Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Intervalo de año de publicación
1.
Molecules ; 29(2)2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38276601

RESUMEN

The cytochrome P450 family consists of ubiquitous monooxygenases with the potential to perform a wide variety of catalytic applications. Among the members of this family, CYP116B5hd shows a very prominent resistance to peracid damage, a property that makes it a promising tool for fine chemical synthesis using the peroxide shunt. In this meticulous study, we use hyperfine spectroscopy with a multifrequency approach (X- and Q-band) to characterize in detail the electronic structure of the heme iron of CYP116B5hd in the resting state, which provides structural details about its active site. The hyperfine dipole-dipole interaction between the electron and proton nuclear spins allows for the locating of two different protons from the coordinated water and a beta proton from the cysteine axial ligand of heme iron with respect to the magnetic axes centered on the iron. Additionally, since new anti-cancer therapies target the inhibition of P450s, here we use the CYP116B5hd system-imidazole as a model for studying cytochrome P450 inhibition by an azo compound. The effects of the inhibition of protein by imidazole in the active-site geometry and electron spin distribution are presented. The binding of imidazole to CYP116B5hd results in an imidazole-nitrogen axial coordination and a low-spin heme FeIII. HYSCORE experiments were used to detect the hyperfine interactions. The combined interpretation of the gyromagnetic tensor and the hyperfine and quadrupole tensors of magnetic nuclei coupled to the iron electron spin allowed us to obtain a precise picture of the active-site geometry, including the orientation of the semi-occupied orbitals and magnetic axes, which coincide with the porphyrin N-Fe-N axes. The electronic structure of the iron does not seem to be affected by imidazole binding. Two different possible coordination geometries of the axial imidazole were observed. The angles between gx (coinciding with one of the N-Fe-N axes) and the projection of the imidazole plane on the heme were determined to be -60° and -25° for each of the two possibilities via measurement of the hyperfine structure of the axially coordinated 14N.


Asunto(s)
Compuestos Férricos , Hemo , Hemo/química , Espectroscopía de Resonancia por Spin del Electrón/métodos , Compuestos Férricos/química , Protones , Hierro/química , Imidazoles/química , Sistema Enzimático del Citocromo P-450
2.
Sci Rep ; 13(1): 5605, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37019947

RESUMEN

Here, we show that in a supramolecular system with more than 20 building blocks forming large icosahedral M12L8 metal-organic cages (MOCs), using the instant synthesis method, it is possible to kinetically trap and control the formation of interlocking M12L8 nanocages, giving rare M12L8 TPB-ZnI2 poly-[n]-catenane. The catenanes are obtained in a one-pot reaction, selectively as amorphous (a1) or crystalline states, as demonstrated by powder X-ray diffraction (powder XRD), thermogravimetric (TG) analysis and 1H NMR. The 300 K M12L8 poly-[n]-catenane single crystal X-ray diffraction (SC-XRD) structure including nitrobenzene (1) indicates strong guest binding with the large M12L8 cage (i.e., internal volume ca. 2600 Å3), allowing its structural resolution. Conversely, slow self-assembly (5 days) leads to a mixture of the M12L8 poly-[n]-catenane and a new TPB-ZnI2 (2) coordination polymer (i.e., thermodynamic product), as revealed by SC-XRD. The neat grinding solid-state synthesis also yields amorphous M12L8 poly-[n]-catenane (a1'), but not coordination polymers, selectively in 15 min. The dynamic behavior of the M12L8 poly-[n]-catenanes demonstrated by the amorphous-to-crystalline transformation upon the uptake of ortho-, meta- and para-xylenes shows the potential of M12L8 poly-[n]-catenanes as functional materials in molecular separation. Finally, combining SC-XRD of 1 and DFT calculations specific for the solid-state, the role of the guests in the stability of the 1D chains of M12L8 nanocages is reported. Energy interactions such as interaction energies (E), lattice energies (E*), host-guest energies (Ehost-guest) and guest-guest energies (Eguest-guest) were analysed considering the X-ray structure with and without the nitrobenzene guest. Not only the synthetic control achieved in the synthesis of the M12L8 MOCs but also their dynamic behavior either in the crystalline or amorphous phase are sufficient to raise scientific interest in areas ranging from fundamental to applied sides of chemistry and material sciences.

3.
Angew Chem Int Ed Engl ; 62(1): e202211552, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36334012

RESUMEN

De novo metalloprotein design is a remarkable approach to shape protein scaffolds toward specific functions. Here, we report the design and characterization of Due Rame 1 (DR1), a de novo designed protein housing a di-copper site and mimicking the Type 3 (T3) copper-containing polyphenol oxidases (PPOs). To achieve this goal, we hierarchically designed the first and the second di-metal coordination spheres to engineer the di-copper site into a simple four-helix bundle scaffold. Spectroscopic, thermodynamic, and functional characterization revealed that DR1 recapitulates the T3 copper site, supporting different copper redox states, and being active in the O2 -dependent oxidation of catechols to o-quinones. Careful design of the residues lining the substrate access site endows DR1 with substrate recognition, as revealed by Hammet analysis and computational studies on substituted catechols. This study represents a premier example in the construction of a functional T3 copper site into a designed four-helix bundle protein.


Asunto(s)
Cobre , Metaloproteínas , Cobre/química , Catecoles/química , Metaloproteínas/química , Oxidación-Reducción
4.
Chem Asian J ; 16(16): 2351-2360, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34214252

RESUMEN

The controlled oxidation reaction of L-selenocystine under neutral pH conditions affords selenocysteine seleninic acid (3-selenino-L-alanine) which is characterized also by means of single-crystal X-ray diffraction. This technique shows that selenium forms three chalcogen bonds (ChBs), one of them being outstandingly short. A survey of seleninic acid derivatives in the Cambridge Structural Database (CSD) confirms that the C-Se(=O)O- functionality tends to act as a ChB donor robust enough to systematically influence the interactional landscape in the solid. Quantum Theory of Atom in Molecules (QTAIM) analysis proves the attractive nature of the short contacts observed in crystals containing the seleninic functionality and calculation of surface molecular electrostatic potential (MEP) reveals that remarkably positive σ-holes can frequently be found opposite to the covalent bonds at selenium. Both CSD searches and QTAIM and MEP approaches show that also the sulfinic acid moiety can function as a ChB donor, albeit less frequently than the seleninic acid one. These findings may contribute to a better understanding, at the atomic level, of the mechanism of action of the enzymes that control oxidative stress and ROS deactivation and that contain selenocysteine seleninic acid and cysteine sulfinic acid in the active site.

5.
J Am Chem Soc ; 142(20): 9537-9543, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32343571

RESUMEN

Kinetic control in the presence of six aromatic solvents has been successfully applied in the synthesis of a poly-[n]-catenane composed of interlocked M12L8 icosahedral nanometric cages (i.e., internal voids of 2500 Å3). When the exotridentate tris-pyridyl benzene ligand and ZnCl2 with appropriate templating molecules because of good ligand aromatic interactions are used, the metal-organic cages can be synthesized very fast, homogeneously, and in large quantities as microcrystalline materials. Synchrotron single-crystal X-ray data (100 K) allowed the resolution of nitrobenzene guest molecules at the internal walls of the M12L8 nanocages, whereas in the central part of the cages the solvent is highly disordered. The guest release occurs in two steps with the disordered nitrobenzene guests released in the first step (lower temperatures) because of the absence of strong cage-guest interactions. Density functional theory calculations provided a rationalization of these outcomes and, in particular, solid-state approaches, showed theoretical evidence of the kinetic nature in the formation of the poly-[n]-catenane by the analysis of the packing energy in terms of monomeric and dimeric cages.

6.
Phys Chem Chem Phys ; 19(36): 24555-24565, 2017 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-28852750

RESUMEN

The occurrence of stable van der Waals complexes of small saturated hydrocarbons with molecular iodine is assessed in order to investigate the ability of sp3-hybridized carbon atoms to act as either electron donors or electron acceptors depending on the ligand orientation. Systematic ab initio potential energy surface exploration of methane-I2 and ethane-I2 model dimers was followed by thorough characterization. Despite modest evidence of whole-adduct polarization, the resulting interactions feature a dominant dispersive character. The noncovalent interaction descriptors employed comprise NBO, AIM, NCI, and source function analyses. The relevance of bonding C-H orbitals in donor-acceptor interactions involving saturated hydrocarbons is highlighted. The results here presented corroborate existing literature regarding the electrophilicity of the aliphatic C-H group, and also indicate that the nucleophilic character of C(sp3) shares a dependence on electron withdrawing/donating substituents similar to that extensively documented for σ-holes. Indeed, the sole difference between the two, aside from the nucleophilicity/electrophilicity switch, seems to lie in their directionality. Nucleophilic sites on C(sp3) are not limited to the outermost region of C along a covalent bond axis, but can also engage electrophiles via the bifurcation plane of a CH2 unit. Since valence electrons on these carbon atoms are engaged in covalent bonds, they can only interact with polarizing ligands via the electron density accumulation/depletion in the four corresponding σ orbitals. These, however, do not seem to interact individually with the accompanying electrophile. Source function and NCI results suggest instead that nucleophilic carbon centres participate in the noncovalent bond themselves by drawing electron density from their shared electron pairs.

7.
Inorg Chem ; 56(11): 6584-6590, 2017 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-28525269

RESUMEN

Gas-solid chemisorption of HCl and adsorption of MeOH/EtOH by nonporous chiral copper(II) coordination complexes 1·MeOH and 1″·MeOH occur in a cooperative and dynamic manner to give solvated second sphere adducts 1'·MeOH/EtOH. The chemisorption process involves dramatic atomic rearrangements in the crystalline state upon cleavage and formation of H-Cl, N-H, Cu-N, and Cu-Cl coordination and covalent bonds from the gas and solid state, respectively. Using mechanochemistry, the chloride-bridged coordination complex 1″·MeOH is selectively produced by means of a dehydrochlorination reaction, but not in solution in which a mixture of 1·MeOH and 1″·MeOH is obtained. 1″·MeOH also via chemisorption and adsorption can trap HCl and MeOH to give the second sphere adduct 1'·MeOH. The adsorption process is confirmed by forming the second sphere adduct 1'·EtOH by exposing both 1·MeOH and 1″·MeOH to HCl and ethanol. Quantum-mechanical (QM) calculations specific for solid phases give insights into the relative stabilities of the hybrid metal organic materials involved in the mechanochemical reaction producing selectively 1″·MeOH, giving a good agreement with the experimental results.

8.
Phys Chem Chem Phys ; 18(42): 29616-29628, 2016 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-27753437

RESUMEN

From proteins and peptides to semiconducting polymers, aliphatic chains on aromatic groups are recurring motifs in macromolecules from very diverse application fields. Fields in which molecular folding and packing determine the macroscopic physical properties that make such advanced materials appealing in the first place. Within each macromolecule, the intrinsic structure of each unit defines how it interacts with its neighbours, ultimately opening up or denying certain backbone conformations. This eventually also determines how macromolecules interact with each other. This account deals specifically with the conformational problem of many common alkylaromatic units, examining the features of an intramolecular interaction involving a side chain with as few as three methylene groups. A set of 23 model compounds featuring an intramolecular interaction between an aliphatic X-H (X = C, N, O, and S) bond and an aromatic ring was considered. Quantitative computational analysis was made possible, thanks to complete basis set extrapolated CCSD(T) calculations and NCI topological analysis, the latter of which revealed an elaborate network of dispersive and steric interactions leading to somewhat unintuitive and unexpected results, such as the higher energetic stability of certain twisted conformational isomers over those with extended side chains. Vicinal covalent effects from polarizing groups and various heteroatoms, along with the occurrence of non-dispersive phenomena, were also investigated. The conclusions drawn from the investigation include a comprehensive set of guidelines intended to aid in the prediction of the most stable conformation for this class of building blocks. Our findings affect a variety of different research fields, including the tailoring of functional materials for organic electronics and photovoltaics, with insights into a rational treatment of conformational disorder, and the study of protein- and peptide-folding preferences, putting an emphasis on peculiar interactions between the backbone and aromatic residues.

9.
J Pharm Biomed Anal ; 60: 65-70, 2012 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-22119163

RESUMEN

Crystalline bupropion hydrochloride [(±)1-(3-chlorophenyl)-2-[(1,1-dimethylethyl)amino]-1-propanone hydrochloride], recently characterized as form 1, was found to undergo, upon storage at RT within months, a solid-solid conversion to a new polymorphic form, hereafter named form 2, containing a markedly different molecular conformer in the solid state. This new form, available only as a polycrystalline material, has been fully characterized using structural X-ray powder diffraction methods, coupled to thermoanalytical analyses. The relative stability of the two crystalline phases (forms 1 and 2) was compared by quantum mechanics calculations including density functional methods specific for solid state molecular systems. Bupropion hydrochloride form 2 crystallizes in the orthorhombic space group Pbca with Z=8, a=27.2853(5)Å, b=8.7184(3)Å, c=12.0422(3)Å, V=2864.7(1)ų, as centrosymmetric dimers, thanks to the presence of N-H…Cl interactions, and µ2-bridging chloride ions, each connected to two protonated amine moieties.


Asunto(s)
Bupropión/química , Cristalización , Modelos Estadísticos , Conformación Molecular , Rastreo Diferencial de Calorimetría/métodos , Rastreo Diferencial de Calorimetría/estadística & datos numéricos , Estabilidad de Medicamentos , Estructura Molecular , Difracción de Polvo/métodos , Difracción de Polvo/estadística & datos numéricos , Difracción de Rayos X/métodos , Difracción de Rayos X/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA