Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Am J Cardiol ; 210: 201-207, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37863116

RESUMEN

Accumulation of ectopic pericardial adipose tissue has been associated with cardiovascular complications which, in part, may relate to adipose-derived factors that regulate vascular responses and angiogenesis. We sought to characterize adipose tissue microvascular angiogenic capacity in subjects who underwent elective cardiac surgeries including aortic, valvular, and coronary artery bypass grafting. Pericardial adipose tissue was collected intraoperatively and examined for angiogenic capacity. Capillary sprouting was significantly blunted (twofold, p <0.001) in subjects with coronary artery disease (CAD) (age 60 ± 9 years, body mass index [BMI] 32 ± 4 kg/m2, low-density lipoprotein cholesterol [LDL-C] 95 ± 46 mg/100 ml, n = 29) compared with age-, BMI-, and LDL-C matched subjects without angiographic obstructive CAD (age 59 ± 10 y, BMI 35 ± 9 kg/m2, LDL-C 101 ± 40 mg/100 ml, n = 12). For potential mechanistic insight, we performed mRNA expression analyses using quantitative real-time polymerase chain reaction and observed no significant differences in pericardial fat gene expression of proangiogenic mediators vascular endothelial growth factor-A (VEGF-A), fibroblast growth factor-2 (FGF-2), and angiopoietin-1 (angpt1), or anti-angiogenic factors soluble fms-like tyrosine kinase-1 (sFlt-1) and endostatin. In contrast, mRNA expression of anti-angiogenic thrombospondin-1 (TSP-1) was significantly upregulated (twofold, p = 0.008) in CAD compared with non-CAD subjects, which was confirmed by protein western-immunoblot analysis. TSP-1 gene knockdown using short hairpin RNA lentiviral delivery significantly improved angiogenic deficiency in CAD (p <0.05). In conclusion, pericardial fat in subjects with CAD may be associated with an antiangiogenic profile linked to functional defects in vascularization capacity. Local paracrine actions of TSP-1 in adipose depots surrounding the heart may play a role in mechanisms of ischemic heart disease.


Asunto(s)
Enfermedad de la Arteria Coronaria , Isquemia Miocárdica , Humanos , Persona de Mediana Edad , Anciano , Factor A de Crecimiento Endotelial Vascular/metabolismo , Trombospondina 1/genética , Trombospondina 1/metabolismo , LDL-Colesterol/metabolismo , Isquemia Miocárdica/complicaciones , Tejido Adiposo , Enfermedad de la Arteria Coronaria/etiología , ARN Mensajero/metabolismo
2.
Cardiovasc Pathol ; 63: 107495, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36334690

RESUMEN

OBJECTIVES: We sought to develop a rigorous, systematic protocol for the dissection and preservation of human hearts for biobanking that expands previous success in postmortem transcriptomics to multiomics from paired tissue. BACKGROUND: Existing cardiac biobanks consist largely of biopsy tissue or explanted hearts in select diseases and are insufficient for correlating whole organ phenotype with clinical data. METHODS: We demonstrate optimal conditions for multiomics interrogation (ribonucleic acid (RNA) sequencing, untargeted metabolomics) in hearts by evaluating the effect of technical variables (storage solution, temperature) and simulated postmortem interval (PMI) on RNA and metabolite stability. We used bovine (n=3) and human (n=2) hearts fixed in PAXgene or snap-frozen with liquid nitrogen. RESULTS: Using a paired Wald test, only two of the genes assessed were differentially expressed between left ventricular samples from bovine hearts stored in PAXgene at 0 and 12 hours PMI (FDR q<0.05). We obtained similar findings in human left ventricular samples, suggesting stability of RNA transcripts at PMIs up to 12 hours. Different library preparation methods (mRNA poly-A capture vs. rRNA depletion) resulted in similar quality metrics with both library preparations achieving >95% of reads properly aligning to the reference genomes across all PMIs for bovine and human hearts. PMI had no effect on RNA Integrity Number or quantity of RNA recovered at the time points evaluated. Of the metabolites identified (855 total) using untargeted metabolomics of human left ventricular tissue, 503 metabolites remained stable across PMIs (0, 4, 8, 12 hours). Most metabolic pathways retained several stable metabolites. CONCLUSIONS: Our data demonstrate a technically rigorous, reproducible protocol that will enhance cardiac biobanking practices and facilitate novel insights into human CVD. CONDENSED ABSTRACT: Cardiovascular disease (CVD) is the leading cause of mortality worldwide. Current biobanking practices insufficiently capture both the diverse array of phenotypes present in CVDs and the spatial heterogeneity across cardiac tissue sites. We have developed a rigorous and systematic protocol for the dissection and preservation of human cardiac biospecimens to enhance the availability of whole organ tissue for multiple applications. When combined with longitudinal clinical phenotyping, our protocol will enable multiomics in hearts to deepen our understanding of CVDs.


Asunto(s)
Bancos de Muestras Biológicas , Enfermedades Cardiovasculares , Humanos , Bovinos , Animales , Multiómica , Corazón , ARN/genética
3.
JAMA Netw Open ; 4(7): e2115267, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34251443

RESUMEN

Importance: Bariatric surgical weight loss is associated with reduced cardiovascular mortality; however, the mechanisms underlying this association are incompletely understood. Objectives: To identify variables associated with vascular remodeling after bariatric surgery and to examine how sex, race, and metabolic status are associated with microvascular and macrovascular outcomes. Design, Setting, and Participants: This population-based longitudinal cohort included 307 individuals who underwent bariatric surgery. Participants were enrolled in the bariatric weight loss program at Boston Medical Center, a large, multi-ethnic urban hospital, with presurgical and postsurgical assessments. Data were collected from December 11, 2001 to August 27, 2019. Data were analyzed in September 2019. Exposure: Bariatric surgery. Main Outcomes and Measures: Flow-mediated dilation (FMD) and reactive hyperemia (RH) (as measures of macrovascular and microvascular function, respectively) and clinical variables were measured preoperatively at baseline and at least once postoperatively within 12 months of the bariatric intervention. Results: A total of 307 participants with obesity (mean [SD] age, 42 [12] years; 246 [80%] women; 199 [65%] White; mean [SD] body mass index, 46 [8]) were enrolled in this study. Bariatric surgery was associated with significant weight loss and improved macrovascular and microvascular function across subgroups of sex, race, and traditional metabolic syndrome (mean [SD] pre- vs postsurgery weight: 126 [25] kg vs 104 [25] kg; P < .001; mean [SD] pre- vs postsurgery FMD: 9.1% [5.3] vs 10.2% [5.1]; P < .001; mean [SD] pre- vs postsurgery RH: 764% [400] vs 923% [412]; P < .001). Factors associated with change in vascular phenotype correlated most strongly with adiposity markers and several metabolic variables depending on vascular territory (eg, association of weight change with change in RH: estimate, -3.2; 95% CI, -4.7 to -1.8; association of hemoglobin A1c with change in FMD: estimate, -0.5; 95% CI, -0.95 to -0.05). While changes in macrovascular function among individuals with metabolically healthy obesity were not observed, the addition of biomarker assessment using high-sensitivity C-reactive protein plasma levels greater than 2 mg/dL identified participants with seemingly metabolically healthy obesity who had low-grade inflammation and achieved microvascular benefit from weight loss surgery. Conclusions and Relevance: The findings of this study suggest that bariatric intervention is associated with weight loss and favorable remodeling of the vasculature among a wide range of individuals with cardiovascular risk. Moreover, differences in arterial responses to weight loss surgery by metabolic status were identified, underscoring heterogeneity in physiological responses to adiposity change and potential activation of distinct pathological pathways in clinical subgroups. As such, individuals with metabolically healthy obesity represent a mixed population that may benefit from more refined phenotypic classification.


Asunto(s)
Cirugía Bariátrica/efectos adversos , Enfermedades Cardiovasculares/etiología , Obesidad/cirugía , Resultado del Tratamiento , Adulto , Cirugía Bariátrica/métodos , Cirugía Bariátrica/normas , Índice de Masa Corporal , Boston/epidemiología , Enfermedades Cardiovasculares/epidemiología , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Obesidad/complicaciones
4.
Arterioscler Thromb Vasc Biol ; 41(3): 1239-1250, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33504180

RESUMEN

OBJECTIVE: There is growing recognition that adipose tissue-derived proatherogenic mediators contribute to obesity-related cardiovascular disease. We sought to characterize regional differences in perivascular adipose tissue (PVAT) phenotype in relation to atherosclerosis susceptibility. Approach and Results: We examined thoracic PVAT samples in 34 subjects (body mass index 32±6 kg/m2, age 59±11 years) undergoing valvular, aortic, or coronary artery bypass graft surgeries and performed transcriptomic characterization using whole-genome expression profiling and quantitative polymerase chain reaction analyses. We identified a highly inflamed region of PVAT surrounding the human aortic root in close proximity to coronary takeoff and adjoining epicardial fat. In subjects undergoing coronary artery bypass graft, we found 300 genes significantly upregulated (false discovery rate Q<0.1) in paired samples of PVAT surrounding the aortic root compared with nonatherosclerotic left internal mammary artery. Genes encoding proteins mechanistically implicated in atherogenesis were enriched in aortic PVAT consisting of signaling pathways linked to inflammation, WNT (wingless-related integration site) signaling, matrix remodeling, coagulation, and angiogenesis. Overexpression of several proatherogenic transcripts, including IL1ß, CCL2 (MCP-1), and IL6, were confirmed by quantitative polymerase chain reaction and significantly bolstered in coronary artery disease subjects. Angiographic coronary artery disease burden quantified by the Gensini score positively correlated with the expression of inflammatory genes in PVAT. Moreover, periaortic adipose inflammation was markedly higher in obese subjects with striking upregulation (≈8-fold) of IL1ß expression compared to nonobese individuals. CONCLUSIONS: Proatherogenic mediators that originate from dysfunctional PVAT may contribute to vascular disease mechanisms in human vessels. Moreover, PVAT may adopt detrimental properties under obese conditions that play a key role in the pathophysiology of ischemic heart disease. Graphic Abstract: A graphic abstract is available for this article.


Asunto(s)
Tejido Adiposo/patología , Isquemia Miocárdica/patología , Tejido Adiposo/metabolismo , Anciano , Aorta/metabolismo , Aorta/patología , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Quimiocina CCL2/genética , Femenino , Perfilación de la Expresión Génica , Humanos , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Mediadores de Inflamación/metabolismo , Interleucina-1beta/genética , Interleucina-6/genética , Masculino , Persona de Mediana Edad , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Obesidad/genética , Obesidad/metabolismo , Obesidad/patología , Regulación hacia Arriba , Vía de Señalización Wnt
5.
J Am Heart Assoc ; 8(11): e011431, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31433737

RESUMEN

Background Pathophysiological mechanisms that connect obesity to cardiovascular disease are incompletely understood. FSP27 (Fat-specific protein 27) is a lipid droplet-associated protein that regulates lipolysis and insulin sensitivity in adipocytes. We unexpectedly discovered extensive FSP27 expression in human endothelial cells that is downregulated in association with visceral obesity. We sought to examine the functional role of FSP27 in the control of vascular phenotype. Methods and Results We biopsied paired subcutaneous and visceral fat depots from 61 obese individuals (body mass index 44±8 kg/m2, age 48±4 years) during planned bariatric surgery. We characterized depot-specific FSP27 expression in relation to adipose tissue microvascular insulin resistance, endothelial function and angiogenesis, and examined differential effects of FSP27 modification on vascular function. We observed markedly reduced vasodilator and angiogenic capacity of microvessels isolated from the visceral compared with subcutaneous adipose depots. Recombinant FSP27 and/or adenoviral FSP27 overexpression in human tissue increased endothelial nitric oxide synthase phosphorylation and nitric oxide production, and rescued vasomotor and angiogenic dysfunction (P<0.05), while siRNA-mediated FSP27 knockdown had opposite effects. Mechanistically, we observed that FSP27 interacts with vascular endothelial growth factor-A and exerts robust regulatory control over its expression. Lastly, in a subset of subjects followed longitudinally for 12±3 months after their bariatric surgery, 30% weight loss improved metabolic parameters and increased angiogenic capacity that correlated positively with increased FSP27 expression (r=0.79, P<0.05). Conclusions Our data strongly support a key role and functional significance of FSP27 as a critical endogenous modulator of human microvascular function that has not been previously described. FSP27 may serve as a previously unrecognized regulator of arteriolar vasomotor capacity and angiogenesis which are pivotal in the pathogenesis of cardiometabolic diseases linked to obesity.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Enfermedades Cardiovasculares/metabolismo , Células Endoteliales/metabolismo , Grasa Intraabdominal/irrigación sanguínea , Microvasos/metabolismo , Neovascularización Fisiológica , Obesidad/metabolismo , Grasa Subcutánea/irrigación sanguínea , Vasodilatación , Adiposidad , Adulto , Proteínas Reguladoras de la Apoptosis/genética , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/fisiopatología , Células Cultivadas , Femenino , Humanos , Masculino , Microvasos/fisiopatología , Persona de Mediana Edad , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Obesidad/complicaciones , Obesidad/fisiopatología , Fosforilación , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo
6.
Am J Physiol Endocrinol Metab ; 316(2): E168-E177, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30576243

RESUMEN

Obesity, particularly visceral adiposity, has been linked to mitochondrial dysfunction and increased oxidative stress, which have been suggested as mechanisms of insulin resistance. The mechanism(s) behind this remains incompletely understood. In this study, we hypothesized that mitochondrial complex II dysfunction plays a role in impaired insulin sensitivity in visceral adipose tissue of subjects with obesity. We obtained subcutaneous and visceral adipose tissue biopsies from 43 subjects with obesity (body mass index ≥ 30 kg/m2) during planned bariatric surgery. Compared with subcutaneous adipose tissue, visceral adipose tissue exhibited decreased complex II activity, which was restored with the reducing agent dithiothreitol (5 mM) ( P < 0.01). A biotin switch assay identified that cysteine oxidative posttranslational modifications (OPTM) in complex II subunit A (succinate dehydrogenase A) were increased in visceral vs. subcutaneous fat ( P < 0.05). Insulin treatment (100 nM) stimulated complex II activity in subcutaneous fat ( P < 0.05). In contrast, insulin treatment of visceral fat led to a decrease in complex II activity ( P < 0.01), which was restored with addition of the mitochondria-specific oxidant scavenger mito-TEMPO (10 µM). In a cohort of 10 subjects with severe obesity, surgical weight loss decreased OPTM and restored complex II activity, exclusively in the visceral depot. Mitochondrial complex II may be an unrecognized and novel mediator of insulin resistance associated with visceral adiposity. The activity of complex II is improved by weight loss, which may contribute to metabolic improvements associated with bariatric surgery.


Asunto(s)
Complejo II de Transporte de Electrones/metabolismo , Resistencia a la Insulina , Grasa Intraabdominal/metabolismo , Obesidad/metabolismo , Procesamiento Proteico-Postraduccional , Adulto , Cirugía Bariátrica , Cisteína , Femenino , Humanos , Hipoglucemiantes/farmacología , Insulina/farmacología , Grasa Intraabdominal/efectos de los fármacos , Masculino , Persona de Mediana Edad , Obesidad/cirugía , Compuestos Organofosforados/farmacología , Oxidación-Reducción , Piperidinas/farmacología , Grasa Subcutánea/efectos de los fármacos , Grasa Subcutánea/metabolismo
7.
Sci Rep ; 7(1): 17326, 2017 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-29229927

RESUMEN

The accumulation of visceral adiposity is strongly associated with systemic inflammation and increased cardiometabolic risk. WNT5A, a non-canonical WNT ligand, has been shown to promote adipose tissue inflammation and insulin resistance in animal studies. Among other non-canonical pathways, WNT5A activates planar cell polarity (PCP) signaling. The current study investigated the potential contribution of non-canonical WNT5A/PCP signaling to visceral adipose tissue (VAT) inflammation and associated metabolic dysfunction in individuals with obesity. VAT and subcutaneous adipose tissue (SAT) samples obtained from subjects undergoing bariatric surgery were analyzed by qRT-PCR for expression of WNT/PCP genes. In vitro experiments were conducted with preadipocytes isolated from VAT and SAT biopsies. The expression of 23 out of 33 PCP genes was enriched in VAT compared to SAT. Strong positive expression correlations of individual PCP genes were observed in VAT. WNT5A expression in VAT, but not in SAT, correlated with indexes of JNK signaling activity, IL6, waist-to-hip ratio and hsCRP. In vitro, WNT5A promoted the expression of IL6 in human preadipocytes. In conclusion, elevated non-canonical WNT5A signaling in VAT contributes to the exacerbated IL-6 production in this depot and the low-grade systemic inflammation typically associated with visceral adiposity.


Asunto(s)
Regulación de la Expresión Génica , Paniculitis/metabolismo , Grasa Subcutánea/metabolismo , Vía de Señalización Wnt , Adulto , Femenino , Humanos , Inflamación/metabolismo , Inflamación/patología , Masculino , Paniculitis/patología , Grasa Subcutánea/patología
8.
J Vis Exp ; (127)2017 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-28994775

RESUMEN

While obesity is closely linked to the development of metabolic and cardiovascular disease, little is known about mechanisms that govern these processes. It is hypothesized that pro-atherogenic mediators released from fat tissues particularly in association with central/visceral adiposity may promote pathogenic vascular changes locally and systemically, and the notion that cardiovascular disease may be the consequence of adipose tissue dysfunction continues to evolve. Here, we describe a unique method of videomicroscopy that involves analysis of vasodilator and vasoconstrictor responses of intact small human arterioles removed from the adipose depot of living human subjects. Videomicroscopy is used to examine functional properties of isolated microvessels in response to pharmacological or physiological stimuli using a pressured system that mimics in vivo conditions. The technique is a useful approach to gain understanding of the pathophysiology and molecular mechanisms that contribute to vascular dysfunction locally within the adipose tissue milieu. Moreover, abnormalities in the adipose tissue microvasculature have also been linked with systemic diseases. We applied this technique to examine depot-specific vascular responses in obese subjects. We assessed endothelium-dependent vasodilation to both increased flow and acetylcholine in adipose arterioles (50 - 350 µm internal diameter, 2 - 3 mm in length) isolated from two different adipose depots during bariatric surgery from the same individual. We demonstrated that arterioles from visceral fat exhibit impaired endothelium-dependent vasodilation compared to vessels isolated from the subcutaneous depot. The findings suggest that the visceral microenvironment is associated with vascular endothelial dysfunction which may be relevant to clinical observation linking increased visceral adiposity to systemic disease mechanisms. The videomicroscopy technique can be used to examine vascular phenotypes from different fat depots as well as compare findings across individuals with different degrees of obesity and metabolic dysfunction. The method can also be used to examine vascular responses longitudinally in response to clinical interventions.


Asunto(s)
Tejido Adiposo/patología , Microscopía por Video/métodos , Femenino , Humanos , Masculino
9.
Am J Physiol Heart Circ Physiol ; 313(1): H200-H206, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28411232

RESUMEN

Experimental studies have suggested that Wingless-related integration site 5A (WNT5A) is a proinflammatory secreted protein that is associated with metabolic dysfunction in obesity. Impaired angiogenesis in fat depots has been implicated in the development of adipose tissue capillary rarefaction, hypoxia, inflammation, and metabolic dysfunction. We have recently demonstrated that impaired adipose tissue angiogenesis is associated with overexpression of antiangiogenic factor VEGF-A165b in human fat and the systemic circulation. In the present study, we postulated that upregulation of WNT5A is associated with angiogenic dysfunction and examined its role in regulating VEGF-A165b expression in human obesity. We biopsied subcutaneous and visceral adipose tissue from 38 obese individuals (body mass index: 44 ± 7 kg/m2, age: 37 ± 11 yr) during planned bariatric surgery and characterized depot-specific protein expression of VEGF-A165b and WNT5A using Western blot analysis. In both subcutaneous and visceral fat, VEGF-A165b expression correlated strongly with WNT5A protein (r = 0.9, P < 0.001). In subcutaneous adipose tissue where angiogenic capacity is greater than in the visceral depot, exogenous human recombinant WNT5A increased VEGF-A165b expression in both whole adipose tissue and isolated vascular endothelial cell fractions (P < 0.01 and P < 0.05, respectively). This was associated with markedly blunted angiogenic capillary sprout formation in human fat pad explants. Moreover, recombinant WNT5A increased secretion of soluble fms-like tyrosine kinase-1, a negative regulator of angiogenesis, in the sprout media (P < 0.01). Both VEGF-A165b-neutralizing antibody and secreted frizzled-related protein 5, which acts as a decoy receptor for WNT5A, significantly improved capillary sprout formation and reduced soluble fms-like tyrosine kinase-1 production (P < 0.05). We demonstrated a significant regulatory nexus between WNT5A and antiangiogenic VEGF-A165b in the adipose tissue of obese subjects that was linked to angiogenic dysfunction. Elevated WNT5A expression in obesity may function as a negative regulator of angiogenesis.NEW & NOTEWORTHY Wingless-related integration site 5a (WNT5A) negatively regulates adipose tissue angiogenesis via VEGF-A165b in human obesity.


Asunto(s)
Tejido Adiposo/irrigación sanguínea , Tejido Adiposo/fisiopatología , Inhibidores de la Angiogénesis/metabolismo , Neovascularización Patológica/fisiopatología , Obesidad/fisiopatología , Proteína Wnt-5a/metabolismo , Adulto , Femenino , Humanos , Masculino , Transcriptoma , Factor A de Crecimiento Endotelial Vascular/metabolismo
10.
Atherosclerosis ; 247: 207-17, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26926601

RESUMEN

BACKGROUND: Endothelial dysfunction contributes to cardiovascular disease in diabetes mellitus. Autophagy is a multistep mechanism for the removal of damaged proteins and organelles from the cell. Under diabetic conditions, inadequate autophagy promotes cellular dysfunction and insulin resistance in non-vascular tissue. We hypothesized that impaired autophagy contributes to endothelial dysfunction in diabetes mellitus. METHODS AND RESULTS: We measured autophagy markers and endothelial nitric oxide synthase (eNOS) activation in freshly isolated endothelial cells from diabetic subjects (n = 45) and non-diabetic controls (n = 41). p62 levels were higher in cells from diabetics (34.2 ± 3.6 vs. 20.0 ± 1.6, P = 0.001), indicating reduced autophagic flux. Bafilomycin inhibited insulin-induced activation of eNOS (64.7 ± 22% to -47.8 ± 8%, P = 0.04) in cells from controls, confirming that intact autophagy is necessary for eNOS signaling. In endothelial cells from diabetics, activation of autophagy with spermidine restored eNOS activation, suggesting that impaired autophagy contributes to endothelial dysfunction (P = 0.01). Indicators of autophagy initiation including the number of LC3-bound puncta and beclin 1 expression were similar in diabetics and controls, whereas an autophagy terminal phase indicator, the lysosomal protein Lamp2a, was higher in diabetics. In endothelial cells under diabetic conditions, the beneficial effect of spermidine on eNOS activation was blocked by autophagy inhibitors bafilomycin or 3-methyladenine. Blocking the terminal stage of autophagy with bafilomycin increased p62 (P = 0.01) in cells from diabetics to a lesser extent than in cells from controls (P = 0.04), suggesting ongoing, but inadequate autophagic clearance. CONCLUSION: Inadequate autophagy contributes to endothelial dysfunction in patients with diabetes and may be a target for therapy of diabetic vascular disease.


Asunto(s)
Autofagia/efectos de los fármacos , Diabetes Mellitus Tipo 2/patología , Angiopatías Diabéticas/patología , Células Endoteliales/efectos de los fármacos , Óxido Nítrico/metabolismo , Transducción de Señal/efectos de los fármacos , Espermidina/farmacología , Adenosina/análogos & derivados , Adenosina/farmacología , Adulto , Anciano , Biomarcadores/metabolismo , Estudios de Casos y Controles , Separación Celular/métodos , Células Cultivadas , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/fisiopatología , Angiopatías Diabéticas/sangre , Angiopatías Diabéticas/fisiopatología , Angiopatías Diabéticas/prevención & control , Células Endoteliales/metabolismo , Células Endoteliales/patología , Femenino , Humanos , Macrólidos/farmacología , Masculino , Persona de Mediana Edad , Óxido Nítrico Sintasa de Tipo III/metabolismo
11.
Arterioscler Thromb Vasc Biol ; 36(3): 561-9, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26800561

RESUMEN

OBJECTIVE: Endothelial dysfunction is linked to insulin resistance, inflammatory activation, and increased cardiovascular risk in diabetes mellitus; however, the mechanisms remain incompletely understood. Recent studies have identified proinflammatory signaling of wingless-type family member (Wnt) 5a through c-jun N-terminal kinase (JNK) as a regulator of metabolic dysfunction with potential relevance to vascular function. We sought to gain evidence that increased activation of Wnt5a-JNK signaling contributes to impaired endothelial function in patients with diabetes mellitus. APPROACH AND RESULTS: We measured flow-mediated dilation of the brachial artery and characterized freshly isolated endothelial cells by protein expression, eNOS activation, and nitric oxide production in 85 subjects with type 2 diabetes mellitus (n=42) and age- and sex-matched nondiabetic controls (n=43) and in human aortic endothelial cells treated with Wnt5a. Endothelial cells from patients with diabetes mellitus displayed 1.3-fold higher Wnt5a levels (P=0.01) along with 1.4-fold higher JNK activation (P<0.01) without a difference in total JNK levels. Higher JNK activation was associated with lower flow-mediated dilation, consistent with endothelial dysfunction (r=0.53, P=0.02). Inhibition of Wnt5a and JNK signaling restored insulin and A23187-mediated eNOS activation and improved nitric oxide production in endothelial cells from patients with diabetes mellitus. In endothelial cells from nondiabetic controls, rWnt5a treatment inhibited eNOS activation replicating the diabetic endothelial phenotype. In human aortic endothelial cells, Wnt5a-induced impairment of eNOS activation and nitric oxide production was reversed by Wnt5a and JNK inhibition. CONCLUSIONS: Our findings demonstrate that noncanonical Wnt5a signaling and JNK activity contribute to vascular insulin resistance and endothelial dysfunction and may represent a novel therapeutic opportunity to protect the vasculature in patients with diabetes mellitus.


Asunto(s)
Arteria Braquial/enzimología , Diabetes Mellitus Tipo 2/enzimología , Células Endoteliales/enzimología , Endotelio Vascular/enzimología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Vasodilatación , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , Adulto , Anciano , Arteria Braquial/efectos de los fármacos , Arteria Braquial/fisiopatología , Estudios de Casos y Controles , Células Cultivadas , Diabetes Mellitus Tipo 2/fisiopatología , Células Endoteliales/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/fisiopatología , Activación Enzimática , Femenino , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Masculino , Persona de Mediana Edad , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Estrés Oxidativo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/farmacología , Vasodilatación/efectos de los fármacos , Proteínas Wnt/antagonistas & inhibidores , Proteínas Wnt/farmacología , Vía de Señalización Wnt/efectos de los fármacos , Proteína Wnt-5a
12.
Mediators Inflamm ; 2015: 106237, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26663986

RESUMEN

BACKGROUND: Dysregulated lipolysis has been implicated in mechanisms of cardiometabolic disease and inflammation in obesity. PURPOSE: We sought to examine the effect of bariatric weight loss on adipose tissue lipolytic gene expression and their relationship to systemic metabolic parameters in obese subjects. METHODS/RESULTS: We biopsied subcutaneous adipose tissue in 19 obese individuals (BMI 42 ± 5 kg/m(2), 79% female) at baseline and after a mean period of 8 ± 5 months (range 3-15 months) following bariatric surgery. We performed adipose tissue mRNA expression of proteins involved in triglyceride hydrolysis and correlated their weight loss induced alterations with systemic parameters associated with cardiovascular disease risk. mRNA transcripts of adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL), and lipid droplet proteins comparative gene identification 58 (CGI-58) and perilipin increased significantly after weight loss (p < 0.05 for all). ATGL expression correlated inversely with plasma triglyceride (TG), hemoglobin A1C (HbA1C), and glucose, and HSL expression correlated negatively with glucose, while CGI-58 was inversely associated with HbA1C. CONCLUSION: We observed increased expression of adipose tissue lipolytic genes following bariatric weight loss which correlated inversely with systemic markers of lipid and glucose metabolism. Functional alterations in lipolysis in human adipose tissue may play a role in shaping cardiometabolic phenotypes in human obesity.


Asunto(s)
Tejido Adiposo/metabolismo , Cirugía Bariátrica , Lipólisis , Obesidad/cirugía , Transcriptoma , Femenino , Humanos , Lipasa/genética , Masculino , Obesidad/metabolismo , Esterol Esterasa/genética , Pérdida de Peso
13.
Arterioscler Thromb Vasc Biol ; 35(6): 1498-506, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25908760

RESUMEN

OBJECTIVE: Increased visceral adiposity has been closely linked to insulin resistance, endothelial dysfunction, and cardiometabolic disease in obesity, but pathophysiological mechanisms are poorly understood. We sought to investigate mechanisms of vascular insulin resistance by characterizing depot-specific insulin responses and gain evidence that altered functionality of transcription factor forkhead box O-1 (FOXO-1) may play an important role in obesity-related endothelial dysfunction. APPROACH AND RESULTS: We intraoperatively collected paired subcutaneous and visceral adipose tissue samples from 56 severely obese (body mass index, 43 ± 7 kg/m(2)) and 14 nonobese subjects during planned surgical operations, and characterized depot-specific insulin-mediated responses using Western blot and quantitative immunofluorescence techniques. Insulin signaling via phosphorylation of FOXO-1 and consequent endothelial nitric oxide synthase stimulation was selectively impaired in the visceral compared with subcutaneous adipose tissue and endothelial cells of obese subjects. In contrast, tissue actions of insulin were preserved in nonobese individuals. Pharmacological antagonism with AS1842856 and biological silencing using small interfering RNA-mediated FOXO-1 knockdown reversed insulin resistance and restored endothelial nitric oxide synthase activation in the obese. CONCLUSIONS: We observed profound endothelial insulin resistance in the visceral adipose tissue of obese humans which improved with FOXO-1 inhibition. FOXO-1 modulation may represent a novel therapeutic target to diminish vascular insulin resistance. In addition, characterization of endothelial insulin resistance in the adipose microenvironment may provide clues to mechanisms of systemic disease in human obesity.


Asunto(s)
Endotelio Vascular/fisiopatología , Factores de Transcripción Forkhead/metabolismo , Resistencia a la Insulina/fisiología , Obesidad/fisiopatología , Adulto , Preparaciones de Acción Retardada , Células Endoteliales/metabolismo , Activación Enzimática/efectos de los fármacos , Femenino , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/antagonistas & inhibidores , Humanos , Insulina/farmacología , Masculino , Persona de Mediana Edad , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosforilación , Quinolonas/farmacología
14.
Diabetes ; 64(4): 1235-48, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25352637

RESUMEN

Adipose tissue dysfunction plays a pivotal role in the development of insulin resistance in obese individuals. Cell culture studies and gain-of-function mouse models suggest that canonical Wnt proteins modulate adipose tissue expansion. However, no genetic evidence supports a role for endogenous Wnt proteins in adipose tissue dysfunction, and the role of noncanonical Wnt signaling remains largely unexplored. Here we provide evidence from human, mouse, and cell culture studies showing that Wnt5a-mediated, noncanonical Wnt signaling contributes to obesity-associated metabolic dysfunction by increasing adipose tissue inflammation. Wnt5a expression is significantly upregulated in human visceral fat compared with subcutaneous fat in obese individuals. In obese mice, Wnt5a ablation ameliorates insulin resistance, in parallel with reductions in adipose tissue inflammation. Conversely, Wnt5a overexpression in myeloid cells augments adipose tissue inflammation and leads to greater impairments in glucose homeostasis. Wnt5a ablation or overexpression did not affect fat mass or adipocyte size. Mechanistically, Wnt5a promotes the expression of proinflammatory cytokines by macrophages in a Jun NH2-terminal kinase-dependent manner, leading to defective insulin signaling in adipocytes. Exogenous interleukin-6 administration restores insulin resistance in obese Wnt5a-deficient mice, suggesting a central role for this cytokine in Wnt5a-mediated metabolic dysfunction. Taken together, these results demonstrate that noncanonical Wnt signaling contributes to obesity-induced insulin resistance independent of adipose tissue expansion.


Asunto(s)
Grasa Intraabdominal/metabolismo , Obesidad/metabolismo , Grasa Subcutánea/metabolismo , Vía de Señalización Wnt/fisiología , Animales , Glucosa/metabolismo , Humanos , Inflamación/metabolismo , Resistencia a la Insulina , Macrófagos/metabolismo , Ratones , Fosforilación
15.
Circulation ; 130(13): 1072-80, 2014 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-25116954

RESUMEN

BACKGROUND: Experimental studies suggest that visceral adiposity and adipose tissue dysfunction play a central role in obesity-related cardiometabolic complications. Impaired angiogenesis in fat has been implicated in the development of adipose tissue hypoxia, capillary rarefaction, inflammation, and metabolic dysregulation, but pathophysiological mechanisms remain unknown. In this study, we examined the role of a novel antiangiogenic isoform of vascular endothelial growth factor-A (VEGF-A), VEGF-A165b, in human obesity. METHODS AND RESULTS: We biopsied paired subcutaneous and visceral adipose tissue in 40 obese subjects (body mass index, 45±8 kg/m(2); age, 45±11 years) during bariatric surgery and characterized depot-specific adipose tissue angiogenic capacity using an established ex vivo assay. Visceral adipose tissue exhibited significantly blunted angiogenic growth compared with subcutaneous fat (P<0.001) that was associated with marked tissue upregulation of VEGF-A165b (P=0.004). The extent of VEGF-A165b expression correlated negatively with angiogenic growth (r=-0.6, P=0.006). Although recombinant VEGF-A165b significantly impaired angiogenesis, targeted inhibition of VEGF-A165b with neutralizing antibody stimulated fat pad neovascularization and restored VEGF receptor activation. Blood levels of VEGF-A165b were significantly higher in obese subjects compared with lean control subjects (P=0.02), and surgical weight loss induced a marked decline in serumVEGF-A165b (P=0.003). CONCLUSIONS: We demonstrate that impaired adipose tissue angiogenesis is associated with overexpression of a novel antiangiogenic factor, VEGF-A165b, that may play a pathogenic role in human adiposopathy. Moreover, systemic upregulation of VEGF-A165b in circulating blood may have wider-ranging implications beyond the adipose milieu. VEGF-A165b may represent a novel area of investigation to gain further understanding of mechanisms that modulate the cardiometabolic consequences of obesity.


Asunto(s)
Inhibidores de la Angiogénesis/fisiología , Obesidad/fisiopatología , Factor A de Crecimiento Endotelial Vascular/fisiología , Adulto , Biopsia , Femenino , Humanos , Grasa Intraabdominal/patología , Grasa Intraabdominal/fisiopatología , Masculino , Persona de Mediana Edad , Obesidad/patología , Isoformas de Proteínas/fisiología , Estudios Retrospectivos , Transducción de Señal/fisiología , Grasa Subcutánea/patología , Grasa Subcutánea/fisiopatología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/fisiología
16.
Obesity (Silver Spring) ; 22(2): 349-55, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23640904

RESUMEN

OBJECTIVE: The purpose of this study was to determine whether cyclooxygenase inhibition improves vascular dysfunction of adipose microvessels from obese humans. DESIGN AND METHODS: In 20 obese subjects (age 37 ± 12 years, BMI 47 ± 8 kg/m²), subcutaneous and visceral fat were collected during bariatric surgery and characterized for adipose depot-specific gene expression, endothelial cell phenotype, and microvascular function. Vasomotor function was assessed in response to endothelium-dependent agonists using videomicroscopy of small arterioles from fat. RESULTS: Arterioles from visceral fat exhibited impaired endothelium-dependent, acetylcholine-mediated vasodilation, compared to the subcutaneous depot (P < 0.001). Expression of mRNA transcripts relevant to the cyclooxygenase pathway was upregulated in visceral compared to subcutaneous fat. Pharmacological inhibition of cyclooxygenase with indomethacin improved endothelium-dependent vasodilator function of arterioles from visceral fat by twofold (P = 0.01), whereas indomethacin had no effect in the subcutaneous depot. Indomethacin increased activation via serine-1177 phosphorylation of endothelial nitric oxide synthase in response to acetylcholine in endothelial cells from visceral fat. Inhibition of endothelial nitric oxide synthase with N(ω)-nitro-L-arginine methyl ester abrogated the effects of cyclooxygenase-inhibition suggesting that vascular actions of indomethacin were related to increased nitric oxide bioavailability. CONCLUSIONS: Our findings suggest that cyclooxygenase-mediated vasoconstrictor prostanoids partly contribute to endothelial dysfunction of visceral adipose arterioles in human obesity.


Asunto(s)
Arteriolas/efectos de los fármacos , Inhibidores de la Ciclooxigenasa/farmacología , Endotelio Vascular/efectos de los fármacos , Grasa Intraabdominal/efectos de los fármacos , Obesidad/tratamiento farmacológico , Vasoconstricción/efectos de los fármacos , Sistema Vasomotor/efectos de los fármacos , Adulto , Arteriolas/metabolismo , Arteriolas/patología , Arteriolas/fisiopatología , Índice de Masa Corporal , Células Cultivadas , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Endotelio Vascular/fisiopatología , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Grasa Intraabdominal/irrigación sanguínea , Grasa Intraabdominal/metabolismo , Grasa Intraabdominal/patología , Masculino , Microscopía por Video , Óxido Nítrico Sintasa de Tipo III/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo III/química , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Obesidad/metabolismo , Obesidad/patología , Obesidad/fisiopatología , Fosforilación/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Grasa Subcutánea Abdominal/irrigación sanguínea , Grasa Subcutánea Abdominal/efectos de los fármacos , Grasa Subcutánea Abdominal/metabolismo , Grasa Subcutánea Abdominal/patología , Técnicas de Cultivo de Tejidos , Sistema Vasomotor/metabolismo , Sistema Vasomotor/patología , Sistema Vasomotor/fisiopatología
17.
J Am Coll Cardiol ; 62(24): 2297-305, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-23978693

RESUMEN

OBJECTIVES: The aim of this study was to determine whether the effects of weight loss on arterial function are differentially modified by insulin status. BACKGROUND: Clinical studies suggest that plasma insulin levels may predict the extent of cardiovascular benefit achieved with weight loss in obese individuals, but mechanisms are currently unknown. METHODS: We prospectively followed 208 overweight or obese patients (body mass index [BMI] ≥25 kg/m(2)) receiving medical/dietary (48%) or bariatric surgical (52%) weight-loss treatment during a median period of 11.7 months (interquartile range: 4.6 to 13 months). We measured plasma metabolic parameters and vascular endothelial function using ultrasound at baseline and following weight-loss intervention and stratified analyses by median plasma insulin levels. RESULTS: Patients age 45 ± 1 years, with BMI 45 ± 9 kg/m(2), experienced 14 ± 14% weight loss during the study period. In individuals with higher baseline plasma insulin levels (above median >12 µIU/ml; n = 99), ≥10% weight loss (compared with <10%) significantly improved brachial artery macrovascular flow-mediated vasodilation and microvascular reactive hyperemia (p < 0.05 for all). By contrast, vascular function did not change significantly in the lower insulin group (≤12 µIU/ml; n = 109) despite a similar degree of weight loss. In analyses using a 5% weight loss cut point, only microvascular responses improved in the higher insulin group (p = 0.02). CONCLUSIONS: Insulin status is an important determinant of the positive effect of weight reduction on vascular function with hyperinsulinemic patients deriving the greatest benefit. Integrated improvement in both microvascular and macrovascular function was associated with ≥10% weight loss. Reversal of insulin resistance and endothelial dysfunction may represent key therapeutic targets for cardiovascular risk reduction in obesity.


Asunto(s)
Arteria Braquial/diagnóstico por imagen , Insulina/sangre , Obesidad/terapia , Sobrepeso/terapia , Pérdida de Peso , Velocidad del Flujo Sanguíneo/fisiología , Índice de Masa Corporal , Colesterol/sangre , Femenino , Estudios de Seguimiento , Hemoglobina Glucada/análisis , Homeostasis/fisiología , Humanos , Hiperemia/fisiopatología , Masculino , Microcirculación/fisiología , Persona de Mediana Edad , Estudios Prospectivos , Flujo Sanguíneo Regional/fisiología , Triglicéridos/sangre , Ultrasonografía Doppler de Pulso
18.
PLoS One ; 7(7): e40584, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22848385

RESUMEN

BACKGROUND: High fat diet and its induced changes in glucose homeostasis, inflammation and obesity continue to be an epidemic in developed countries. The A2b adenosine receptor (A2bAR) is known to regulate inflammation. We used a diet-induced obesity murine knockout model to investigate the role of this receptor in mediating metabolic homeostasis, and correlated our findings in obese patient samples. METHODOLOGY/PRINCIPAL FINDINGS: Administration of high fat, high cholesterol diet (HFD) for sixteen weeks vastly upregulated the expression of the A2bAR in control mice, while A2bAR knockout (KO) mice under this diet developed greater obesity and hallmarks of type 2 diabetes (T2D), assessed by delayed glucose clearance and augmented insulin levels compared to matching control mice. We identified a novel link between the expression of A2bAR, insulin receptor substrate 2 (IRS-2), and insulin signaling, determined by Western blotting for IRS-2 and tissue Akt phosphorylation. The latter is impaired in tissues of A2bAR KO mice, along with a greater inflammatory state. Additional mechanisms involved include A2bAR regulation of SREBP-1 expression, a repressor of IRS-2. Importantly, pharmacological activation of the A2bAR by injection of the A2bAR ligand BAY 60-6583 for four weeks post HFD restores IRS-2 levels, and ameliorates T2D. Finally, in obese human subjects A2bAR expression correlates strongly with IRS-2 expression. CONCLUSIONS/SIGNIFICANCE: Our study identified the A2bAR as a significant regulator of HFD-induced hallmarks of T2D, thereby pointing to its therapeutic potential.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Homeostasis , Obesidad/metabolismo , Receptor de Adenosina A2B/metabolismo , Agonistas del Receptor de Adenosina A2/farmacología , Adulto , Aminopiridinas/farmacología , Animales , Colesterol/efectos adversos , Colesterol/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Grasas de la Dieta/efectos adversos , Grasas de la Dieta/farmacocinética , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Humanos , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Insulina/genética , Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina/biosíntesis , Proteínas Sustrato del Receptor de Insulina/genética , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Obesidad/tratamiento farmacológico , Obesidad/genética , Obesidad/patología , Receptor de Adenosina A2B/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/biosíntesis , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética
19.
Arterioscler Thromb Vasc Biol ; 32(2): 467-73, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22095978

RESUMEN

OBJECTIVE: The purpose of this study was to characterize the relationship between adipose tissue phenotype and depot-specific microvascular function in fat. METHODS AND RESULTS: In 30 obese subjects (age 42±11 years, body mass index 46±11 kg/m(2)) undergoing bariatric surgery, we intraoperatively collected visceral and subcutaneous adipose tissue and characterized depot-specific adipose phenotypes. We assessed vasomotor function of the adipose microvasculature using videomicroscopy of small arterioles (75-250 µm) isolated from different fat compartments. Endothelium-dependent, acetylcholine-mediated vasodilation was severely impaired in visceral arterioles, compared to the subcutaneous depot (P<0.001 by ANOVA). Nonendothelium dependent responses to papaverine and nitroprusside were similar. Endothelial nitric oxide synthase inhibition with N(ω)-nitro-l-arginine methyl ester reduced subcutaneous vasodilation but had no effect on severely blunted visceral arteriolar responses. Visceral fat exhibited greater expression of proinflammatory, oxidative stress-related, hypoxia-induced, and proangiogenic genes; increased activated macrophage populations; and had a higher capacity for cytokine production ex vivo. CONCLUSIONS: Our findings provide clinical evidence that the visceral microenvironment may be intrinsically toxic to arterial health providing a potential mechanism by which visceral adiposity burden is linked to atherosclerotic vascular disease. Our findings also support the evolving concept that both adipose tissue quality and quantity may play significant roles in shaping cardiovascular phenotypes in human obesity.


Asunto(s)
Arteriolas/fisiopatología , Grasa Intraabdominal/irrigación sanguínea , Obesidad/fisiopatología , Grasa Subcutánea/irrigación sanguínea , Adulto , Arteriolas/efectos de los fármacos , Cirugía Bariátrica , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/fisiopatología , Femenino , Humanos , Grasa Intraabdominal/fisiopatología , Masculino , Persona de Mediana Edad , Nitroprusiato/farmacología , Obesidad/cirugía , Papaverina/farmacología , Grasa Subcutánea/fisiopatología , Vasodilatadores/farmacología , Sistema Vasomotor/efectos de los fármacos , Sistema Vasomotor/fisiopatología
20.
J Am Coll Cardiol ; 58(3): 232-7, 2011 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-21737012

RESUMEN

OBJECTIVES: The purpose of this study was to determine whether obese individuals with reduced adipose tissue inflammation exhibit a more favorable cardiovascular risk profile. BACKGROUND: Obesity is associated with a low-grade state of chronic inflammation that might be causally related to cardiometabolic disease. METHODS: With immunohistochemistry, we categorized obese individuals dichotomously as having inflamed fat (n = 78) or noninflamed fat (n = 31) on the basis of the presence (+) or absence (-) of macrophage crown-like structures (CLS) in subcutaneous abdominal fat biopsy samples. We compared their metabolic, vascular, and adipose tissue characteristics with lean subjects (n = 17). RESULTS: Inflamed CLS+ obese individuals displayed higher plasma insulin, homeostasis model assessment, triglycerides, glucose, blood pressure, high-sensitivity C-reactive protein, low-density lipoprotein cholesterol, lower high-density lipoprotein cholesterol, and brachial artery flow-mediated dilation compared with lean subjects (p < 0.05). Adipose messenger ribonucleic acid expression of inflammatory genes including CD68, leptin, matrix metalloproteinase-9, CD163, and CD8A were significantly greater and vascular endothelial growth factor was lower in the CLS+ group (p < 0.05). In contrast, obese subjects with noninflamed fat exhibited a mixed clinical phenotype with lower insulin resistance, reduced proatherogenic gene expression, and preserved vascular function as in lean subjects. In multiple linear regression adjusting for age and sex, CLS status (beta = -0.28, p = 0.008) and waist circumference (beta = -0.25, p = 0.03) were independent predictors of flow-mediated dilation. CONCLUSIONS: These findings lend support to the novel concept that factors in addition to absolute weight burden, such as qualitative features of adipose tissue, might be important determinants of cardiovascular disease. Therapeutic modulation of the adipose phenotype might represent a target for treatment in obesity.


Asunto(s)
Enfermedades Cardiovasculares/sangre , Síndrome Metabólico/sangre , Obesidad/sangre , Obesidad/patología , Fenotipo , Grasa Subcutánea Abdominal/patología , Adulto , Glucemia/análisis , Presión Sanguínea , Índice de Masa Corporal , Arteria Braquial/fisiopatología , Proteína C-Reactiva/análisis , Enfermedades Cardiovasculares/complicaciones , Enfermedades Cardiovasculares/fisiopatología , Colesterol/sangre , Femenino , Humanos , Inflamación , Insulina/sangre , Macrófagos/patología , Masculino , Síndrome Metabólico/complicaciones , Obesidad/complicaciones , Obesidad/fisiopatología , Sobrepeso/patología , Triglicéridos/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA