Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Intervalo de año de publicación
1.
Biophys J ; 122(5): 753-766, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36739476

RESUMEN

Cell motility on flat substrates exhibits coexisting steady and oscillatory morphodynamics, the biphasic adhesion-velocity relation, and the universal correlation between speed and persistence (UCSP) as simultaneous observations common to many cell types. Their universality and concurrency suggest a unifying mechanism causing all three of them. Stick-slip models for cells on one-dimensional lanes suggest multistability to arise from the nonlinear friction of retrograde flow. This study suggests a mechanical mechanism controlled by integrin signaling on the basis of a biophysical model and analysis of trajectories of MDA-MB-231 cells on fibronectin lanes, which additionally explains the constitutive relations. The experiments exhibit cells with steady or oscillatory morphodynamics and either spread or moving with spontaneous transitions between the dynamic regimes, spread and moving, and spontaneous direction reversals. Our biophysical model is based on the force balance at the protrusion edge, the noisy clutch of retrograde flow, and a response function of friction and membrane drag to integrin signaling. The theory reproduces the experimentally observed cell states, characteristics of oscillations, and state probabilities. Analysis of experiments with the biophysical model establishes a stick-slip oscillation mechanism, and explains multistability of cell states and the statistics of state transitions. It suggests protrusion competition to cause direction reversal events, the statistics of which explain the UCSP. The effect of integrin signaling on drag and friction explains the adhesion-velocity relation and cell behavior at fibronectin density steps. The dynamics of our mechanism are nonlinear flow mechanics driven by F-actin polymerization and shaped by the noisy clutch of retrograde flow friction, protrusion competition via membrane tension, and drag forces. Integrin signaling controls the parameters of the mechanical system.


Asunto(s)
Actinas , Fibronectinas , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Movimiento Celular/fisiología , Fibronectinas/metabolismo , Integrinas/metabolismo , Humanos , Línea Celular Tumoral
2.
Cell ; 185(7): 1130-1142.e11, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35294858

RESUMEN

G protein-coupled receptors (GPCRs) relay extracellular stimuli into specific cellular functions. Cells express many different GPCRs, but all these GPCRs signal to only a few second messengers such as cAMP. It is largely unknown how cells distinguish between signals triggered by different GPCRs to orchestrate their complex functions. Here, we demonstrate that individual GPCRs signal via receptor-associated independent cAMP nanodomains (RAINs) that constitute self-sufficient, independent cell signaling units. Low concentrations of glucagon-like peptide 1 (GLP-1) and isoproterenol exclusively generate highly localized cAMP pools around GLP-1- and ß2-adrenergic receptors, respectively, which are protected from cAMP originating from other receptors and cell compartments. Mapping local cAMP concentrations with engineered GPCR nanorulers reveals gradients over only tens of nanometers that define the size of individual RAINs. The coexistence of many such RAINs allows a single cell to operate thousands of independent cellular signals simultaneously, rather than function as a simple "on/off" switch.


Asunto(s)
Receptores Acoplados a Proteínas G , Transducción de Señal , Fenómenos Fisiológicos Celulares , AMP Cíclico , Péptido 1 Similar al Glucagón , Receptores Adrenérgicos beta 2 , Receptores Acoplados a Proteínas G/química , Sistemas de Mensajero Secundario
3.
J Struct Biol ; 213(4): 107808, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34742832

RESUMEN

A precise quantitative description of the ultrastructural characteristics underlying biological mechanisms is often key to their understanding. This is particularly true for dynamic extra- and intracellular filamentous assemblies, playing a role in cell motility, cell integrity, cytokinesis, tissue formation and maintenance. For example, genetic manipulation or modulation of actin regulatory proteins frequently manifests in changes of the morphology, dynamics, and ultrastructural architecture of actin filament-rich cell peripheral structures, such as lamellipodia or filopodia. However, the observed ultrastructural effects often remain subtle and require sufficiently large datasets for appropriate quantitative analysis. The acquisition of such large datasets has been enabled by recent advances in high-throughput cryo-electron tomography (cryo-ET) methods. This also necessitates the development of complementary approaches to maximize the extraction of relevant biological information. We have developed a computational toolbox for the semi-automatic quantification of segmented and vectorized filamentous networks from pre-processed cryo-electron tomograms, facilitating the analysis and cross-comparison of multiple experimental conditions. GUI-based components simplify the processing of data and allow users to obtain a large number of ultrastructural parameters describing filamentous assemblies. We demonstrate the feasibility of this workflow by analyzing cryo-ET data of untreated and chemically perturbed branched actin filament networks and that of parallel actin filament arrays. In principle, the computational toolbox presented here is applicable for data analysis comprising any type of filaments in regular (i.e. parallel) or random arrangement. We show that it can ease the identification of key differences between experimental groups and facilitate the in-depth analysis of ultrastructural data in a time-efficient manner.


Asunto(s)
Citoesqueleto de Actina/ultraestructura , Biología Computacional/métodos , Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Citoesqueleto de Actina/metabolismo , Animales , Línea Celular Tumoral , Citoesqueleto/metabolismo , Citoesqueleto/ultraestructura , Aprendizaje Profundo , Ratones , Seudópodos/metabolismo , Seudópodos/ultraestructura , Reproducibilidad de los Resultados
4.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33483418

RESUMEN

The biphasic adhesion-velocity relation is a universal observation in mesenchymal cell motility. It has been explained by adhesion-promoted forces pushing the front and resisting motion at the rear. Yet, there is little quantitative understanding of how these forces control cell velocity. We study motion of MDA-MB-231 cells on microlanes with fields of alternating Fibronectin densities to address this topic and derive a mathematical model from the leading-edge force balance and the force-dependent polymerization rate. It reproduces quantitatively our measured adhesion-velocity relation and results with keratocytes, PtK1 cells, and CHO cells. Our results confirm that the force pushing the leading-edge membrane drives lamellipodial retrograde flow. Forces resisting motion originate along the whole cell length. All motion-related forces are controlled by adhesion and velocity, which allows motion, even with higher Fibronectin density at the rear than at the front. We find the pathway from Fibronectin density to adhesion structures to involve strong positive feedbacks. Suppressing myosin activity reduces the positive feedback. At transitions between different Fibronectin densities, steady motion is perturbed and leads to changes of cell length and front and rear velocity. Cells exhibit an intrinsic length set by adhesion strength, which, together with the length dynamics, suggests a spring-like front-rear interaction force. We provide a quantitative mechanistic picture of the adhesion-velocity relation and cell response to adhesion changes integrating force-dependent polymerization, retrograde flow, positive feedback from integrin to adhesion structures, and spring-like front-rear interaction.


Asunto(s)
Adhesión Celular/genética , Movimiento Celular/genética , Fibronectinas/genética , Células Madre Mesenquimatosas/citología , Actinas/genética , Animales , Células CHO , Línea Celular Tumoral , Membrana Celular/genética , Cricetinae , Cricetulus , Femenino , Humanos , Integrinas/genética , Células Madre Mesenquimatosas/metabolismo , Modelos Teóricos , Seudópodos/genética
5.
Cell ; 182(6): 1519-1530.e17, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32846156

RESUMEN

Cells relay a plethora of extracellular signals to specific cellular responses by using only a few second messengers, such as cAMP. To explain signaling specificity, cAMP-degrading phosphodiesterases (PDEs) have been suggested to confine cAMP to distinct cellular compartments. However, measured rates of fast cAMP diffusion and slow PDE activity render cAMP compartmentalization essentially impossible. Using fluorescence spectroscopy, we show that, contrary to earlier data, cAMP at physiological concentrations is predominantly bound to cAMP binding sites and, thus, immobile. Binding and unbinding results in largely reduced cAMP dynamics, which we term "buffered diffusion." With a large fraction of cAMP being buffered, PDEs can create nanometer-size domains of low cAMP concentrations. Using FRET-cAMP nanorulers, we directly map cAMP gradients at the nanoscale around PDE molecules and the areas of resulting downstream activation of cAMP-dependent protein kinase (PKA). Our study reveals that spatiotemporal cAMP signaling is under precise control of nanometer-size domains shaped by PDEs that gate activation of downstream effectors.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Transducción de Señal , Análisis de la Célula Individual/métodos , Simulación por Computador , AMP Cíclico/química , Proteínas Quinasas Dependientes de AMP Cíclico/química , Citoplasma/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Humanos , Modelos Moleculares , Hidrolasas Diéster Fosfóricas/química , Unión Proteica , Dominios Proteicos , Proteínas Recombinantes , Análisis Espacio-Temporal , Espectrometría de Fluorescencia
6.
Cell ; 182(6): 1531-1544.e15, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32846158

RESUMEN

The fidelity of intracellular signaling hinges on the organization of dynamic activity architectures. Spatial compartmentation was first proposed over 30 years ago to explain how diverse G protein-coupled receptors achieve specificity despite converging on a ubiquitous messenger, cyclic adenosine monophosphate (cAMP). However, the mechanisms responsible for spatially constraining this diffusible messenger remain elusive. Here, we reveal that the type I regulatory subunit of cAMP-dependent protein kinase (PKA), RIα, undergoes liquid-liquid phase separation (LLPS) as a function of cAMP signaling to form biomolecular condensates enriched in cAMP and PKA activity, critical for effective cAMP compartmentation. We further show that a PKA fusion oncoprotein associated with an atypical liver cancer potently blocks RIα LLPS and induces aberrant cAMP signaling. Loss of RIα LLPS in normal cells increases cell proliferation and induces cell transformation. Our work reveals LLPS as a principal organizer of signaling compartments and highlights the pathological consequences of dysregulating this activity architecture.


Asunto(s)
Carcinogénesis/metabolismo , Carcinoma Hepatocelular/genética , Compartimento Celular/genética , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Proteínas del Choque Térmico HSP40/genética , Neoplasias Hepáticas/genética , Transducción de Señal , Animales , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Carcinoma Hepatocelular/metabolismo , Compartimento Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , AMP Cíclico/farmacología , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Citoplasma/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Ratones , Oncogenes/genética , Dominios Proteicos , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes de Fusión , Espectroscopía Infrarroja por Transformada de Fourier , Imagen de Lapso de Tiempo/métodos
7.
J Cell Sci ; 133(7)2020 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-32094266

RESUMEN

Efficient migration on adhesive surfaces involves the protrusion of lamellipodial actin networks and their subsequent stabilization by nascent adhesions. The actin-binding protein lamellipodin (Lpd) is thought to play a critical role in lamellipodium protrusion, by delivering Ena/VASP proteins onto the growing plus ends of actin filaments and by interacting with the WAVE regulatory complex, an activator of the Arp2/3 complex, at the leading edge. Using B16-F1 melanoma cell lines, we demonstrate that genetic ablation of Lpd compromises protrusion efficiency and coincident cell migration without altering essential parameters of lamellipodia, including their maximal rate of forward advancement and actin polymerization. We also confirmed lamellipodia and migration phenotypes with CRISPR/Cas9-mediated Lpd knockout Rat2 fibroblasts, excluding cell type-specific effects. Moreover, computer-aided analysis of cell-edge morphodynamics on B16-F1 cell lamellipodia revealed that loss of Lpd correlates with reduced temporal protrusion maintenance as a prerequisite of nascent adhesion formation. We conclude that Lpd optimizes protrusion and nascent adhesion formation by counteracting frequent, chaotic retraction and membrane ruffling.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina , Seudópodos , Citoesqueleto de Actina , Complejo 2-3 Proteico Relacionado con la Actina/genética , Actinas/genética , Adhesión Celular , Movimiento Celular
8.
Mol Biol Cell ; 29(22): 2674-2686, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30156465

RESUMEN

Lamellipodia are flat membrane protrusions formed during mesenchymal motion. Polymerization at the leading edge assembles the actin filament network and generates protrusion force. How this force is supported by the network and how the assembly rate is shared between protrusion and network retrograde flow determines the protrusion rate. We use mathematical modeling to understand experiments changing the F-actin density in lamellipodia of B16-F1 melanoma cells by modulation of Arp2/3 complex activity or knockout of the formins FMNL2 and FMNL3. Cells respond to a reduction of density with a decrease of protrusion velocity, an increase in the ratio of force to filament number, but constant network assembly rate. The relation between protrusion force and tension gradient in the F-actin network and the density dependency of friction, elasticity, and viscosity of the network explain the experimental observations. The formins act as filament nucleators and elongators with differential rates. Modulation of their activity suggests an effect on network assembly rate. Contrary to these expectations, the effect of changes in elongator composition is much weaker than the consequences of the density change. We conclude that the force acting on the leading edge membrane is the force required to drive F-actin network retrograde flow.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Movimiento Celular , Extensiones de la Superficie Celular/metabolismo , Mesodermo/citología , Mesodermo/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actinas/metabolismo , Animales , Fenómenos Biomecánicos , Simulación por Computador , Melanoma Experimental/patología , Ratones , Modelos Biológicos , Seudópodos/metabolismo
9.
Sci Rep ; 7: 46571, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28417973

RESUMEN

Cellular signaling systems precisely transmit information in the presence of molecular noise while retaining flexibility to accommodate the needs of individual cells. To understand design principles underlying such versatile signaling, we analyzed the response of the tumor suppressor p53 to varying levels of DNA damage in hundreds of individual cells and observed a switch between distinct signaling modes characterized by isolated pulses and sustained oscillations of p53 accumulation. Guided by dynamic systems theory we show that this requires an excitable network structure comprising positive feedback and provide experimental evidence for its molecular identity. The resulting data-driven model reproduced all features of measured signaling responses and is sufficient to explain their heterogeneity in individual cells. We present evidence that heterogeneity in the levels of the feedback regulator Wip1 sets cell-specific thresholds for p53 activation, providing means to modulate its response through interacting signaling pathways. Our results demonstrate how excitable signaling networks can provide high specificity, sensitivity and robustness while retaining unique possibilities to adjust their function to the physiology of individual cells.


Asunto(s)
Daño del ADN , Modelos Biológicos , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo , Células A549 , Humanos , Células MCF-7 , Proteína Fosfatasa 2C/metabolismo
10.
Biophys J ; 102(2): 287-95, 2012 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-22339865

RESUMEN

Cells migrate through a crowded environment during processes such as metastasis or wound healing, and must generate and withstand substantial forces. The cellular motility responses to environmental forces are represented by their force-velocity relation, which has been measured for fish keratocytes but remains unexplained. Even pN opposing forces slow down lamellipodium motion by three orders of magnitude. At larger opposing forces, the retrograde flow of the actin network accelerates until it compensates for polymerization, and cell motion stalls. Subsequently, the lamellipodium adapts to the stalled state. We present a mechanism quantitatively explaining the cell's force-velocity relation and its changes upon application of drugs that hinder actin polymerization or actomyosin-based contractility. Elastic properties of filaments, close to the lamellipodium leading edge, and retrograde flow shape the force-velocity relation. To our knowledge, our results shed new light on how these migratory responses are regulated, and on the mechanics and structure of the lamellipodium.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Movimiento Celular , Elasticidad , Modelos Biológicos , Citoesqueleto de Actina/efectos de los fármacos , Animales , Azepinas/farmacología , Fenómenos Biomecánicos , Movimiento Celular/efectos de los fármacos , Queratocitos de la Córnea/citología , Citocalasina D/farmacología , Elasticidad/efectos de los fármacos , Carpa Dorada , Microscopía de Fuerza Atómica , Naftalenos/farmacología
11.
Biophys J ; 101(11): 2638-44, 2011 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-22261051

RESUMEN

The behavior of biological systems is determined by the properties of their component molecules, but the interactions are usually too complex to understand fully how molecular behavior generates cellular behavior. Ca(2+) signaling by inositol trisphosphate receptors (IP(3)R) offers an opportunity to understand this relationship because the cellular behavior is defined largely by Ca(2+)-mediated interactions between IP(3)R. Ca(2+) released by a cluster of IP(3)R (giving a local Ca(2+) puff) diffuses and ignites the behavior of neighboring clusters (to give repetitive global Ca(2+) spikes). We use total internal reflection fluorescence microscopy of two mammalian cell lines to define the temporal relationships between Ca(2+) puffs (interpuff intervals, IPI) and Ca(2+) spikes (interspike intervals) evoked by flash photolysis of caged IP(3). We find that IPI are much shorter than interspike intervals, that puff activity is stochastic with a recovery time that is much shorter than the refractory period of the cell, and that IPI are not periodic. We conclude that Ca(2+) spikes do not arise from oscillatory dynamics of IP(3)R clusters, but that repetitive Ca(2+) spiking with its longer timescales is an emergent property of the dynamics of the whole cluster array.


Asunto(s)
Señalización del Calcio/efectos de los fármacos , Calcio/metabolismo , Células/efectos de los fármacos , Células/metabolismo , Inositol 1,4,5-Trifosfato/farmacología , Línea Celular Tumoral , Células HEK293 , Humanos , Microscopía Fluorescente , Fotólisis/efectos de los fármacos , Factores de Tiempo
12.
Genome Inform ; 20: 15-24, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19425119

RESUMEN

Ca(2+) is the most important second messenger controlling a variety of intracellular processes by oscillations of the cytosolic Ca(2+) concentration. These oscillations occur by Ca(2+) release from the endoplasmic reticulum (ER) into the cytosol through channels and the re-uptake of Ca(2+) into the ER by pumps. A common channel type present in many cell types is the inositol trisphosphate receptor (IP(3)R), which is activated by IP(3) and Ca(2+) itself leading to Ca(2+) induced Ca(2+) release (CICR). We have shown in an experimental study, that Ca(2+) oscillations are sequences of random spikes that occur by wave nucleation. We use here our recently developed model for Ca(2+) dynamics in 3 dimension to illuminate the role of IP(3)R clustering within spatial extended systems.


Asunto(s)
Calcio/fisiología , Receptores de Inositol 1,4,5-Trifosfato/fisiología , Animales , ATPasas Transportadoras de Calcio/metabolismo , Citosol/fisiología , Retículo Endoplásmico/fisiología , Canales Iónicos/fisiología , Probabilidad , Transducción de Señal
13.
Biophys J ; 85(3): 1474-81, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12944265

RESUMEN

Contrary to intuitive expectations, overexpression of sarco-endoplasmic reticulum (ER) Ca(2+) ATPases (SERCAs) in Xenopus oocytes leads to a decrease in the period and an increase in the amplitude of intracellular Ca(2+) waves. Here we examine these experimental findings by modeling Ca(2+) release using a modified Othmer-Tang-model. An increase in the period and a reduction in the amplitude of Ca(2+) wave activity are obtained when increases in SERCA density are simulated while keeping all other parameters of the model constant. However, Ca(2+) wave period can be reduced and the wave amplitude and velocity can be significantly increased when an increase in the luminal ER Ca(2+) concentration due to SERCA overexpression is incorporated into the model. Increased luminal Ca(2+) occurs because increased SERCA activity lowers cytosolic Ca(2+), which is partially replenished by Ca(2+) influx across the plasma membrane. These simulations are supported by experimental data demonstrating higher luminal Ca(2+) levels, decreased periods, increased amplitude, and increased velocity of Ca(2+) waves in response to increased SERCA density.


Asunto(s)
ATPasas Transportadoras de Calcio/biosíntesis , ATPasas Transportadoras de Calcio/química , Calcio/metabolismo , Animales , Fenómenos Biofísicos , Biofisica , Western Blotting , Calcio/química , Simulación por Computador , Relación Dosis-Respuesta a Droga , Retículo Endoplásmico/metabolismo , Cinética , Microscopía Confocal , Mitocondrias/metabolismo , Modelos Estadísticos , Oocitos/metabolismo , ARN Mensajero/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Factores de Tiempo , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA