Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros











Tipo de estudio
Intervalo de año de publicación
1.
Environ Pollut ; 356: 124321, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38844043

RESUMEN

Since its application in environmental remediation, nano zero-valent iron (nZVI) has gained wide attention for its environmental friendliness, strong reducing ability, and wide range of raw materials. However, its high preparation cost and difficulty in preservation remain the bottlenecks for their application. Carbothermal reduction is a promising method for the industrial preparation of nZVI. Micronized zero-valent iron/carbon materials (Fe0/CB) were produced in one step by co-pyrolysis of carbon and iron. The performance of the Fe0/CB is comparable to that of nZVI. In addition, Fe0/CB overcomed the disadvantages of agglomeration and oxidative deactivation of nZVI. Experiments on the Fenton-like reaction of its activated PDS showed that metronidazole (MNZ) was efficiently removed through the synergistic action of radicals and non-radicals, which were mainly superoxide radicals (·O2-), monoclinic oxygen (1O2), and high-valent iron (FeIVO). Moreover, the degradation process showed better generalization, making it suitable for a wide range of applications in the degradation of antibiotics.

2.
Bioresour Technol ; 402: 130755, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38688394

RESUMEN

Carbothermal reduction is a promising method for the industrial preparation of nano-zero-valent iron. Preparing it also involves very high pyrolysis temperatures, which leads to a significant amount of energy consumption. The temperature required for the preparation of nano-zero-valent iron by carbothermal reduction was reduced by 200 °C by the addition of sodium salt. Carbon-loaded nano zero-valent iron (Fe0/CB-Na) was prepared by carbothermal reduction through the addition of sodium salt. The results showed that Fe0/CB-Na@700 had the same activation performance as Fe0/CB@900 and the newly prepared nano-zero-valent iron. The addition of sodium salt promoted the transfer of oxygen from the iron oxide to the carbon structure during the roasting process so that the iron oxide was reduced to as much Fe0 as possible. Thus, sodium salts were optimized for the preparation of nano-zero-valent iron by carbothermal reduction through interfacial amorphization and oxygen transfer, thus reducing the preparation cost.


Asunto(s)
Antibacterianos , Hierro , Hierro/química , Antibacterianos/química , Sulfatos/química , Oxidación-Reducción , Temperatura , Sodio/química
3.
J Hazard Mater ; 465: 133309, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38185080

RESUMEN

The utilization of nano zero-valent iron (nZVI) in polybrominated diphenyl ethers remediation has been studied extensively. However, challenges in balancing cost and reactivity have been encountered. A submicron zero-valent iron coated with FeC2O4·2 H2O layers (OX-smZVI) was synthesized via a mechanochemical method, aiming to resolve this contradiction. Characterization via SEM, TEM, and XPS confirmed the structure as FeC2O4·2 H2O coated iron lamellate with a surface area 24-fold higher than ball-milled zero-valent iron (smZVI). XRD highlighted an Fe/C eutectic in OX-smZVI, boosting its electron transfer capacity. Decabromodiphenyl ether degradation by OX-smZVI follows a two-stage process, with initial degradation by FeC2O4·2 H2O and a subsequent phase dominated by electron transfer. OX-smZVI exhibits a 4.52-34.40 times faster BDE209 removal rate than nZVI and scaled-up OX-smZVI displayed superior reactivity with preparation costs only 1/680 of nZVI. Given its enhanced reactivity and cost-efficiency, OX-smZVI emerges as a promising replacement for nZVI.

4.
J Hazard Mater ; 465: 132977, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38008052

RESUMEN

Freeze-thaw cycles (FTCs) cause dynamic microscale changes in ions and solvents. During freezing, heavy metals adsorbed on zero-valent iron (M-ZVI) and protons are excluded by ice crystals and concentrated in the liquid-like grain boundary region. The high proton concentration in this region leads to the dissolution of the passivation layer of ZVI. To assess the environmental risks of M-ZVI during FTCs, this study evaluated the stability of M-ZVI in this scenario from both microscale and macroscale perspectives. The results showed that the dissolution of the passivation layer had a dual effect on the stability of M-ZVI, which depends on the by-products of M-ZVI. The dissolution of the passivation layer was accompanied by the leaching of heavy metals, such as Ni-ZVI, but it also enhanced the reactivity of ZVI, causing it to re-react with desorbed heavy metals. The stability of Cr-ZVI and Cd-ZVI was improved due to frequent FTCs. Furthermore, changes in the surrounding environment (water dipole moment, ion concentration, etc.) of ZVI affected the crystallization of Fe oxides, increasing the content of amorphous Fe oxide. As low-crystallinity Fe oxides could facilitate ion doping, Ni2+ was doped into Fe3O4 lattice during FTCs, which reduced the mobility of heavy metals. Contrary to traditional views that freezing temperatures slow chemical reactions, this study provides new insights into the application of iron-based materials in cold environments.

5.
J Environ Manage ; 340: 118004, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37119628

RESUMEN

The problem of co-contaminated soil at e-waste dismantling sites is serious and constitutes a critical threat to human health and the ecological environment. Zero-valent iron (ZVI) has been proven to be effective in the stabilization of heavy metals and the removal of halogenated organic compounds (HOCs) from soils. However, for the remediation of co-contamination of heavy metals with HOCs, ZVI has disadvantages such as high remediation cost and inability to take into account both pollutants, which limits its large-scale application. In this paper, boric acid and commercial zero-valent iron (cZVI) were used as raw materials to prepare boric acid-modified zero-valent iron (B-ZVIbm) through a high-energy ball milling strategy. B-ZVIbm coupled with persulfate (PS) to achieve simultaneous remediation of co-contaminated soil. The synergistic treatment of PS and B-ZVIbm resulted in the removal efficiency of 81.3% for decabromodiphenyl ether (BDE209) and the stabilization efficiencies of 96.5%, 99.8%, and 28.8% for Cu, Pb, and Cd respectively in the co-contaminated soil. A series of physical and chemical characterization methods showed that the oxide coat on the surface of B-ZVIbm could be replaced by borides during ball milling. The boride coat facilitated the exposure of the Fe0 core, promoted the corrosion of ZVI and the orderly release of Fe2+. The analysis of the morphological transformation of heavy metals in soils revealed that most of the heavy metals in the exchangeable, carbonate-bound state were transformed into the residue state, which was the key mechanism for the remediation of heavy metal-contaminated soils with B-ZVIbm. The analysis of BDE209 degradation products showed that BDE209 was degraded to lower brominated products and further mineralized by ZVI reduction and free radical oxidation. In general, B-ZVIbm coupled with PS is a good recipe for synergistic remediation of co-contaminated soils with heavy metals and HOCs.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Humanos , Hierro/química , Metales Pesados/análisis , Ácidos Bóricos , Suelo/química , Contaminantes Químicos del Agua/química
6.
Chemosphere ; 324: 138376, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36905994

RESUMEN

Hydrophobic organic compounds (HOCs) in e-waste disposal sites are difficult to remove effectively. There is little reported about zero valent iron (ZVI) coupled with persulfate (PS) to achieve the removal of decabromodiphenyl ether (BDE209) from soil. In this work, we have prepared the flake submicron zero valent iron by ball milling with boric acid (B-mZVIbm) at a low cost. Sacrifice experiments results showed that 56.6% of BDE209 was removed in 72 h with PS/B-mZVIbm, which was 2.12 times than that of micron zero valent iron (mZVI). The morphology, crystal form, atomic valence, composition, and functional group of B-mZVIbm were determined by SEM, XRD, XPS, and FTIR, and the results indicated that the oxide layer on the surface of mZVI is replaced by borides. The results of EPR indicated that hydroxyl radical and sulfate radical played the dominant role in the degradation of BDE209. The degradation products of BDE209 were determined by gas chromatography-mass spectrometry (GC-MS), accordingly, the possible degradation pathway was further proposed. The research suggested that ball milling with mZVI and boric acid is a low-cost means of preparing highly active zero valent iron materials. And the mZVIbm has promising applications in improving the activation efficiency of PS and enhancing the removal of the contaminant.


Asunto(s)
Éteres Difenilos Halogenados , Contaminantes Químicos del Agua , Éteres Difenilos Halogenados/análisis , Hierro/química , Suelo , Ácidos Bóricos , Contaminantes Químicos del Agua/análisis
7.
J Environ Manage ; 326(Pt B): 116775, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36402015

RESUMEN

Nanoscale zero-valent iron is considered to be a promising nanostructure for environmental remediation, while increasing the electron selectivity of nanoscale zerovalent iron (nZVI) during target contaminant removal is still a challenge (electron selectivity, defined as the percentage of electrons transferred to the target contaminants over the number of electrons donated by nZVI). In this study, the strategy for increasing the reactivity and electron selectivity of nZVI via sophorolipid (SL-nZVI) modification was proposed. The results showed that the removal efficiency and electron selectivity of SL-nZVI toward Cr(VI) was 99.99% and 56.30%, which was higher than that of nZVI (61.16%, 25.91%). Meanwhile, the particles were well characterized and the mechanism for enhanced reactivity and electron selectivity was investigated. Specially, both the morphology and BET specific surface area characterization suggested that stability against aggregation was higher in SL-nZVI nanoparticles than in nZVI. Besides, X-ray photoelectron spectroscopy (XPS), Tafel polarization curves, and Electrochemical impedance spectroscopy also indicated that the introduction of sophorolipid successfully prevent the nanoparticles from oxidation and benefit the electron transferring. In addition, a water contact angle test revealed that SL-nZVI nanoparticles were less hydrophilic (contact angle = 34.8°) than nZVI (contact angle = 23.9°). Therefore, in terms of reactivity, sophorolipid modification inhibited the aggregation of the nanoparticles and enhanced the electrical conductivity. For electron selectivity, the introduction of sophorolipid not only benefited Cr(VI) adsorption and the electron transfer from Fe0 to the surface-adsorbed Cr(VI) that followed but also reduced the possibility of side reactions between Fe0 and H2O. This study demonstrates that the introduction of sophorolipid is an effective strategy for developing a highly efficient nZVI-based nanocomposite system and highlights the potential role of sophorolipid in improving the electron selectivity of nZVI.


Asunto(s)
Hierro , Contaminantes Químicos del Agua , Hierro/química , Electrones , Contaminantes Químicos del Agua/química , Cromo/química , Adsorción
8.
Chemosphere ; 310: 136915, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36270520

RESUMEN

In this work, zero-valent iron (ZVI) combined with anaerobic bacteria was used in the remediation of Cd(II)-polluted soil under the mediation of sulfate (SO42-). Owing to hydrogen-autotrophic sulfate reduction, serious corrosion occurred on sulfate-mediated biotic ZVI in terms of solid phase characterization as massive corrosive products (e.g., goethite, magnetite and green rust) were formed, which were crucial in the immobilization of Cd(II). Thus, this integrated system achieved a 4.9-fold increase in aqueous Cd(II) removal and converted more than 53% of easily available Cd(II)-fractions (acid-extractable and reducible) to stable forms (oxidizable and residual) based on the sequential extraction results as compared to the sulfate-mediated ZVI system. Increasing SO42- concentration and ZVI dosage both demonstrated positive correlation to Cd(II) immobilization, which further reflected that hydrogenotrophic desulfuration acted an essential role in improving Cd(II) immobilization. It indicated that hydrogenotrophic desulfuration could accelerate iron corrosion and promote reactive mineral formation through biomineralization, as well as generate cadmium sulfide precipitates (CdS) to achieve excellent immobilization performance for Cd(II). Besides, this reaction was favorable under neutral pH condition. Our results highlighted the promoted effect of hydrogen-autotrophic desulfuration on ZVI corrosion to immobilize Cd(II) and offered a practicable technique in Cd(II)-polluted soil remediation.


Asunto(s)
Hierro , Suelo , Hierro/química , Sulfatos , Cadmio/análisis , Hidrógeno
9.
Chemosphere ; 311(Pt 1): 136914, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36272628

RESUMEN

Biochar has a high specific surface area with abundant pore structure and functional groups, which has been widely used in remediation of cadmium or arsenic contaminated water and soil. However, the bottleneck problem of low-efficiency of pristine biochar in remediation of contaminated environments always occurs. Nowadays, the modification of biochar is a feasible way to enhance the performance of biochar. Based on the Web of science™, the research progress of modified biochar and its application in remediation of cadmium or arsenic contaminated water and soil have been systematically summarized in this paper. The main modification strategies of biochar were summarized, and the variation of physicochemical properties of biochar before and after modification were illustrated. The efficiency and key mechanisms of modified biochar for remediation of cadmium or arsenic contaminated water and soil were expounded in detail. Finally, some constructive suggestions were given for the future direction and challenges of modified biochar research.


Asunto(s)
Arsénico , Restauración y Remediación Ambiental , Contaminantes del Suelo , Cadmio/análisis , Arsénico/análisis , Suelo , Contaminantes del Suelo/análisis , Carbón Orgánico/química , Agua
10.
J Hazard Mater ; 441: 129833, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36084458

RESUMEN

In this study, an integrated system of Fe0 and hydrogenotrophic microbes mediated by nitrate (nitrate-mediated bio-Fe0, NMB-Fe0) was established to remediate Cd(II)-contaminated sediment. Solid phase characterization confirmed that aqueous Cd(II) (Cd(II)aq) was successfully immobilized and enriched on iron surface due to promoted iron corrosion driven by hydrogenotrophic denitrification and subsequent greater biomineral production such as magnetite, lepidocrocite and green rust. Compared to a Cd(II)aq removal of 21.1% in overlying water of the nitrate-mediated Fe0 (NM-Fe0) system, the NMB-Fe0 system obtained a much higher Cd(II)aq removal of 83.1% after 7 d remediation. The leaching test and sequential extraction results also showed that the leachability of Cd(II) decreased by 75.9% while the residual fraction of Cd(II) increased by 185.7% in comparison with untreated sediment. Besides, the Cd(II)aq removal raised with the increase of nitrate concentration and Fe0 dosage, further revealing the promotion effect of nitrate on Cd(II) removal by bio-Fe0. This study highlighted the involvement of bio-denitrification in the remediation of Cd(II)-contaminated sediment by Fe0 and provided a new insight to enhance its reactivity and applicability for Cd(II) immobilization.


Asunto(s)
Hierro , Nitratos , Cadmio/farmacología , Desnitrificación , Óxido Ferrosoférrico/farmacología , Hierro/farmacología , Agua/farmacología
11.
Chemosphere ; 306: 135456, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35798160

RESUMEN

nZVI is considered to be a promising material for environmental remediation. However, the drawbacks of easy agglomeration and low activity severely limit its application. In this work, nZVI/ZIF-8 was obtained by in-situ reduction of nZVI in the presence of performed ZIF-8. The reactivity of the as-obtained nZVI/ZIF-8 nanocomposites was investigated by removing hexavalent chromium (Cr(VI)) from wastewater. The as-obtained nZVI/ZIF-8 nanocomposites showed a superior activity for Cr(VI) removal, with an optimum activity (91.27%) achieved over 0.25 nZVI/ZIF-8 (i e., the mass ratio of ZIF-8 to nZVI was 0.25), higher than that of nZVI (64.55%), and this could be owned to the excellent dispersion of nZVI in nZVI/ZIF-8 and the high specific surface area as compared with the bare nZVI. The results of XPS characterization, quenching experiment analysis and kinetics fitting indicated that the Cr(VI) elimination was a surface-dominated chemical reduction process. Besides, more than 99.00% Cd(II), Cu(II), Cr(VI) and Pb(II) was removed from wastewater over nZVI/ZIF-8 nanocomposites, and negligible zinc ion was detected in the aqueous solutions. The results of our finding demonstrate that the introduction of MOFs is an effective strategy in developing a highly efficient nZVI-based nanocomposites system, and also highlight the promising role of using nZVI/MOFs in heavy metal treatment for practical wastewater.


Asunto(s)
Hierro , Contaminantes Químicos del Agua , Adsorción , Cromo/análisis , Imidazoles , Hierro/química , Estructuras Metalorgánicas , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis
12.
Environ Sci Pollut Res Int ; 29(52): 78926-78941, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35699883

RESUMEN

Palygorskite (Pal), bentonite (Bent), sepiolite (Sep), zeolite (Zeol), and kaolin (Kaol) were used with steel pickling waste liquor to synthesize magnetic palygorskite (Pal@Fe3O4), magnetic bentonite (Bent@Fe3O4), magnetic sepiolite (Sep@Fe3O4), magnetic zeolite (Zeol@Fe3O4), and magnetic kaolin (Kaol@Fe3O4), for adsorption and catalytic degradation of tetracycline (TC), respectively. Through the study of adsorption kinetics and adsorption isotherms, the maximum adsorption capacity of Pal@Fe3O4 to TC was 149.439 mg/g, which was 1.239 times, 2.260 times, 3.161 times, and 3.448 times of Bent@Fe3O4, Zeol@Fe3O4, Kaol@Fe3O4, and Sep@Fe3O4, respectively. The kinetic study of tetracycline degradation demonstrated that the maximum reaction rate constant of Bent@Fe3O4/H2O2 system was K(obs) = 2.12 × 10-2 min-1, which was close to that of Pal@Fe3O4/H2O2, Kaol@Fe3O4/H2O2 system, and was 2.000 times, 2.356 times, 2.650 times, and 4.711 times of Fe3O4/H2O2, Zeol@Fe3O4/H2O2, Sep@Fe3O4/H2O2, and H2O2 system, respectively. The results showed that Pal@Fe3O4 and Bent@Fe3O4 were more advantageous in the treatment of wastewater containing tetracycline, and efficient reuse of exhausted magnetic minerals and deep mineralization of organic pollutants were achieved by constructing an advanced oxidation system. The BET, VSM, SEM, XPS, XRD, and FTIR were used to characterize the five clay minerals before and after magnetic modification. It was speculated that the surface structure - OH groups of clay minerals might be significant factors influencing the adsorption performance of magnetic minerals on TC, and reduction ability of clay minerals to Fe3+ importantly affected the catalytic performance of magnetic minerals. The specific surface area and morphological structure of clay minerals both affected the adsorption and catalytic degradation of TC by the five magnetic minerals.


Asunto(s)
Contaminantes Ambientales , Zeolitas , Adsorción , Aguas Residuales , Acero , Arcilla , Bentonita , Caolín , Peróxido de Hidrógeno , Tetraciclina , Antibacterianos , Fenómenos Magnéticos
13.
Artículo en Inglés | MEDLINE | ID: mdl-35410068

RESUMEN

Arsenic is highly toxic and carcinogenic. The aim of the present work is to develop a good remediation technique for arsenic-contaminated soils. Here, a novel remediation technique by coupling electrokinetics (EK) with the permeable reactive barriers (PRB) of Fe/Mn/C-LDH composite was applied for the remediation of arsenic-contaminated soils. The influences of electric field strength, PRB position, moisture content and PRB filler type on the removal rate of arsenic from the contaminated soils were studied. The Fe/Mn/C-LDH filler synthesized by using bamboo as a template retained the porous characteristics of the original bamboo, and the mass percentage of Fe and Mn elements was 37.85%. The setting of PRB of Fe/Mn/C-LDH placed in the middle was a feasible option, with the maximum and average soil leaching toxicity removal rates of 95.71% and 88.03%, respectively. When the electric field strength was 2 V/cm, both the arsenic removal rate and economic aspects were optimal. The maximum and average soil leaching toxicity removal rates were similar to 98.40% and 84.49% of 3 V/cm, respectively. Besides, the soil moisture content had negligible effect on the removal of arsenic but slight effect on leaching toxicity. The best leaching toxicity removal rate was achieved when the soil moisture content was 35%, neither higher nor lower moisture content in the range of 25-45% was conducive to the improvement of leaching toxicity removal rate. The results showed that the EK-PRB technique could effectively remove arsenic from the contaminated soils. Characterizations of Fe/Mn/C-LDH indicated that the electrostatic adsorption, ion exchange, and surface functional group complexation were the primary ways to remove arsenic.


Asunto(s)
Arsénico , Restauración y Remediación Ambiental , Contaminantes del Suelo , Arsénico/análisis , Cinética , Suelo , Contaminantes del Suelo/análisis
14.
Sci Total Environ ; 822: 153538, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35104521

RESUMEN

In this study, hydrogen-autotrophic microorganisms and zero-valent iron (Fe0) were filled into columns to investigate hydrogenotrophic denitrification effect on cadmium (Cd(II)) removal and column life-span with sand, microorganisms, Fe0 and bio-Fe0 columns as controls. In terms of the experiment results, the nitrate-mediated bio-Fe0 column showed a slow Cd(II) migration rate of 0.04 cm/PV, while the values in the bio-Fe0 and Fe0 columns were 0.06 cm/PV and 0.14 cm/PV respectively, indicating much higher Cd(II) removal efficiency and longer service life of the nitrate-mediated bio-Fe0 column. The XRD and SEM-EDX results implied that this improvement was attributed to hydrogenotrophic denitrification that caused more serious iron corrosion and larger amount of secondary mineral generation (e.g., green rust, lepidocrocite and goethite). These active minerals provided more reaction sites for Cd(II) adsorption and further immobilization. In addition, the decrease of Cd(II) migration front and the increase of removal capacity along the bio-Fe0 column mediated by nitrate presented an uneven distribution in reactive zone. The latter half part was identified to be a more active region for Cd(II) immobilization. The above results indicate that the introduction of nitrate and microorganisms will improve the performance of iron-based permeable reactive barriers for the remediation of Cd(II)-containing groundwater.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Anaerobiosis , Cadmio , Hierro , Nitratos/análisis , Contaminantes Químicos del Agua/análisis
15.
J Hazard Mater ; 421: 126709, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34315021

RESUMEN

Nanoscale zero-valent iron nanoparticles (nZVI) have been used for groundwater remediation and wastewater treatment due to their high reactivity, high adsorption capacity and nontoxicity. However, side reactions generally occur in tandem with the target contaminants removal process, resulting in poor electron selectivity (ES) of nZVI, and subsequently restricting its commercial application. Major efforts to increase ES of nZVI have been made in recent years. This review's objective is to provide a progress report on the significant developments in nZVI's ES during the past decade. Firstly, the definition of ES and its quantification approaches were documented, and the intrinsic (i.e. particle size, crystallinity, and surface area) and extrinsic factors (i.e. solutions pH, target contaminant concentration, and presence of co-contaminants) affecting the ES of nZVI were reported. The latest techniques for increasing ES were summarized in detail, with reference made to sulfidation, magnetization, carbon loading and other features. Then the mechanisms of those strategies for ES enhancement were described. Finally, some constructive suggestions on future research directions concerning nZVI's ES in the future were proposed.


Asunto(s)
Restauración y Remediación Ambiental , Agua Subterránea , Contaminantes Químicos del Agua , Purificación del Agua , Electrones , Hierro , Contaminantes Químicos del Agua/análisis
16.
J Environ Manage ; 301: 113894, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34638045

RESUMEN

A biotic iron (Fe0) treatment system combined with mixed microorganisms was applied to remediate cadmium (Cd)-contaminated groundwater under the intervention of sulfate. Due to hydrogenotrophic desulfuration effect, severe iron corrosion was observed in this microbe-collaborative Fe0 system according to surface morphology analysis as lots of secondary minerals (e.g. magnetite, green rust and lepidocrocite) were generated, which was essential for Cd(II) adsorption and immobilization. The sulfate-mediated biotic Fe0 system thereafter achieved a significantly enhanced Cd(II) removal efficiency of 86.1%, over 3.3 times than that in the abiotic Fe0 system. Increasing initial sulfate concentration could improve the removal of cadmium, which further proved that hydrogenotrophic desulfuration played a key role for enhanced Cd removal. According to the experimental results and current reports, the mechanism of Cd(II) removal was revealed into three pathways including adsorption to secondary iron minerals, co-precipitation with iron (hydr)oxides and formation of cadmium sulfide precipitation. Increasing Fe0 dosages showed positive correlation to Cd(II) removal and neutral pH was preferred to sulfate-mediated biotic Fe0 corrosion. These results indicated that sulfate-mediated biotic Fe0 corrosion could greatly relieve the limitation of Fe0 in Cd(II) immobilization, which could be a promising method to eliminate Cd(II) pollution from groundwater.


Asunto(s)
Cadmio , Agua Subterránea , Cadmio/análisis , Corrosión , Hierro , Sulfatos
17.
Bioresour Technol ; 341: 125743, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34438283

RESUMEN

Reducing the preparation cost of magnetic biochar is necessary for its large-scale application as an adsorbent. In this study, stainless steel pickling waste liquor and rice straw were successfully applied to synthesize of magnetic biochar (SPWL-MBC). Several iron oxides adhered on the biochar matrix, mainly Fe3O4, Fe2O3 and FeO. SPWL-MBC exhibited superparamagnetism, and its specific surface area was 274.29 m2/g. The material was able to adsorb a model contaminant, crystal violet (CV), with a maximum adsorption capacity of approximately 111.48 mg/g. Adsorption mechanism analysis showed that iron oxides, π-π interaction, hydrogen bonding and electrostatic interaction were responsible for the adsorption of CV. The CV adsorption efficiency of SPWL-MBC remained 71.91% after three adsorption-regeneration cycles. These outcomes illustrate that the magnetic biochar prepared from stainless steel pickling waste liquor can effectively remove CV from wastewater.


Asunto(s)
Oryza , Contaminantes Químicos del Agua , Adsorción , Carbón Orgánico , Violeta de Genciana , Cinética , Fenómenos Magnéticos , Acero Inoxidable
18.
J Environ Manage ; 299: 113595, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34450304

RESUMEN

Mechanochemistry has been proved to be an effective method to remediation of organic-contaminated sites. However, the high ball-to-powder mass ratio (CR) limits the large-scale application of mechanochemistry. In this study, co-milling additives were introduced to enhance the mechanochemical degradation of decabromodiphenyl ether (BDE209)-contaminated soil under the condition of low CR. Based on additive screening experiments, sodium borohydride was selected as the ideal additive to assist the mechanochemical degradation of BDE209, and the resulting removal efficiency was approximately 100% with 2 h of ball milling at a rotational speed of 550 rpm. The main degradation intermediates and degradation pathway of BDE209 were identified using gas chromatography-tandem mass spectrometry. It was proposed that the degradation of BDE209 by sodium borohydride-assisted mechanochemistry was a concurrent process of stepwise and multistage debromination. Meanwhile, the meta-bromine atom in BDE209 was more susceptible to debromination than those at the para and ortho positions. The evolution of the concentration of Br- was monitored by ion chromatography, which revealed that reduction and oxidation both occurred in the removal of BDE209. This paper provides a new perspective for reducing the CR in the mechanochemical remediation of BDE209-contaminated soil.


Asunto(s)
Éteres Difenilos Halogenados , Contaminantes del Suelo , Contaminación Ambiental , Oxidación-Reducción , Suelo , Contaminantes del Suelo/análisis
19.
Sci Total Environ ; 764: 142813, 2021 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33097246

RESUMEN

Exploiting the full potential of copper-based nanoparticles in the activation of peroxymonopersulfate (PMS) is a great challenge due to their insufficient dispersity and electronic properties. We report here a novel iron­nitrogen co-doped carbon nanotube (FNC) modified with a Cu2O nanocomposite (Cu2O/FNC) that exhibits ultrahigh catalytic performance in the activation of PMS to degrade fluconazole (~95%). Catalytic performance evaluation illustrated that Cu2O/FNC also has wide pH applicability (3.0-11.0), long-term stability and excellent adaptability. In addition, luminescent bacteria toxicity tests confirm that Cu2O/FNC/PMS significantly reduced the acute biotoxicity of various recalcitrant pollutants (reduced by 45-83%). By identifying the reactive oxygen species (ROS) and catalytic performance for various pollutants, we propose that pollutants that interact weekly with activators are mostly destroyed by sulfate radicals and hydroxyl radicals, whilst both radical and non-radical routes were involved in the degradation of pollutants that were easily adsorbed. By modifying Cu2O with FNC, several crucial properties such as the specific surface area, surface defects, active sites and the charge transfer rate were significantly improved, leading to excellent catalytic performance for pollutant removal. Finally, a reasonable reaction mechanism is advanced for the fluconazole degradation pathway. This study not only develops a novel PMS oxidation system for fluconazole degradation, but also provides a new strategy to improve the reactivity and applicability of PMS activators by combining radical and non-radical activation pathways.


Asunto(s)
Hierro , Nanotubos de Carbono , Electrónica , Nitrógeno , Peróxidos
20.
J Environ Qual ; 49(3): 654-662, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-33016401

RESUMEN

Continuous-flow iron and bio-iron columns were used to evaluate the effects of seepage velocity and concentration on Cr(VI) removal from groundwater. Solid-phase analysis showed that microorganisms accelerated iron corrosion by excreting extracellular polymeric substances and generated highly reactive minerals containing Fe(II), which gave the bio-iron column a longer life span and enhanced capacity for Cr(VI) removal via enhanced adsorption and reduction by reactive minerals. The bio-iron column showed much higher Cr(VI) removal capacity than the iron column with increasing Cr(VI) loading, which was obtained by increasing the seepage velocity or influent Cr(VI) concentration from 95 to 1138 m yr-1 and from 5 to 40 mg L-1 , respectively. When the Cr(VI) loading varied in a range of 0 to 10 mg L-1 h-1 , the bio-iron column had a 60% longer longevity and one- to sixfold higher Cr(VI) elimination capacity than the iron column. This result indicated that, under fluctuating hydraulic conditions [e.g., seepage velocity and Cr(VI) concentration], the presence of microorganisms can significantly boost Cr(VI) removal using Fe0 -based permeable reactive barriers.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua/análisis , Adsorción , Cromo , Hierro
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA