Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Cell Neurosci ; 18: 1357499, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38425428

RESUMEN

Introduction: The lack of regenerative capacity of the central nervous system is one of the major challenges nowadays. The knowledge of guidance cues that trigger differentiation, proliferation, and migration of neural stem and progenitor cells is one key element in regenerative medicine. The extracellular matrix protein tenascin-C (Tnc) is a promising candidate to regulate cell fate due to its expression in the developing central nervous system and in the adult neural stem cell niches. Of special interest are the alternatively spliced fibronectin type III (FnIII) domains of Tnc whose combinatorial diversity could theoretically generate up to 64 isoforms in the mouse. A total of 27 isoforms have already been discovered in the developing brain, among others the domain combinations A1D, CD, and A124BCD. Methods: In the present study, these domains as well as the combination of the constitutively expressed FnIII domains 7 and 8 (78) were expressed in Chinese hamster ovary cells as pseudo-antibodies fused to the Fc-fragment of a human immunoglobulin G antibody. The fusion proteins were presented to primary mouse neural stem/progenitor cells (NSPCs) grown as neurospheres, either as coated culture substrates or as soluble additives in vitro. The influence of the domains on the differentiation, proliferation and migration of NSPCs was analyzed. Results: We observed that the domain combination A124BCD promoted the differentiation of neurons and oligodendrocytes, whereas the domain A1D supported astrocyte differentiation. The constitutively expressed domain 78 had a proliferation and migration stimulating impact. Moreover, most effects were seen only in one of the presentation modes but not in both, suggesting different effects of the Tnc domains in two- and three-dimensional cultures. Discussion: This knowledge about the different effect of the Tnc domains might be used to create artificial three-dimensional environments for cell transplantation. Hydrogels spiked with Tnc-domains might represent a promising tool in regenerative medicine.

2.
ACS Biomater Sci Eng ; 10(5): 3148-3163, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38227432

RESUMEN

The central nervous system (CNS) has a limited regenerative capacity because a hostile environment prevents tissue regeneration after damage or injury. Neural stem/progenitor cells (NSPCs) are considered a potential resource for CNS repair, which raises the issue of adequate cultivation and expansion procedures. Cationic charge supports the survival and adhesion of NSPCs. Typically, tissue culture plates with cationic coatings, such as poly-l-ornithine (PLO), have been used to culture these cell types (NSPCs). Yet presently, little is known about the impact of cationic charge concentration on the viability, proliferation, and differentiation capacity of NSPCs. Therefore, we have recently developed well-defined, fully synthetic hydrogel systems G1 (gel 1) to G6 (gel 6) that allow for the precise control of the concentration of the cationic trimethylaminoethyl acrylate (TMAEA) molecule associated with the polymer in a range from 0.06 to 0.91 µmol/mg. When murine NSPCs were cultured on these gels under differentiation conditions, we observed a strong correlation of cationic charge concentration with NSPC survival. In particular, neurons were preferentially formed on gels with a higher cationic charge concentration, whereas astrocytes and oligodendrocytes favored weakly charged or even neutral gel surfaces. To test the properties of the gels under proliferative conditions, the NSPCs were cultivated in the presence of fibroblast growth factor 2 (FGF2). The cytokine significantly increased the number of NSPCs but delayed the differentiation toward neurons and glia cells. Thus, the hydrogels are compatible with the survival, expansion, and differentiation of NSPCs and may be useful to create supportive environments in transplantation approaches.


Asunto(s)
Cationes , Diferenciación Celular , Proliferación Celular , Hidrogeles , Células-Madre Neurales , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Hidrogeles/química , Hidrogeles/farmacología , Animales , Proliferación Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Ratones , Cationes/química , Cationes/farmacología , Técnicas de Cultivo de Célula/métodos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Neuronas/efectos de los fármacos , Neuronas/citología
3.
Front Synaptic Neurosci ; 13: 637549, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33708102

RESUMEN

Perineuronal nets (PNNs) are specialized, reticular structures of the extracellular matrix (ECM) that can be found covering the soma and proximal dendrites of a neuronal subpopulation. Recent studies have shown that PNNs can highly influence synaptic plasticity and are disrupted in different neuropsychiatric disorders like schizophrenia. Interestingly, there is a growing evidence that microglia can promote the loss of PNNs and contribute to neuropsychiatric disorders. Based on this knowledge, we analyzed the impact of activated microglia on hippocampal neuronal networks in vitro. Therefore, primary cortical microglia were cultured and stimulated via polyinosinic-polycytidylic acid (Poly I:C; 50 µg/ml) administration. The Poly I:C treatment induced the expression and secretion of different cytokines belonging to the CCL- and CXCL-motif chemokine family as well as interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). In addition, the expression of matrix metalloproteinases (MMPs) could be verified via RT-PCR analysis. Embryonic hippocampal neurons were then cultured for 12 days in vitro (DIV) and treated for 24 h with microglial conditioned medium. Interestingly, immunocytochemical staining of the PNN component Aggrecan revealed a clear disruption of PNNs accompanied by a significant increase of glutamatergic and a decrease of γ-aminobutyric acid-(GABA)ergic synapse numbers on PNN wearing neurons. In contrast, PNN negative neurons showed a significant reduction in both, glutamatergic and GABAergic synapses. Electrophysiological recordings were performed via multielectrode array (MEA) technology and unraveled a significantly increased spontaneous network activity that sustained also 24 and 48 h after the administration of microglia conditioned medium. Taken together, we could observe a strong impact of microglial secreted factors on PNN integrity, synaptic plasticity and electrophysiological properties of cultured neurons. Our observations might enhance the understanding of neuron-microglia interactions considering the ECM.

4.
Front Cell Neurosci ; 15: 817277, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35237130

RESUMEN

Vav proteins belong to the class of guanine nucleotide exchange factors (GEFs) that catalyze the exchange of guanosine diphosphate (GDP) by guanosine triphosphate (GTP) on their target proteins. Here, especially the members of the small GTPase family, Ras homolog family member A (RhoA), Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division control protein 42 homolog (Cdc42) can be brought into an activated state by the catalytic activity of Vav-GEFs. In the central nervous system (CNS) of rodents Vav3 shows the strongest expression pattern in comparison to Vav2 and Vav1, which is restricted to the hematopoietic system. Several studies revealed an important role of Vav3 for the elongation and branching of neurites. However, little is known about the function of Vav3 for other cell types of the CNS, like astrocytes. Therefore, the following study analyzed the effects of a Vav3 knockout on several astrocytic parameters as well as the influence of Vav3-deficient astrocytes on the dendritic development of cultured neurons. For this purpose, an indirect co-culture system of native hippocampal neurons and Vav3-deficient cortical astrocytes was used. Interestingly, neurons cultured in an indirect contact with Vav3-deficient astrocytes showed a significant increase in the dendritic complexity and length after 12 and 17 days in vitro (DIV). Furthermore, Vav3-deficient astrocytes showed an enhanced regeneration in the scratch wound heal assay as well as an altered profile of released cytokines with a complete lack of CXCL11, reduced levels of IL-6 and an increased release of CCL5. Based on these observations, we suppose that Vav3 plays an important role for the development of dendrites by regulating the expression and the release of neurotrophic factors and cytokines in astrocytes.

5.
Int J Mol Sci ; 21(12)2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32560557

RESUMEN

Retinoblastoma (RB) represents the most common malignant childhood eye tumor worldwide. Several studies indicate that the extracellular matrix (ECM) plays a crucial role in tumor growth and metastasis. Moreover, recent studies indicate that the ECM composition might influence the development of resistance to chemotherapy drugs. The objective of this study was to evaluate possible expression differences in the ECM compartment of the parental human cell lines WERI-RB1 (retinoblastoma 1) and Y79 and their Etoposide resistant subclones via polymerase chain reaction (PCR). Western blot analyses were performed to analyze protein levels. To explore the influence of ECM molecules on RB cell proliferation, death, and cluster formation, WERI-RB1 and resistant WERI-ETOR cells were cultivated on Fibronectin, Laminin, Tenascin-C, and Collagen IV and analyzed via time-lapse video microscopy as well as immunocytochemistry. We revealed a significantly reduced mRNA expression of the proteoglycans Brevican, Neurocan, and Versican in resistant WERI-ETOR compared to sensitive WERI-RB1 cells. Also, for the glycoproteins α1-Laminin, Fibronectin, Tenascin-C, and Tenascin-R as well as Collagen IV, reduced expression levels were observed in WERI-ETOR. Furthermore, a downregulation was detected for the matrix metalloproteinases MMP2, MMP7, MMP9, the tissue-inhibitor of metalloproteinase TIMP2, the Integrin receptor subunits ITGA4, ITGA5 and ITGB1, and all receptor protein tyrosine phosphatase ß/ζ isoforms. Downregulation of Brevican, Collagen IV, Tenascin-R, MMP2, TIMP2, and ITGA5 was also verified in Etoposide resistant Y79 cells compared to sensitive ones. Protein levels of Tenascin-C and MMP-2 were comparable in both WERI cell lines. Interestingly, Fibronectin displayed an apoptosis-inducing effect on WERI-RB1 cells, whereas an anti-apoptotic influence was observed for Tenascin-C. Conversely, proliferation of WERI-ETOR cells was enhanced on Tenascin-C, while an anti-proliferative effect was observed on Fibronectin. In WERI-ETOR, cluster formation was decreased on the substrates Collagen IV, Fibronectin, and Tenascin-C. Collectively, we noted a different ECM mRNA expression and behavior of Etoposide resistant compared to sensitive RB cells. These findings may indicate a key role of ECM components in chemotherapy resistance formation of RB.


Asunto(s)
Biomarcadores de Tumor , Resistencia a Antineoplásicos/genética , Etopósido/farmacología , Matriz Extracelular/metabolismo , Expresión Génica , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular/genética , Humanos , Metaloproteinasas de la Matriz/metabolismo , ARN Mensajero , Receptores de Superficie Celular/genética , Retinoblastoma , Inhibidores Tisulares de Metaloproteinasas/metabolismo
6.
Int J Mol Sci ; 21(3)2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-32013053

RESUMEN

Vav proteins activate GTPases of the RhoA subfamily that regulate the cytoskeleton and are involved in adhesion, migration, differentiation, polarity and the cell cycle. While the importance of RhoA GTPases for neuronal morphology is undisputed, their regulation is less well understood. In this perspective, we studied the consequences of the deletion of Vav2, Vav3 and Vav2 and 3 (Vav2-/-, Vav3-/-, Vav2-/-/3-/-) for the development of embryonic hippocampal neurons in vitro. Using an indirect co-culture system of hippocampal neurons with primary wild-type (WT) cortical astrocytes, we analysed axonal and dendritic parameters, structural synapse numbers and the spontaneous network activity via immunocytochemistry and multielectrode array analysis (MEA). Here, we observed a higher process complexity in Vav3-/-, but not in Vav2-/- neurons after three and five days in vitro (DIV). Furthermore, an enhanced synapse formation was observed in Vav3-/- after 14 days in culture. Remarkably, Vav2-/-/3-/- double knockout neurons did not display synergistic effects. Interestingly, these differences were transient and compensated after a cultivation period of 21 days. Network analysis revealed a diminished number of spontaneously occurring action potentials in Vav3-/- neurons after 21 DIV. Based on these results, it appears that Vav3 participates in key events of neuronal differentiation.


Asunto(s)
Astrocitos/citología , Hipocampo/embriología , Neuronas/citología , Proteínas Proto-Oncogénicas c-vav/genética , Potenciales de Acción , Animales , Astrocitos/metabolismo , Diferenciación Celular , Células Cultivadas , Técnicas de Cocultivo , Femenino , Técnicas de Inactivación de Genes , Hipocampo/citología , Hipocampo/metabolismo , Masculino , Ratones , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-vav/metabolismo , Análisis de Matrices Tisulares
7.
Biochem Soc Trans ; 47(6): 1651-1660, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31845742

RESUMEN

The extracellular matrix (ECM) consists of a dynamic network of various macromolecules that are synthesized and released by surrounding cells into the intercellular space. Glycoproteins, proteoglycans and fibrillar proteins are main components of the ECM. In addition to general functions such as structure and stability, the ECM controls several cellular signaling pathways. In this context, ECM molecules have a profound influence on intracellular signaling as receptor-, adhesion- and adaptor-proteins. Due to its various functions, the ECM is essential in the healthy organism, but also under pathological conditions. ECM constituents are part of the glial scar, which is formed in several neurodegenerative diseases that are accompanied by the activation and infiltration of glia as well as immune cells. Remodeling of the ECM modulates the release of pro- and anti-inflammatory cytokines affecting the fate of immune, glial and neuronal cells. Tenascin-C is an ECM glycoprotein that is expressed during embryonic central nervous system (CNS) development. In adults it is present at lower levels but reappears under pathological conditions such as in brain tumors, following injury and in neurodegenerative disorders and is highly associated with glial reactivity as well as scar formation. As a key modulator of the immune response during neurodegeneration in the CNS, tenascin-C is highlighted in this mini-review.


Asunto(s)
Enfermedades del Sistema Nervioso Central/metabolismo , Factores Inmunológicos/metabolismo , Inflamación/metabolismo , Tenascina/metabolismo , Animales , Astrocitos/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Neuroglía/metabolismo , Transducción de Señal
8.
Exp Brain Res ; 237(11): 2983-2993, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31515588

RESUMEN

Acoustic trauma, aging, genetic defects or ototoxic drugs are causes for sensorineural hearing loss involving sensory hair cell death and secondary degeneration of spiral ganglion neurons. Auditory implants are the only available therapy for severe to profound sensorineural hearing loss when hearing aids do not provide a sufficient speech discrimination anymore. Neurotrophic factors represent potential therapeutic candidates to improve the performance of cochlear implants (CIs) by the support of spiral ganglion neurons (SGNs). Here, we investigated the effect of pleiotrophin (PTN), a well-described neurotrophic factor for different types of neurons that is expressed in the postnatal mouse cochlea. PTN knockout mice exhibit severe deficits in auditory brainstem responses, which indicates the importance of PTN in inner ear development and function and makes it a promising candidate to support SGNs. Using organotypic explants and dissociated SGN cultures, we investigated the influence of PTN on the number of neurons, neurite number and neurite length. PTN significantly increased the number and neurite length of dissociated SGNs. We further verified the expression of important PTN-associated receptors in the SG. mRNA of anaplastic lymphoma kinase, αv integrin, ß3 integrin, receptor protein tyrosine phosphatase ß/ζ, neuroglycan C, low-density lipoprotein receptor-related protein 1 and syndecan 3 was detected in the inner ear. These results suggest that PTN may be a novel candidate to improve sensorineural hearing loss treatment in the future.


Asunto(s)
Proteínas Portadoras/fisiología , Citocinas/fisiología , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Neuronas/fisiología , Ganglio Espiral de la Cóclea/fisiología , Animales , Citocinas/deficiencia , Femenino , Células HEK293 , Pérdida Auditiva Sensorineural/patología , Pérdida Auditiva Sensorineural/fisiopatología , Humanos , Masculino , Ratones , Ratones Noqueados , Neuritas/fisiología
9.
Brain Behav Immun ; 81: 470-483, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31271872

RESUMEN

Tenascin C (Tnc) is an extracellular matrix glycoprotein, expressed in the CNS during development, as well as in the setting of inflammation, fibrosis and cancer, which operates as an activator of Toll-like receptor 4 (TLR4). Although TLR4 is highly expressed in microglia, the effect of Tnc on microglia has not been elucidated to date. Herein, we demonstrate that Tnc regulates microglial phagocytic activity at an early postnatal age (P4), and that this process is partially dependent on microglial TLR4 expression. We further show that Tnc regulates proinflammatory cytokine/chemokine production, chemotaxis and phagocytosis in primary microglia in a TLR4-dependent fashion. Moreover, Tnc induces histone-deacetylase 1 (HDAC1) expression in microglia, such that HDAC1 inhibition by MS-275 decreases Tnc-induced microglial IL-6 and TNF-α production. Finally, Tnc-/- cortical microglia have reduced HDAC1 expression levels at P4. Taken together, these findings establish Tnc as a regulator of microglia function during early postnatal development.


Asunto(s)
Histona Desacetilasa 1/metabolismo , Microglía/metabolismo , Tenascina/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Animales Recién Nacidos , Matriz Extracelular/metabolismo , Femenino , Inflamación/metabolismo , Interleucina-6/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fagocitosis/fisiología , Transducción de Señal , Receptor Toll-Like 4/genética , Factor de Necrosis Tumoral alfa/metabolismo
10.
Front Cell Dev Biol ; 7: 31, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30931303

RESUMEN

The extracellular matrix (ECM) is a biological substrate composed of collagens, proteoglycans and glycoproteins that ensures proper cell migration and adhesion and keeps the cell architecture intact. The regulation of the ECM composition is a vital process strictly controlled by, among others, proteases, growth factors and adhesion receptors. As it appears, ECM remodeling is also essential for proper neuronal and glial development and the establishment of adequate synaptic signaling. Hence, disturbances in ECM functioning are often present in neurodegenerative diseases like Alzheimer's disease. Moreover, mutations in ECM molecules are found in some forms of epilepsy and malfunctioning of ECM-related genes and pathways can be seen in, for example, cancer or ischemic injury. Low density lipoprotein receptor-related protein 1 (Lrp1) is a member of the low density lipoprotein receptor family. Lrp1 is involved not only in ligand uptake, receptor mediated endocytosis and lipoprotein transport-functions shared by low density lipoprotein receptor family members-but also regulates cell surface protease activity, controls cellular entry and binding of toxins and viruses, protects against atherosclerosis and acts on many cell signaling pathways. Given the plethora of functions, it is not surprising that Lrp1 also impacts the ECM and is involved in its remodeling. This review focuses on the role of Lrp1 and some of its major ligands on ECM function. Specifically, interactions with two Lrp1 ligands, integrins and tissue plasminogen activator are described in more detail.

11.
Neurochem Int ; 128: 163-174, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31009649

RESUMEN

The sodium potassium ATPase (Na+/K+ ATPase) is essential for the maintenance of a low intracellular Na+ and a high intracellular K+ concentration. Loss of function of the Na+/K+ ATPase due to mutations in Na+/K+ ATPase genes, anoxic conditions, depletion of ATP or inhibition of the Na+/K+ ATPase function using cardiac glycosides such as digitalis, causes a depolarization of the resting membrane potential. While in non-excitable cells, the uptake of glucose and amino acids is decreased if the function of the Na+/K+ ATPase is compromised, in excitable cells the symptoms range from local hyper-excitability to inactivating depolarization. Although several studies have demonstrated the differential expression of the various Na+/K+ ATPase alpha and beta isoforms in the brain tissue of rodents, their expression profile during development has yet to be thoroughly investigated. An immunohistochemical analysis of postnatal day 19 mouse brain showed ubiquitous expression of Na+/K+ ATPase isoforms α1, ß1 and ß2 in both neurons and glial cells, whereas α2 was expressed mostly in glial cells and the α3 and ß3 isoforms were expressed in neurons. Furthermore, we examined potential changes in the relative expression of the different Na+/K+ ATPase isoforms in different brain areas of postnatal day 6 and in adult 9 months old animals using immunoblot analysis. Our results show a significant up-regulation of the α1 isoform in cortex, hippocampus and cerebellum, whereas, the α2 isoform was significantly up-regulated in midbrain. The ß3 isoform showed a significant up-regulation in all brain areas investigated. The up-regulation of the α3 isoform matched that of the ß2 isoform which were both significantly up-regulated in cortex, hippocampus and midbrain, suggesting that the increased maturation of the neuronal network is accompanied by an increase in expression of α3/ß2 complexes in these brain structures.


Asunto(s)
Encéfalo/enzimología , Encéfalo/crecimiento & desarrollo , Regulación Enzimológica de la Expresión Génica , ATPasa Intercambiadora de Sodio-Potasio/biosíntesis , Factores de Edad , Animales , Animales Recién Nacidos , Isoenzimas/biosíntesis , Isoenzimas/genética , Ratones , Ratones Endogámicos C57BL , Subunidades de Proteína/biosíntesis , Subunidades de Proteína/genética , ATPasa Intercambiadora de Sodio-Potasio/genética
12.
Mol Neurobiol ; 56(1): 632-647, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29777374

RESUMEN

The central nervous system (CNS) of mammals has a limited regeneration capacity after traumatic events, which causes chronic functional disability. The development of biomaterials aims at providing support for the regeneration process. One strategy integrates peptides that mimic functional domains of extracellular matrix (ECM) or cell adhesion molecules with synthetic polymers designed to present growth-supporting cues to the neuronal microenvironment. Thus, small peptide sequences originating from molecules of the ECM may serve as promising bio-additives, acting as artificial matricryptins to gear cellular processes. The glycoprotein tenascin-C (Tnc) is a major constituent of the ECM of the developing brain and persists in the neurogenic regions of the adult CNS. It is a multimodular glycoprotein that comprises distinct domains with neurite growth promoting and axon growth repulsing properties. In the present study, the novel peptide motif VSWRAPTA that is encoded in the neurite growth promoting 6th fibronectin type III repeat close to the alternative splice site of Tnc was tested for its effects on neuron differentiation. When this newly synthesized biomimetic peptide was added to cultures of embryonic cortical neurons it significantly promoted the outgrowth of neurites. The neuron differentiation supporting effect was thereby associated with the trans-cellular activation of the focal adhesion kinase (FAK) and the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway. Cortical neurons supplemented with the Tnc peptide displayed a dose-dependent increase in neurite outgrowth that saturated at a peptide concentration of 50 µg/ml (56.4 mMol/l). The analysis of neuron morphology revealed that neurite branching rather than fiber length was stimulated by the Tnc peptide. Therefore, we predict that the analyzed peptide motif of the 6th constitutively expressed FNIII domain of the Tnc molecule might be a major contributor for neurite outgrowth and guiding events in the native CNS microenvironment. In conclusion, the Tnc-derived VSWRAPTA peptide may represent a promising tool to spike regeneration supportive microenvironments.


Asunto(s)
Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Neuronas/metabolismo , Péptidos/farmacología , Tenascina/química , Animales , Células Cultivadas , Corteza Cerebral/citología , Embrión de Mamíferos/citología , Activación Enzimática/efectos de los fármacos , Ratones , Modelos Biológicos , Red Nerviosa/efectos de los fármacos , Red Nerviosa/metabolismo , Neuritas/efectos de los fármacos , Neuritas/metabolismo , Neuronas/efectos de los fármacos
13.
Glia ; 67(2): 376-392, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30450647

RESUMEN

The tightly controlled processes of myelination and remyelination require the participation of the cytoskeleton. The reorganization of the cytoskeleton is controlled by small GTPases of the RhoA family. Here, we report that Vav3, a Rho GTPase regulating guanine nucleotide exchange factor (GEF) is involved in oligodendrocyte maturation, myelination and remyelination. When Vav3 was eliminated by genetic recombination, oligodendrocyte precursor cell (OPC) differentiation toward mature oligodendrocytes was accelerated. In contrast, Vav3-deficient oligodendrocytes displayed a reduced capacity to myelinate synthetic microfibers in vitro. Furthermore, remyelination was impaired in Vav3 knockout cerebellar slice cultures that were demyelinated by the addition of lysolecithin. In agreement with these observations, remyelination was compromised when the cuprizone model of myelin lesion was performed in Vav3-deficient mice. When Vav3-deficient oligodendrocytes were examined with Förster resonance energy transfer (FRET)-based biosensors, an altered activation profile of RhoA GTPases was revealed on the cellular level, which could be responsible for an impaired remyelination. Taken together, this study highlights Vav3 as a novel regulator of oligodendrocyte maturation and remyelination, suggesting that manipulation of the Vav3-dependent signaling pathway could help to improve myelin repair.


Asunto(s)
Diferenciación Celular/genética , Leucoencefalopatías/patología , Células Precursoras de Oligodendrocitos/fisiología , Proteínas Proto-Oncogénicas c-vav/metabolismo , Remielinización/genética , Animales , Caspasa 3/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Quelantes/toxicidad , Cuprizona/toxicidad , Modelos Animales de Enfermedad , GTP Fosfohidrolasas/metabolismo , Antígeno Ki-67/metabolismo , Leucoencefalopatías/inducido químicamente , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Básica de Mielina/metabolismo , Fibras Nerviosas Mielínicas/patología , Células Precursoras de Oligodendrocitos/patología , Técnicas de Cultivo de Órganos , Proteínas Proto-Oncogénicas c-vav/genética , Remielinización/efectos de los fármacos , Proteína de Unión al GTP rhoA/metabolismo
14.
Oncoimmunology ; 7(10): e1478647, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30288344

RESUMEN

The dismal prognosis of glioblastoma is attributed in part to the existence of stem-like brain tumor-initiating cells (BTICs) that are highly radio- and chemo-resistant. New approaches such as therapies that reprogram compromised immune cells against BTICs are needed. Effective immunotherapies in glioblastoma, however, remain elusive unless the mechanisms of immunosuppression by the tumor are better understood. Here, we describe that while the conditioned media of activated T lymphocytes reduce the growth capacity of BTICs, this growth suppression was abrogated in live co-culture of BTICs with T cells. We present evidence that BTICs produce the extracellular matrix protein tenascin-C (TNC) to inhibit T cell activity in live co-culture. In human glioblastoma brain specimens, TNC was widely deposited in the vicinity of T cells. Mechanistically, TNC inhibited T cell proliferation through interaction with α5ß1 and αvß6 integrins on T lymphocytes associated with reduced mTOR signaling. Strikingly, TNC was exported out of BTICs associated with exosomes, and TNC-depleted exosomes suppressed T cell responses to a significantly lesser extent than control. Finally, we found that circulating exosomes from glioblastoma patients contained more TNC and T cell-suppressive activity than those from control individuals. Taken together, our study establishes a novel immunosuppressive role for TNC associated with BTIC-secreted exosomes to affect local and distal T lymphocyte immunity.

15.
PLoS One ; 12(8): e0182407, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28800629

RESUMEN

Retinal ischemia is common in eye disorders, like diabetic retinopathy or retinal vascular occlusion. The goal of this study was to evaluate the potential protective effects of an intravitreally injected vascular endothelial growth factor (VEGF) inhibitor (ranibizumab) on retinal cells in an ischemia animal model via immunohistochemistry (IF) and quantitative real-time PCR (PCR). A positive binding of ranibizumab to rat VEGF-A was confirmed via dot blot. One eye underwent ischemia and a subgroup received ranibizumab. A significant VEGF increase was detected in aqueous humor of ischemic eyes (p = 0.032), whereas VEGF levels were low in ranibizumab eyes (p = 0.99). Ischemic retinas showed a significantly lower retinal ganglion cell number (RGC; IF Brn-3a: p<0.001, IF RBPMS: p<0.001; PCR: p = 0.002). The ranibizumab group displayed fewer RGCs (IF Brn-3a: 0.3, IF RBPMS: p<0.001; PCR: p = 0.007), but more than the ischemia group (IF Brn-3a: p = 0.04, IF RBPMS: p = 0.03). Photoreceptor area was decreased after ischemia (IF: p = 0.049; PCR: p = 0.511), while the ranibizumab group (IF: p = 0.947; PCR: p = 0.122) was comparable to controls. In the ischemia (p<0.001) and ranibizumab group (p<0.001) a decrease of ChAT+ amacrine cells was found, which was less prominent in the ranibizumab group. VEGF-receptor 2 (VEGF-R2; IF: p<0.001; PCR: p = 0.021) and macroglia (GFAP; IF: p<0.001; PCR: p<0.001) activation was present in ischemic retinas. The activation was weaker in ranibizumab retinas (VEGF-R2: IF: p = 0.1; PCR: p = 0.03; GFAP: IF: p = 0.1; PCR: p = 0.015). An increase in the number of total (IF: p = 0.003; PCR: p = 0.023) and activated microglia (IF: p<0.001; PCR: p = 0.009) was detected after ischemia. These levels were higher in the ranibizumab group (Iba1: IF: p<0.001; PCR: p = 0.018; CD68: IF: p<0.001; PCR: p = 0.004). Our findings demonstrate that photoreceptors and RGCs are protected by ranibizumab treatment. Only amacrine cells cannot be rescued. They seem to be particularly sensitive to ischemic damage and need maybe an earlier intervention.


Asunto(s)
Isquemia/tratamiento farmacológico , Sustancias Protectoras/uso terapéutico , Ranibizumab/uso terapéutico , Células Amacrinas/efectos de los fármacos , Células Amacrinas/metabolismo , Animales , Humor Acuoso/metabolismo , Proteínas de Unión al Calcio/metabolismo , Recuento de Células , Neuronas Colinérgicas/efectos de los fármacos , Neuronas Colinérgicas/metabolismo , Modelos Animales de Enfermedad , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Isquemia/patología , Ratones , Proteínas de Microfilamentos/metabolismo , Microglía/efectos de los fármacos , Microglía/metabolismo , Células Fotorreceptoras de Vertebrados/efectos de los fármacos , Células Fotorreceptoras de Vertebrados/metabolismo , Sustancias Protectoras/farmacología , Unión Proteica/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ranibizumab/farmacología , Ratas , Daño por Reperfusión/patología , Retina , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/metabolismo , Rodopsina/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
16.
Cell Tissue Res ; 368(3): 531-549, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28299522

RESUMEN

Neural stem cells (NSCs) have the ability to self-renew and to differentiate into various cell types of the central nervous system. This potential can be recapitulated by human induced pluripotent stem cells (hiPSCs) in vitro. The differentiation capacity of hiPSCs is characterized by several stages with distinct morphologies and the expression of various marker molecules. We used the monoclonal antibodies (mAbs) 487LeX, 5750LeX and 473HD to analyze the expression pattern of particular carbohydrate motifs as potential markers at six differentiation stages of hiPSCs. Mouse ESCs were used as a comparison. At the pluripotent stage, 487LeX-, 5750LeX- and 473HD-related glycans were differently expressed. Later, cells of the three germ layers in embryoid bodies (hEBs) and, even after neuralization of hEBs, subpopulations of cells were labeled with these surface antibodies. At the human rosette-stage of NSCs (hR-NSC), LeX- and 473HD-related epitopes showed antibody-specific expression patterns. We also found evidence that these surface antibodies could be used to distinguish the hR-NSCs from the hSR-NSCs stages. Characterization of hNSCsFGF-2/EGF derived from hSR-NSCs revealed that both LeX antibodies and the 473HD antibody labeled subpopulations of hNSCsFGF-2/EGF. Finally, we identified potential LeX carrier molecules that were spatiotemporally regulated in early and late stages of differentiation. Our study provides new insights into the regulation of glycoconjugates during early human stem cell development. The mAbs 487LeX, 5750LeX and 473HD are promising tools for identifying distinct stages during neural differentiation.


Asunto(s)
Diferenciación Celular , Glicoconjugados/fisiología , Células Madre Pluripotentes Inducidas/citología , Células-Madre Neurales/citología , Animales , Anticuerpos Monoclonales/inmunología , Antígenos de Diferenciación/biosíntesis , Línea Celular , Polaridad Celular , Epítopos/biosíntesis , Glicoconjugados/biosíntesis , Humanos , Células Madre Pluripotentes Inducidas/inmunología , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Células-Madre Neurales/metabolismo , Neuronas/citología , Neuronas/inmunología , Polisacáridos/biosíntesis
17.
Biol Chem ; 398(5-6): 663-675, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28214347

RESUMEN

Small GTP-hydrolyzing enzymes (GTPases) of the RhoA family play manifold roles in cell biology and are regulated by upstream guanine nucleotide exchange factors (GEFs). Herein, we focus on the GEFs of the Vav subfamily. Vav1 was originally described as a proto-oncogene of the hematopoietic lineage. The GEFs Vav2 and Vav3 are more broadly expressed in various tissues. In particular, the GEF Vav3 may play important roles in the developing nervous system during the differentiation of neural stem cells into the major lineages, namely neurons, oligodendrocytes and astrocytes. We discuss its putative regulatory roles for progenitor differentiation in the developing retina, polarization of neurons and formation of synapses, migration of oligodendrocyte progenitors and establishment of myelin sheaths. We propose that Vav3 mediates the response of various neural cell types to environmental cues.


Asunto(s)
Sistema Nervioso Central/crecimiento & desarrollo , Plasticidad Neuronal , Proteínas Proto-Oncogénicas c-vav/metabolismo , Animales , Sistema Nervioso Central/citología , Humanos , Vaina de Mielina/metabolismo , Células-Madre Neurales/citología , Proto-Oncogenes Mas , Sinapsis/metabolismo
18.
Macromol Biosci ; 17(3)2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27748556

RESUMEN

This article reports the behavior of embryonic neural stem cells on a hydrogel that combines cationic, non-specific cell adhesion motifs with glycine-arginine-glycine-aspartic acid-serine-phenylalanine (GRGDSF)-peptides as specific cell adhesion moieties. Therefore, three hydrogels are prepared by free radical polymerization that contains either a GRGDSF-peptide residue (P1), amino ethylmethacrylate as a cationic residue (P2), or a combination of both motifs (P3). For each gel, cross linker concentrations of 8 mol% is used to have a comparable gel stiffness of 8-9 kPa. The cell experiments indicate a synergistic effect of the non-specific, cationic residues, and the specific GRGDSF-peptides on embryonic neural stem cell behavior that is especially pronounced in the cell adhesion experiments by more than doubling the number of cells after 72 h when comparing P3 with P2 and is less pronounced in the proliferation and differentiation experiments.


Asunto(s)
Secuencias de Aminoácidos/genética , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Células-Madre Neurales/citología , Péptidos/química , Animales , Cationes/química , Adhesión Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Metilmetacrilatos/farmacología , Ratones , Células-Madre Neurales/efectos de los fármacos , Péptidos/genética , Péptidos/farmacología
19.
Mol Cell Neurosci ; 81: 22-31, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27836730

RESUMEN

The extracellular matrix consists of glycoproteins, proteoglycans and complex glycan structures that form the matrisome. Increasing evidence points to important functional roles of the ECM during development, plasticity and regeneration of the CNS. In particular, the ECM is an important constituent of the molecular microenvironment of the neural stem cell niches. While substantial evidence suggests that growth factors, cytokines and morphogens play important regulatory roles in the niche, the biological significance of the ECM has been less well studied. In this regard, the glycoprotein of the extracellular matrix tenascin-C is of interest because it can be considered as a model of the autochthonous ECM of the nervous system. Tenascin-C is expressed by the radial glia stem cells of the CNS and is a pivotal component of the adult stem cell niches. Furthermore, tenascin-C is associated with glial tumors and upregulated in CNS lesions, which may as well involve the stem cell compartment. In this review, we discuss the current state of research suggesting that tenascin-C plays an important modulatory role with regard to neural stem and glial progenitor cell proliferation and differentiation. In light of these results, tenascin-C and/or -derived peptides may be promising tools for the construction of synthetic stem cell environments.


Asunto(s)
Células-Madre Neurales/metabolismo , Neurogénesis , Nicho de Células Madre , Tenascina/metabolismo , Animales , Matriz Extracelular/metabolismo , Humanos , Células-Madre Neurales/citología , Tenascina/genética
20.
Eur J Cell Biol ; 96(1): 34-46, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27939274

RESUMEN

Studies within the last decade have localized the functional expression of olfactory receptors (ORs) to cells outside of the olfactory epithelium. In human hepatocarcinoma and prostate cancer cells, the activation of ORs by odors modulates elementary physiological processes and leads to an inhibitory effect on proliferation. Cells of the respiratory tract are in direct contact with the surrounding air, in which a myriad of volatile molecules, especially odors, are present. Non-small-cell lung cancer (NSCLC) has a high prevalence, a high mortality rate and is difficult to treat. NSCLC cells are nearly resistant to common chemotherapeutic approaches, and surgical resection provides the only possible chance of a cure for most patients. New approaches for the treatment of NSCLC are the focus of many current studies. Thus, it is of interest to characterize the functional expression of ORs in cancer cells of the lung and to investigate the impact of ORs on pathophysiological processes. In the present study, we demonstrate that the expression of OR2J3 and cytosolic Ca2+ increase via the activation of the agonist helional in the NSCLC cell line A549. We further investigated the underlying pathway. Helional triggers phoshoinositol-3 kinase (PI3K), signaling the release of intracellular Ca2+ and phosphorylation of ERK. We observed that OR2J3 activation induces apoptosis and inhibits cell proliferation and migration in long-term stimulus experiments with helional. Our study provides the first evidence of the functional expression of an OR in NSCLC cells and its putative therapeutic impact.


Asunto(s)
Apoptosis , Señalización del Calcio , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Proliferación Celular , Neoplasias Pulmonares/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas de Neoplasias/metabolismo , Receptores Odorantes/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Humanos , Neoplasias Pulmonares/genética , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/genética , Receptores Odorantes/agonistas , Receptores Odorantes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA