunológicos , Inmunoterapia
7.
J Immunol ; 202(3): 724-735, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30587530

RESUMEN

This study investigates the mechanism(s) underlying the immunoregulatory activities of placenta-derived human amnion epithelial cells (hAEC). The working hypothesis is that NAD+ and ATP, along with ectoenzymes involved in their metabolism, play a significant role in hAEC-mediated immune regulation. Proof of principle of the hypothesis was obtained by analyzing the interactions between hAEC and the main human leukocyte populations. The results obtained indicate that hAEC constitutively express a unique combination of functional ectoenzymes, driving the production of adenosine (ADO) via canonical (CD39, CD73) and alternative (CD38, CD203a/PC-1, CD73) pathways. Further, the picture is completed by the observation that hAEC express A1, A2a, and A2b ADO receptors as well as ADO deaminase, the enzyme involved in ADO catabolism. The contribution of the purinergic mediator to immunomodulation was confirmed by exposing in vitro different immune effector cells to the action of primary hAECs. B cells showed an enhanced proliferation and diminished spontaneous apoptosis when in contact with hAEC. T cell proliferation was partially inhibited by hAEC through ADO production, as confirmed by using specific ectoenzyme inhibitors. Further, hAEC induced an expansion of both T and B regulatory cells. Last, hAEC inhibited NK cell proliferation. However, the involvement of ADO-producing ectoenzymes is less apparent in this context. In conclusion, hAEC exert different in vitro immunoregulatory effects, per se, as a result of interactions with different populations of immune effector cells. These results support the view that hAEC are instrumental for regenerative medicine as well as in therapeutic applications for immune-related diseases.


Asunto(s)
Adenosina Desaminasa/metabolismo , Adenosina/biosíntesis , Amnios/citología , Proliferación Celular , Células Epiteliales/enzimología , Adenosina Desaminasa/genética , Linfocitos B/citología , Células Cultivadas , Células Epiteliales/inmunología , Humanos , Células Asesinas Naturales/citología , Activación de Linfocitos , Redes y Vías Metabólicas , Receptor de Adenosina A1/metabolismo , Receptor de Adenosina A2A/metabolismo , Linfocitos T/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA