Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Bone Miner Res ; 38(9): 1350-1363, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37436066

RESUMEN

Genome-wide association studies (GWASs) have advanced our understanding of the genetics of osteoporosis; however, the challenge has been converting associations to causal genes. Studies have utilized transcriptomics data to link disease-associated variants to genes, but few population transcriptomics data sets have been generated on bone at the single-cell level. To address this challenge, we profiled the transcriptomes of bone marrow-derived stromal cells (BMSCs) cultured under osteogenic conditions from five diversity outbred (DO) mice using single-cell RNA-seq (scRNA-seq). The goal of the study was to determine if BMSCs could serve as a model to generate cell type-specific transcriptomic profiles of mesenchymal lineage cells from large populations of mice to inform genetic studies. By enriching for mesenchymal lineage cells in vitro, coupled with pooling of multiple samples and downstream genotype deconvolution, we demonstrate the scalability of this model for population-level studies. We demonstrate that dissociation of BMSCs from a heavily mineralized matrix had little effect on viability or their transcriptomic signatures. Furthermore, we show that BMSCs cultured under osteogenic conditions are diverse and consist of cells with characteristics of mesenchymal progenitors, marrow adipogenic lineage precursors (MALPs), osteoblasts, osteocyte-like cells, and immune cells. Importantly, all cells were similar from a transcriptomic perspective to cells isolated in vivo. We employed scRNA-seq analytical tools to confirm the biological identity of profiled cell types. SCENIC was used to reconstruct gene regulatory networks (GRNs), and we observed that cell types show GRNs expected of osteogenic and pre-adipogenic lineage cells. Further, CELLECT analysis showed that osteoblasts, osteocyte-like cells, and MALPs captured a significant component of bone mineral density (BMD) heritability. Together, these data suggest that BMSCs cultured under osteogenic conditions coupled with scRNA-seq can be used as a scalable and biologically informative model to generate cell type-specific transcriptomic profiles of mesenchymal lineage cells in large populations. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Ratones de Colaboración Cruzada , Células Madre Mesenquimatosas , Ratones , Animales , Ratones de Colaboración Cruzada/genética , Diferenciación Celular/genética , Transcriptoma/genética , Estudio de Asociación del Genoma Completo , Análisis de Expresión Génica de una Sola Célula , Células Cultivadas , Células Madre Mesenquimatosas/metabolismo , Osteogénesis/genética , Células del Estroma/metabolismo , Células de la Médula Ósea
2.
Hum Mol Genet ; 31(R1): R123-R136, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-35960994

RESUMEN

Aberrant splicing underlies many human diseases, including cancer, cardiovascular diseases and neurological disorders. Genome-wide mapping of splicing quantitative trait loci (sQTLs) has shown that genetic regulation of alternative splicing is widespread. However, identification of the corresponding isoform or protein products associated with disease-associated sQTLs is challenging with short-read RNA-seq, which cannot precisely characterize full-length transcript isoforms. Furthermore, contemporary sQTL interpretation often relies on reference transcript annotations, which are incomplete. Solutions to these issues may be found through integration of newly emerging long-read sequencing technologies. Long-read sequencing offers the capability to sequence full-length mRNA transcripts and, in some cases, to link sQTLs to transcript isoforms containing disease-relevant protein alterations. Here, we provide an overview of sQTL mapping approaches, the use of long-read sequencing to characterize sQTL effects on isoforms, the linkage of RNA isoforms to protein-level functions and comment on future directions in the field. Based on recent progress, long-read RNA sequencing promises to be part of the human disease genetics toolkit to discover and treat protein isoforms causing rare and complex diseases.


Asunto(s)
Genética Humana , Isoformas de ARN , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de ARN/genética , ARN Mensajero/genética , Análisis de Secuencia de ARN
3.
MEDICC Rev ; 24(2): 35-42, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35648061

RESUMEN

INTRODUCTION: Most previous studies have examined the effects of acute psychological stress in humans based on select gene panels. The genomic approach may help identify novel genes that underline biological mechanisms of acute psychological stress responses. OBJECTIVE: This exploratory study aimed to investigate genome-wide transcriptional activity changes in response to acute psychological stress. METHODS: The sample included 40 healthy women (mean age 31.4 ± 11.6 years). Twenty-two participants had a stress experience induced by the Trier Social Stress Test (experimental group) and 18 did not (control group). Psychological stress levels and hemodynamic changes were assessed before and after the Trier Social Stress Test. Peripheral blood samples obtained before and after the Trier Social Stress Test were processed for mRNA sequencing. RESULTS: Psychological and hemodynamic stress parameters indicated that the Trier Social Stress Test induced moderate levels of stress in the experimental group. Six genes (HCG26, HCP5, HLA-F, HLA-F-AS1, LOC1019287, and SLC22A16) were up-regulated, and fi ve genes (CA1, FBXO9, SNCA, STRADB, and TRMT12) were down-regulated among those who experienced stress induction, compared with the control group. Nine genes of eleven were linked to endocrine system disorders, neurological disease, and organismal injury and abnormalities. CONCLUSIONS: Of the genes identifi ed in this study, HCP5, SLC22A16, and SNCA genes have previously been proposed as therapeutic targets for cancer and Parkinson disease. Further studies are needed to examine pathological mechanisms through which these genes mediate eff ects of psychological stress on adverse health outcomes. Such studies may ultimately identify therapeutic targets that enhance biological resilience to adverse eff ects of psychological stress.


Asunto(s)
Hidrocortisona , Estrés Psicológico , Adulto , Cuba , Femenino , Humanos , Hidrocortisona/análisis , Hidrocortisona/metabolismo , ARN Mensajero , Estrés Psicológico/genética , Estrés Psicológico/metabolismo , Estrés Psicológico/psicología , Adulto Joven
4.
World J Stem Cells ; 13(9): 1248-1277, 2021 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-34630861

RESUMEN

Injuries to the postnatal skeleton are naturally repaired through successive steps involving specific cell types in a process collectively termed "bone regeneration". Although complex, bone regeneration occurs through a series of well-orchestrated stages wherein endogenous bone stem cells play a central role. In most situations, bone regeneration is successful; however, there are instances when it fails and creates non-healing injuries or fracture nonunion requiring surgical or therapeutic interventions. Transplantation of adult or mesenchymal stem cells (MSCs) defined by the International Society for Cell and Gene Therapy (ISCT) as CD105+CD90+CD73+CD45-CD34-CD14orCD11b-CD79αorCD19-HLA-DR- is being investigated as an attractive therapy for bone regeneration throughout the world. MSCs isolated from adipose tissue, adipose-derived stem cells (ADSCs), are gaining increasing attention since this is the most abundant source of adult stem cells and the isolation process for ADSCs is straightforward. Currently, there is not a single Food and Drug Administration (FDA) approved ADSCs product for bone regeneration. Although the safety of ADSCs is established from their usage in numerous clinical trials, the bone-forming potential of ADSCs and MSCs, in general, is highly controversial. Growing evidence suggests that the ISCT defined phenotype may not represent bona fide osteoprogenitors. Transplantation of both ADSCs and the CD105- sub-population of ADSCs has been reported to induce bone regeneration. Most notably, cells expressing other markers such as CD146, AlphaV, CD200, PDPN, CD164, CXCR4, and PDGFRα have been shown to represent osteogenic sub-population within ADSCs. Amongst other strategies to improve the bone-forming ability of ADSCs, modulation of VEGF, TGF-ß1 and BMP signaling pathways of ADSCs has shown promising results. The U.S. FDA reveals that 73% of Investigational New Drug applications for stem cell-based products rely on CD105 expression as the "positive" marker for adult stem cells. A concerted effort involving the scientific community, clinicians, industries, and regulatory bodies to redefine ADSCs using powerful selection markers and strategies to modulate signaling pathways of ADSCs will speed up the therapeutic use of ADSCs for bone regeneration.

5.
Nat Commun ; 12(1): 3408, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34099702

RESUMEN

Genome-wide association studies (GWASs) for osteoporotic traits have identified over 1000 associations; however, their impact has been limited by the difficulties of causal gene identification and a strict focus on bone mineral density (BMD). Here, we use Diversity Outbred (DO) mice to directly address these limitations by performing a systems genetics analysis of 55 complex skeletal phenotypes. We apply a network approach to cortical bone RNA-seq data to discover 66 genes likely to be causal for human BMD GWAS associations, including the genes SERTAD4 and GLT8D2. We also perform GWAS in the DO for a wide-range of bone traits and identify Qsox1 as a gene influencing cortical bone accrual and bone strength. In this work, we advance our understanding of the genetics of osteoporosis and highlight the ability of the mouse to inform human genetics.


Asunto(s)
Densidad Ósea/genética , Osteoporosis/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Animales , Diferenciación Celular/genética , Ratones de Colaboración Cruzada , Conjuntos de Datos como Asunto , Femenino , Fémur/fisiología , Fluoresceínas/administración & dosificación , Colorantes Fluorescentes/administración & dosificación , Estudio de Asociación del Genoma Completo , Glicosiltransferasas/genética , Humanos , Masculino , Células Madre Mesenquimatosas , Ratones , Ratones Noqueados , Osteoblastos , Osteogénesis/genética , RNA-Seq , Análisis de la Célula Individual
6.
J Bone Miner Res ; 36(8): 1566-1579, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33900658

RESUMEN

Bone metastasis is a complication of prostate cancer in up to 90% of men afflicted with advanced disease. Therapies that reduce androgen exposure remain at the forefront of treatment. However, most prostate cancers transition to a state whereby reducing testicular androgen action becomes ineffective. A common mechanism of this transition is intratumoral production of testosterone (T) using the adrenal androgen precursor dehydroepiandrosterone (DHEA) through enzymatic conversion by 3ß- and 17ß-hydroxysteroid dehydrogenases (3ßHSD and 17ßHSD). Given the ability of prostate cancer to form blastic metastases in bone, we hypothesized that osteoblasts might be a source of androgen synthesis. RNA expression analyses of murine osteoblasts and human bone confirmed that at least one 3ßHSD and 17ßHSD enzyme isoform was expressed, suggesting that osteoblasts are capable of generating androgens from adrenal DHEA. Murine osteoblasts were treated with 100 nM and 1 µM DHEA or vehicle control. Conditioned media from these osteoblasts were assayed for intermediate and active androgens by liquid chromatography-tandem mass spectrometry. As DHEA was consumed, the androgen intermediates androstenediol and androstenedione were generated and subsequently converted to T. Conditioned media of DHEA-treated osteoblasts increased androgen receptor (AR) signaling, prostate-specific antigen (PSA) production, and cell numbers of the androgen-sensitive prostate cancer cell lines C4-2B and LNCaP. DHEA did not induce AR signaling in osteoblasts despite AR expression in this cell type. We describe an unreported function of osteoblasts as a source of T that is especially relevant during androgen-responsive metastatic prostate cancer invasion into bone. © 2021 American Society for Bone and Mineral Research (ASBMR). This article has been contributed to by US Government employees and their work is in the public domain in the USA.


Asunto(s)
Andrógenos , Neoplasias de la Próstata , Animales , Línea Celular Tumoral , Deshidroepiandrosterona , Humanos , Masculino , Ratones , Osteoblastos , Receptores Androgénicos , Testosterona
7.
Int J Mol Sci ; 23(1)2021 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-35008699

RESUMEN

The interleukin-21 receptor (IL-21R) can be upregulated in endothelial cells (EC) from ischemic muscles in mice following hind-limb ischemia (HLI), an experimental peripheral arterial disease (PAD) model, blocking this ligand-receptor pathway-impaired STAT3 activation, angiogenesis, and perfusion recovery. We sought to identify mRNA and microRNA transcripts that were differentially regulated following HLI, based on the ischemic muscle having intact, or reduced, IL-21/IL21R signaling. In this comparison, 200 mRNAs were differentially expressed but only six microRNA (miR)/miR clusters (and among these only miR-30b) were upregulated in EC isolated from ischemic muscle. Next, myoglobin-overexpressing transgenic (MgTG) C57BL/6 mice examined following HLI and IL-21 overexpression displayed greater angiogenesis, better perfusion recovery, and less tissue necrosis, with increased miR-30b expression. In EC cultured under hypoxia serum starvation, knock-down of miR-30b reduced, while overexpression of miR-30b increased IL-21-mediated EC survival and angiogenesis. In Il21r-/- mice following HLI, miR-30b overexpression vs. control improved perfusion recovery, with a reduction of suppressor of cytokine signaling 3, a miR-30b target and negative regulator of STAT3. Together, miR-30b appears both necessary and sufficient for IL21/IL-21R-mediated angiogenesis and may present a new therapeutic option to treat PAD if the IL21R is not available for activation.


Asunto(s)
MicroARNs/metabolismo , Neovascularización Fisiológica/genética , Enfermedad Arterial Periférica/genética , Receptores de Interleucina-21/metabolismo , Animales , Supervivencia Celular/genética , Miembro Posterior/patología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Isquemia/genética , Isquemia/patología , Ratones Transgénicos , MicroARNs/genética , Modelos Biológicos , Familia de Multigenes , Mioglobina/metabolismo , Perfusión , Enfermedad Arterial Periférica/patología , Fosforilación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor de Transcripción STAT3/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Regulación hacia Arriba/genética
8.
J Clin Endocrinol Metab ; 105(12)2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32772088

RESUMEN

CONTEXT: Crosstalk through receptor ligand interactions at the maternal-fetal interface is impacted by fetal sex. This affects placentation in the first trimester and differences in outcomes. Sexually dimorphic signaling at early stages of placentation are not defined. OBJECTIVE: Investigate the impact of fetal sex on maternal-fetal crosstalk. DESIGN: Receptors/ligands at the maternal-fetal surface were identified from sexually dimorphic genes between fetal sexes in the first trimester placenta and defined in each cell type using single-cell RNA-Sequencing (scRNA-Seq). SETTING: Academic institution. SAMPLES: Late first trimester (~10-13 weeks) placenta (fetal) and decidua (maternal) from uncomplicated ongoing pregnancies. MAIN OUTCOME MEASURES: Transcriptomic profiling at tissue and single-cell level; immunohistochemistry of select proteins. RESULTS: We identified 91 sexually dimorphic receptor-ligand pairs across the maternal-fetal interface. We examined fetal sex differences in 5 major cell types (trophoblasts, stromal cells, Hofbauer cells, antigen-presenting cells, and endothelial cells). Ligands from the CC family chemokine ligand (CCL) family were most highly representative in females, with their receptors present on the maternal surface. Sexually dimorphic trophoblast transcripts, Mucin-15 (MUC15) and notum, palmitoleoyl-protein carboxylesterase (NOTUM) were also most highly expressed in syncytiotrophoblasts and extra-villous trophoblasts respectively. Gene Ontology (GO) analysis using sexually dimorphic genes in individual cell types identified cytokine mediated signaling pathways to be most representative in female trophoblasts. Upstream analysis demonstrated TGFB1 and estradiol to affect all cell types, but dihydrotestosterone, produced by the male fetus, was an upstream regulator most significant for the trophoblast population. CONCLUSIONS: Maternal-fetal crosstalk exhibits sexual dimorphism during placentation early in gestation.


Asunto(s)
Intercambio Materno-Fetal/genética , Receptor Cross-Talk/fisiología , Caracteres Sexuales , Decidua/metabolismo , Femenino , Humanos , Placenta/metabolismo , Embarazo , Primer Trimestre del Embarazo , Análisis de Secuencia de ARN , Transcriptoma , Trofoblastos/metabolismo
9.
FASEB J ; 34(6): 7330-7344, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32304342

RESUMEN

Our understanding of the molecular mechanisms underlying adaptations to resistance exercise remains elusive despite the significant biological and clinical relevance. We developed a novel voluntary mouse weightlifting model, which elicits squat-like activities against adjustable load during feeding, to investigate the resistance exercise-induced contractile and metabolic adaptations. RNAseq analysis revealed that a single bout of weightlifting induced significant transcriptome responses of genes that function in posttranslational modification, metabolism, and muscle differentiation in recruited skeletal muscles, which were confirmed by increased expression of fibroblast growth factor-inducible 14 (Fn14), Down syndrome critical region 1 (Dscr1) and Nuclear receptor subfamily 4, group A, member 3 (Nr4a3) genes. Long-term (8 weeks) voluntary weightlifting training resulted in significantly increases of muscle mass, protein synthesis (puromycin incorporation in SUnSET assay) and mTOR pathway protein expression (raptor, 4e-bp-1, and p70S6K proteins) along with enhanced muscle power (specific torque and contraction speed), but not endurance capacity, mitochondrial biogenesis, and fiber type transformation. Importantly, weightlifting training profound improved whole-body glucose clearance and skeletal muscle insulin sensitivity along with enhanced autophagy (increased LC3 and LC3-II/I ratio, and decreased p62/Sqstm1). These data suggest that resistance training in mice promotes muscle adaptation and insulin sensitivity with simultaneous enhancement of autophagy and mTOR pathway.


Asunto(s)
Adaptación Fisiológica/fisiología , Autofagia/fisiología , Resistencia a la Insulina/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Condicionamiento Físico Animal/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Contracción Muscular/fisiología , Biogénesis de Organelos , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo
10.
PLoS Genet ; 15(5): e1008123, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31042701

RESUMEN

Bone mineral density (BMD) is a strong predictor of osteoporotic fracture. It is also one of the most heritable disease-associated quantitative traits. As a result, there has been considerable effort focused on dissecting its genetic basis. Here, we performed a genome-wide association study (GWAS) in a panel of inbred strains to identify associations influencing BMD. This analysis identified a significant (P = 3.1 x 10-12) BMD locus on Chromosome 3@52.5 Mbp that replicated in two separate inbred strain panels and overlapped a BMD quantitative trait locus (QTL) previously identified in a F2 intercross. The association mapped to a 300 Kbp region containing four genes; Gm2447, Gm20750, Cog6, and Lhfp. Further analysis found that Lipoma HMGIC Fusion Partner (Lhfp) was highly expressed in bone and osteoblasts. Furthermore, its expression was regulated by a local expression QTL (eQTL), which overlapped the BMD association. A co-expression network analysis revealed that Lhfp was strongly connected to genes involved in osteoblast differentiation. To directly evaluate its role in bone, Lhfp deficient mice (Lhfp-/-) were created using CRISPR/Cas9. Consistent with genetic and network predictions, bone marrow stromal cells (BMSCs) from Lhfp-/- mice displayed increased osteogenic differentiation. Lhfp-/- mice also had elevated BMD due to increased cortical bone mass. Lastly, we identified SNPs in human LHFP that were associated (P = 1.2 x 10-5) with heel BMD. In conclusion, we used GWAS and systems genetics to identify Lhfp as a regulator of osteoblast activity and bone mass.


Asunto(s)
Huesos/metabolismo , Genoma , Proteínas de Fusión Oncogénica/genética , Osteoblastos/metabolismo , Osteoporosis/genética , Sitios de Carácter Cuantitativo , Tetraspaninas/genética , Animales , Densidad Ósea , Huesos/patología , Diferenciación Celular , Mapeo Cromosómico , Femenino , Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología , Ratones , Ratones Noqueados , Proteínas de Fusión Oncogénica/metabolismo , Osteoblastos/patología , Osteogénesis/genética , Osteoporosis/metabolismo , Osteoporosis/patología , Polimorfismo de Nucleótido Simple
11.
Circulation ; 139(2): 226-242, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30586702

RESUMEN

BACKGROUND: Atherosclerotic occlusions decrease blood flow to the lower limbs, causing ischemia and tissue loss in patients with peripheral artery disease (PAD). No effective medical therapies are currently available to induce angiogenesis and promote perfusion recovery in patients with severe PAD. Clinical trials aimed at inducing vascular endothelial growth factor (VEGF)-A levels, a potent proangiogenic growth factor to induce angiogenesis, and perfusion recovery were not successful. Alternate splicing in the exon-8 of VEGF-A results in the formation of VEGFxxxa (VEGF165a) and VEGFxxxb (VEGF165b) isoforms with existing literature focusing on VEGF165b's role in inhibiting vascular endothelial growth factor receptor 2-dependent angiogenesis. However, we have recently shown that VEGF165b blocks VEGF-A-induced endothelial vascular endothelial growth factor receptor 1 (VEGFR1) activation in ischemic muscle to impair perfusion recovery. Because macrophage-secreted VEGF165b has been shown to decrease angiogenesis in peripheral artery disease, and macrophages were well known to play important roles in regulating ischemic muscle vascular remodeling, we examined the role of VEGF165b in regulating macrophage function in PAD. METHODS: Femoral artery ligation and resection were used as an in vivo preclinical PAD model, and hypoxia serum starvation was used as an in vitro model for PAD. Experiments including laser-Doppler perfusion imaging, adoptive cell transfer to ischemic muscle, immunoblot analysis, ELISAs, immunostainings, flow cytometry, quantitative polymerase chain reaction analysis, and RNA sequencing were performed to determine a role of VEGF165b in regulating macrophage phenotype and function in PAD. RESULTS: First, we found increased VEGF165b expression with increased M1-like macrophages in PAD versus non-PAD (controls) muscle biopsies. Next, using in vitro hypoxia serum starvation, in vivo pre clinical PAD models, and adoptive transfer of VEGF165b-expressing bone marrow-derived macrophages or VEGFR1+/- bone marrow-derived macrophages (M1-like phenotype), we demonstrate that VEGF165b inhibits VEGFR1 activation to induce an M1-like phenotype that impairs ischemic muscle neovascularization. Subsequently, we found S100A8/S100A9 as VEGFR1 downstream regulators of macrophage polarization by RNA-Seq analysis of hypoxia serum starvation-VEGFR1+/+ versus hypoxia serum starvation-VEGFR1+/- bone marrow-derived macrophages. CONCLUSIONS: In our current study, we demonstrate that increased VEGF165b expression in macrophages induces an antiangiogenic M1-like phenotype that directly impairs angiogenesis. VEGFR1 inhibition by VEGF165b results in S100A8/S100A9-mediated calcium influx to induce an M1-like phenotype that impairs ischemic muscle revascularization and perfusion recovery.


Asunto(s)
Calgranulina A/metabolismo , Calgranulina B/metabolismo , Células Endoteliales/metabolismo , Isquemia/metabolismo , Macrófagos/metabolismo , Músculo Esquelético/irrigación sanguínea , Neovascularización Fisiológica , Enfermedad Arterial Periférica/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Señalización del Calcio , Células Cultivadas , Modelos Animales de Enfermedad , Células Endoteliales/patología , Humanos , Isquemia/patología , Isquemia/fisiopatología , Macrófagos/patología , Ratones de la Cepa 129 , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Comunicación Paracrina , Enfermedad Arterial Periférica/patología , Enfermedad Arterial Periférica/fisiopatología , Fenotipo , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo
12.
J Clin Endocrinol Metab ; 104(4): 1005-1019, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30445606

RESUMEN

Context: Maternal metabolic status reflects underlying physiological changes in the maternal-placental-fetal unit that may help identify contributors to adverse pregnancy outcomes associated with infertility and treatments used. Objective: To determine if maternal metabolomic profiles differ between spontaneous pregnancies and pregnancies conceived with fertility treatments that may explain the differences in pregnancy outcomes. Design: Metabolon metabolomic analysis and ELISAs for 17-ß-estradiol and progesterone were performed during the late first trimester of pregnancy. Setting: Academic institution. Subjects: Women in the Spontaneous/Medically Assisted/Assisted Reproductive Technology cohort (N = 409), 208 of whom conceived spontaneously and 201 with infertility [non in vitro fertilization treatments (NIFT), n=90; in vitro fertilization (IVF), n=111]. Intervention: Mode of conception. Main Outcome Measures: Levels of of 806 metabolites within eight superpathways, 17-ß-estradiol, and progesterone in maternal plasma in the late first trimester. Results: Metabolomic differences in the lipid superpathway (i.e., steroid metabolites, lipids with docosahexaenoyl acyl chains, acyl cholines), and xanthine and benzoate metabolites (P < 0.05) were significant among the spontaneous and two infertility groups, with greatest differences between the spontaneous and IVF groups. 17-ß-estradiol and progesterone levels were significantly elevated in the infertility groups, with greatest differences between the spontaneous and IVF groups. Conclusion: Metabolomic profiles differ between spontaneous and infertility pregnancies, likely driven by IVF. Higher levels of steroids and their metabolites are likely due to increased hormone production from placenta reprogrammed from fertility treatments, which may contribute to adverse outcomes associated with infertility and the treatments used.


Asunto(s)
Fertilización In Vitro , Infertilidad/terapia , Primer Trimestre del Embarazo/metabolismo , Embarazo/metabolismo , Adulto , Estradiol/sangre , Estradiol/metabolismo , Femenino , Humanos , Infertilidad/metabolismo , Metabolómica , Persona de Mediana Edad , Placenta/metabolismo , Complicaciones del Embarazo/epidemiología , Complicaciones del Embarazo/metabolismo , Resultado del Embarazo , Progesterona/sangre , Progesterona/metabolismo
13.
Circulation ; 135(24): 2403-2425, 2017 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-28356443

RESUMEN

BACKGROUND: Currently, no therapies exist for treating and improving outcomes in patients with severe peripheral artery disease (PAD). MicroRNA93 (miR93) has been shown to favorably modulate angiogenesis and to reduce tissue loss in genetic PAD models. However, the cell-specific function, downstream mechanisms, or signaling involved in miR93-mediated ischemic muscle neovascularization is not clear. Macrophages were best known to modulate arteriogenic response in PAD, and the extent of arteriogenic response induced by macrophages is dependent on greater M2 to M1 activation/polarization state. In the present study, we identified a novel mechanism by which miR93 regulates macrophage polarization to promote angiogenesis and arteriogenesis to revascularize ischemic muscle in experimental PAD. METHODS: In vitro (macrophages, endothelial cells, skeletal muscle cells under normal and hypoxia serum starvation conditions) and in vivo experiments in preclinical PAD models (unilateral femoral artery ligation and resection) were conducted to examine the role of miR93-interferon regulatory factor-9-immunoresponsive gene-1 (IRG1)-itaconic acid pathway in macrophage polarization, angiogenesis, arteriogenesis, and perfusion recovery. RESULTS: In vivo, compared with wild-type controls, miR106b-93-25 cluster-deficient mice (miR106b-93-25-/-) showed decreased angiogenesis and arteriogenesis correlating with increased M1-like macrophages after experimental PAD. Intramuscular delivery of miR93 in miR106b-93-25-/- PAD mice increased angiogenesis, arteriogenesis, and the extent of perfusion, which correlated with more M2-like macrophages in the proximal and distal hind-limb muscles. In vitro, miR93 promotes and sustains M2-like polarization even under M1-like polarizing conditions (hypoxia serum starvation). Delivery of bone marrow-derived macrophages from miR106b-93-25-/- to wild-type ischemic muscle decreased angiogenesis, arteriogenesis, and perfusion, whereas transfer of wild-type macrophages to miR106b-93-25-/- had the opposite effect. Systematic analysis of top differentially upregulated genes from RNA sequencing between miR106b-93-25-/- and wild-type ischemic muscle showed that miR93 regulates IRG1 function to modulate itaconic acid production and macrophage polarization. The 3' untranslated region luciferase assays performed to determine whether IRG1 is a direct target of miR93 revealed that IRG1 is not an miR93 target but that interferon regulatory factor-9, which can regulate IRG1 expression, is an miR93 target. In vitro, increased expression of interferon regulatory factor-9 and IRG1 and itaconic acid treatment significantly decreased endothelial angiogenic potential. CONCLUSIONS: miR93 inhibits interferon regulatory factor-9 to decrease IRG1-itaconic acid production to induce M2-like polarization in ischemic muscle to enhance angiogenesis, arteriogenesis, and perfusion recovery in experimental PAD.


Asunto(s)
Hidroliasas/metabolismo , Isquemia/metabolismo , Macrófagos/metabolismo , MicroARNs/metabolismo , Neovascularización Fisiológica/fisiología , Succinatos/metabolismo , Animales , Polaridad Celular/fisiología , Miembro Posterior/irrigación sanguínea , Miembro Posterior/metabolismo , Humanos , Hidroliasas/antagonistas & inhibidores , Hidroliasas/genética , Isquemia/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/metabolismo , Enfermedad Arterial Periférica/genética , Enfermedad Arterial Periférica/metabolismo , Transducción de Señal/fisiología , Succinatos/antagonistas & inhibidores
14.
Prenat Diagn ; 36(11): 1061-1070, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27718505

RESUMEN

BACKGROUND: Multiple testing to understand global changes in gene expression based on genetic and epigenetic modifications is evolving. Chorionic villi, obtained for prenatal testing, is limited, but can be used to understand ongoing human pregnancies. However, optimal storage, processing and utilization of CVS for multiple platform testing have not been established. RESULTS: Leftover CVS samples were flash-frozen or preserved in RNAlater. Modifications to standard isolation kits were performed to isolate quality DNA and RNA from samples as small as 2-5 mg. RNAlater samples had significantly higher RNA yields and quality and were successfully used in microarray and RNA-sequencing (RNA-seq). RNA-seq libraries generated using 200 versus 800-ng RNA showed similar biological coefficients of variation. RNAlater samples had lower DNA yields and quality, which improved by heating the elution buffer to 70 °C. Purification of DNA was not necessary for bisulfite-conversion and genome-wide methylation profiling. CVS cells were propagated and continue to express genes found in freshly isolated chorionic villi. CONCLUSIONS: CVS samples preserved in RNAlater are superior. Our optimized techniques provide specimens for genetic, epigenetic and gene expression studies from a single small sample which can be used to develop diagnostics and treatments using a systems biology approach in the prenatal period. © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Muestra de la Vellosidad Coriónica , Técnicas de Laboratorio Clínico , Técnicas de Cultivo de Célula , ADN/aislamiento & purificación , Femenino , Humanos , Embarazo , ARN/aislamiento & purificación
15.
Sci Rep ; 6: 29475, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-27378017

RESUMEN

The postmenopausal period in women is associated with decreased circulating estrogen levels, which accelerate bone loss and increase the risk of fracture. Here, we gained novel insight into the molecular mechanisms mediating bone loss in ovariectomized (OVX) mice, a model of human menopause, using co-expression network analysis. Specifically, we generated a co-expression network consisting of 53 gene modules using expression profiles from intact and OVX mice from a panel of inbred strains. The expression of four modules was altered by OVX, including module 23 whose expression was decreased by OVX across all strains. Module 23 was enriched for genes involved in the response to oxidative stress, a process known to be involved in OVX-induced bone loss. Additionally, module 23 homologs were co-expressed in human bone marrow. Alpha synuclein (Snca) was one of the most highly connected "hub" genes in module 23. We characterized mice deficient in Snca and observed a 40% reduction in OVX-induced bone loss. Furthermore, protection was associated with the altered expression of specific network modules, including module 23. In summary, the results of this study suggest that Snca regulates bone network homeostasis and ovariectomy-induced bone loss.


Asunto(s)
Osteoporosis Posmenopáusica/metabolismo , Fracturas Osteoporóticas/metabolismo , alfa-Sinucleína/metabolismo , Animales , Médula Ósea/metabolismo , Huesos/patología , Estrógenos/deficiencia , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genotipo , Homeostasis , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ovariectomía , Estrés Oxidativo , Posmenopausia , Microtomografía por Rayos X
16.
Nat Commun ; 7: 11455, 2016 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-27126736

RESUMEN

Mesenchymal stem cells (MSCs) participate in the repair/remodelling of many tissues, where MSCs commit to different lineages dependent on the cues in the local microenvironment. Here we show that TGFß-activated RhoA/ROCK signalling functions as a molecular switch regarding the fate of MSCs in arterial repair/remodelling after injury. MSCs differentiate into myofibroblasts when RhoA/ROCK is turned on, endothelial cells when turned off. The former is pathophysiologic resulting in intimal hyperplasia, whereas the latter is physiological leading to endothelial repair. Further analysis revealed that MSC RhoA activation promotes formation of an extracellular matrix (ECM) complex consisting of connective tissue growth factor (CTGF) and vascular endothelial growth factor (VEGF). Inactivation of RhoA/ROCK in MSCs induces matrix metalloproteinase-3-mediated CTGF cleavage, resulting in VEGF release and MSC endothelial differentiation. Our findings uncover a novel mechanism by which cell-ECM interactions determine stem cell lineage specificity and offer additional molecular targets to manipulate MSC-involved tissue repair/regeneration.


Asunto(s)
Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Células Endoteliales/metabolismo , Matriz Extracelular/metabolismo , Células Madre Mesenquimatosas/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Cicatrización de Heridas/genética , Proteínas de Unión al GTP rho/metabolismo , Animales , Diferenciación Celular , Factor de Crecimiento del Tejido Conjuntivo/genética , Células Endoteliales/citología , Matriz Extracelular/química , Arteria Femoral/lesiones , Arteria Femoral/metabolismo , Regulación de la Expresión Génica , Masculino , Metaloproteinasa 3 de la Matriz/genética , Metaloproteinasa 3 de la Matriz/metabolismo , Células Madre Mesenquimatosas/citología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Miofibroblastos/metabolismo , Miofibroblastos/patología , Ratas , Ratas Sprague-Dawley , Regeneración/genética , Transducción de Señal , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Proteínas de Unión al GTP rho/genética , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA
17.
Cell Metab ; 19(4): 667-81, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24703698

RESUMEN

Early in the pathogenesis of type 2 diabetes mellitus (T2DM), dysregulated glucagon secretion from pancreatic α cells occurs prior to impaired glucose-stimulated insulin secretion (GSIS) from ß cells. However, whether hyperglucagonemia is causally linked to ß cell dysfunction remains unclear. Here we show that glucagon stimulates via cAMP-PKA-CREB signaling hepatic production of the neuropeptide kisspeptin1, which acts on ß cells to suppress GSIS. Synthetic kisspeptin suppresses GSIS in vivo in mice and from isolated islets in a kisspeptin1 receptor-dependent manner. Kisspeptin1 is increased in livers and in serum from humans with T2DM and from mouse models of diabetes mellitus. Importantly, liver Kiss1 knockdown in hyperglucagonemic, glucose-intolerant, high-fat-diet fed, and Lepr(db/db) mice augments GSIS and improves glucose tolerance. These observations indicate a hormonal circuit between the liver and the endocrine pancreas in glycemia regulation and suggest in T2DM a sequential link between hyperglucagonemia via hepatic kisspeptin1 to impaired insulin secretion.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Glucagón/metabolismo , Gluconeogénesis/fisiología , Insulina/metabolismo , Kisspeptinas/metabolismo , Hígado/metabolismo , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Glucagón/farmacología , Gluconeogénesis/efectos de los fármacos , Inmunohistoquímica , Secreción de Insulina , Kisspeptinas/sangre , Kisspeptinas/genética , Luciferasas , Ratones , Ratones Endogámicos NOD , Modelos Biológicos
18.
Endocrinology ; 155(5): 1589-95, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24437492

RESUMEN

Osteoblastogenesis is the process by which mesenchymal stem cells differentiate into osteoblasts that synthesize collagen and mineralize matrix. The pace and magnitude of this process are determined by multiple genetic and environmental factors. Two inbred strains of mice, C3H/HeJ and C57BL/6J, exhibit differences in peak bone mass and bone formation. Although all the heritable factors that differ between these strains have not been elucidated, a recent F1 hybrid expression panel (C3H × B6) revealed major genotypic differences in osteoblastic genes related to cellular respiration and oxidative phosphorylation. Thus, we hypothesized that the metabolic rate of energy utilization by osteoblasts differed by strain and would ultimately contribute to differences in bone formation. In order to study the bioenergetic profile of osteoblasts, we measured oxygen consumption rates (OCR) and extracellular acidification rates (ECAR) first in a preosteoblastic cell line MC3T3-E1C4 and subsequently in primary calvarial osteoblasts from C3H and B6 mice at days 7, 14, and 21 of differentiation. During osteoblast differentiation in media containing ascorbic acid and ß-glycerophosphate, all 3 cell types increased their oxygen consumption and extracellular acidification rates compared with the same cells grown in regular media. These increases are sustained throughout differentiation. Importantly, C3H calvarial osteoblasts had greater oxygen consumption rates than B6 consistent with their in vivo phenotype of higher bone formation. Interestingly, osteoblasts utilized both oxidative phosphorylation and glycolysis during the differentiation process although mature osteoblasts were more dependent on glycolysis at the 21-day time point than oxidative phosphorylation. Thus, determinants of oxygen consumption reflect strain differences in bone mass and provide the first evidence that during collagen synthesis osteoblasts use both glycolysis and oxidative phosphorylation to synthesize and mineralize matrix.


Asunto(s)
Desarrollo Óseo , Metabolismo Energético , Osteoblastos/citología , Osteogénesis , Cráneo/citología , Células 3T3 , Animales , Animales Recién Nacidos , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Calcificación Fisiológica , Células Cultivadas , Cruzamientos Genéticos , Femenino , Glucólisis , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Osteoblastos/metabolismo , Fosforilación Oxidativa , Consumo de Oxígeno , Cráneo/metabolismo , Especificidad de la Especie , Células del Estroma/citología , Células del Estroma/metabolismo
19.
Cell ; 151(3): 658-70, 2012 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-23101632

RESUMEN

Many common diseases have an important inflammatory component mediated in part by macrophages. Here we used a systems genetics strategy to examine the role of common genetic variation in macrophage responses to inflammatory stimuli. We examined genome-wide transcript levels in macrophages from 92 strains of the Hybrid Mouse Diversity Panel. We exposed macrophages to control media, bacterial lipopolysaccharide (LPS), or oxidized phospholipids. We performed association mapping under each condition and identified several thousand expression quantitative trait loci (eQTL), gene-by-environment interactions, and eQTL "hot spots" that specifically control LPS responses. We used siRNA knockdown of candidate genes to validate an eQTL hot spot in chromosome 8 and identified the gene 2310061C15Rik as a regulator of inflammatory responses in macrophages. We have created a public database where the data presented here can be used as a resource for understanding many common inflammatory traits that are modeled in the mouse and for the dissection of regulatory relationships between genes.


Asunto(s)
Interacción Gen-Ambiente , Inflamación/inmunología , Macrófagos/inmunología , Ratones/genética , Sitios de Carácter Cuantitativo , Animales , Células Cultivadas , Técnicas de Silenciamiento del Gen , Lipopolisacáridos/inmunología , Macrófagos/metabolismo , Masculino , Ratones/inmunología , Ratones Endogámicos , Especificidad de la Especie , Organismos Libres de Patógenos Específicos , Biología de Sistemas/métodos
20.
PLoS Genet ; 8(12): e1003150, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23300464

RESUMEN

The osteoblast-lineage consists of cells at various stages of maturation that are essential for skeletal development, growth, and maintenance. Over the past decade, many of the signaling cascades that regulate this lineage have been elucidated; however, little is known of the networks that coordinate, modulate, and transmit these signals. Here, we identify a gene network specific to the osteoblast-lineage through the reconstruction of a bone co-expression network using microarray profiles collected on 96 Hybrid Mouse Diversity Panel (HMDP) inbred strains. Of the 21 modules that comprised the bone network, module 9 (M9) contained genes that were highly correlated with prototypical osteoblast maker genes and were more highly expressed in osteoblasts relative to other bone cells. In addition, the M9 contained many of the key genes that define the osteoblast-lineage, which together suggested that it was specific to this lineage. To use the M9 to identify novel osteoblast genes and highlight its biological relevance, we knocked-down the expression of its two most connected "hub" genes, Maged1 and Pard6g. Their perturbation altered both osteoblast proliferation and differentiation. Furthermore, we demonstrated the mice deficient in Maged1 had decreased bone mineral density (BMD). It was also discovered that a local expression quantitative trait locus (eQTL) regulating the Wnt signaling antagonist Sfrp1 was a key driver of the M9. We also show that the M9 is associated with BMD in the HMDP and is enriched for genes implicated in the regulation of human BMD through genome-wide association studies. In conclusion, we have identified a physiologically relevant gene network and used it to discover novel genes and regulatory mechanisms involved in the function of osteoblast-lineage cells. Our results highlight the power of harnessing natural genetic variation to generate co-expression networks that can be used to gain insight into the function of specific cell-types.


Asunto(s)
Linaje de la Célula/genética , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Osteoblastos , Animales , Densidad Ósea/genética , Línea Celular , Estudio de Asociación del Genoma Completo , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Osteoblastos/citología , Osteoblastos/metabolismo , Sitios de Carácter Cuantitativo , Proteína Wnt1/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA