Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
Biologia (Bratisl) ; : 1-8, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37363645

RESUMEN

The surveillance of sewage water has become an extremely essential tool to trace the circulation of viruses in a population and to predict the outbreak of viral diseases. Sewage monitoring is important for those viruses which cause subclinical infections since it is difficult to determine their prevalence. Polyomaviruses are ubiquitously present, circular double-stranded DNA viruses that can infect humans as well. Among all human polyomaviruses, BK polyomavirus and JC polyomavirus associated with the development of aggressive diseases in immunocompromised individuals, are highly prevalent. This study aimed to investigate the presence and the quantitative prevalence of these two disease-associated human polyomaviruses in sewage water collected from six drains of Lahore, Pakistan. The viruses present in the environmental samples were concentrated by PEG method before isolating viral nucleic acids. Conventional PCR amplifications were performed for molecular detection of BK polyomavirus and JC polyomavirus targeting their large tumor antigen genetic region. The presence of BK polyomavirus and JC polyomavirus was confirmed in the DNA extracted from concentrated sewage samples of each drain by performing both qualitative and quantitative PCR. Our data shows that the viral load ranged from 1278 to 178368 copies per µg of environmental DNA for BK polyomavirus and 5173 to 79129 copies per µg of environmental DNA for JC polyomavirus. In conclusion, here we report first time the detection of BK polyomavirus and JC polyomavirus in sewage water collected from six main drains in urban areas of Lahore, Pakistan showing the high prevalence of these viruses in the Pakistani population. This assay could be used as a proxy to determine the prevalence of these viruses in the Pakistani population.

2.
ISME J ; 16(7): 1705-1716, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35319019

RESUMEN

Natural gas seeps release significant amounts of methane and other gases including ethane and propane contributing to global climate change. In this study, bacterial actively consuming short-chain alkanes were identified by cultivation, whole-genome sequencing, and stable-isotope probing (SIP)-metagenomics using 13C-propane and 13C-ethane from two different natural gas seeps, Pipe Creek and Andreiasu Everlasting Fire. Nearly 100 metagenome-assembled genomes (MAGs) (completeness 70-99%) were recovered from both sites. Among these, 16 MAGs had genes encoding the soluble di-iron monooxygenase (SDIMO). The MAGs were affiliated to Actinobacteria (two MAGs), Alphaproteobacteria (ten MAGs), and Gammaproteobacteria (four MAGs). Additionally, three gaseous-alkane degraders were isolated in pure culture, all of which could grow on ethane, propane, and butane and possessed SDIMO-related genes. Two Rhodoblastus strains (PC2 and PC3) were from Pipe Creek and a Mycolicibacterium strain (ANDR5) from Andreiasu. Strains PC2 and PC3 encoded putative butane monooxygenases (MOs) and strain ANDR5 contained a propane MO. Mycolicibacterium strain ANDR5 and MAG19a, highly abundant in incubations with 13C-ethane, share an amino acid identity (AAI) of 99.3%. We show using a combination of enrichment and isolation, and cultivation-independent techniques, that these natural gas seeps contain a diverse community of active bacteria oxidising gaseous-alkanes, which play an important role in biogeochemical cycling of natural gas.


Asunto(s)
Alcanos , Gas Natural , Alcanos/metabolismo , Bacterias/genética , Bacterias/metabolismo , Butanos/metabolismo , Etano/metabolismo , Gases/metabolismo , Oxigenasas de Función Mixta/genética , Filogenia , Propano/metabolismo
3.
Virus Res ; 278: 197860, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31911182

RESUMEN

Polyomaviridae family consists of small circular dsDNA viruses. Out of the 14 human polyomaviruses described so far, BKPyV and JCPyV have been studied extensively since their discovery in 1971. Reportedly, both BKPyV and JCPyV are widely distributed across the globe with the frequency of 80-90 % in different populations. The primary infection of these viruses is usually asymptomatic and latent which is activated as a consequence of immunosuppression. Activated BKPyV and JCPyV viruses lead to the development of BK Virus Associated Nephropathy and Progressive Multifocal Leukoencephalopathy, respectively. Immense progress has been made during the last few decades regarding the molecular understanding of polyomaviruses. Epidemiology of polyomaviruses has also been studied extensively. However, most of the epidemiological studies have focused on European and American populations. Therefore, limited data is available regarding the geographical distribution of these potentially oncogenic viruses in Asian countries. In this article, we have presented a compendium of latest advances in the molecular understanding of polyomaviruses and their pathobiology. We also present a comprehensive review of published literature regarding the epidemiology and prevalence of BKPyV and JCPyV in Asian regions. For this purpose, a thorough search of available online resources was performed. As a result, we retrieved 24 studies for BKPyV and 22 studies for JCPyV, that describe their prevalence in Asia. These studies unanimously report high occurrence of both BKPyV and JCPyV in Asian populations. The available data from these studies was categorized into two groups: on the basis of prevalence (low, medium and high) and disease development (healthy and diseased). Altogether, Korean population hasbeen evidenced to possess highest frequency of BKPyV (66.7 %), while JCPyV was found to be most prevalent in Taiwan (88 %). Due to high and ubiquitous distribution of these viruses, frequent studies are required to develop a better understanding regarding the epidemiology and pathobiology of these viruses in Asia.


Asunto(s)
Virus BK/genética , Virus JC/genética , Infecciones por Polyomavirus/epidemiología , Infecciones Tumorales por Virus/epidemiología , Asia/epidemiología , Genoma Viral , Humanos , Infección Latente/epidemiología , Infección Latente/virología , Prevalencia , Tropismo Viral , Activación Viral
4.
Microbiome ; 7(1): 134, 2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31585550

RESUMEN

BACKGROUND: Natural gas seeps contribute to global climate change by releasing substantial amounts of the potent greenhouse gas methane and other climate-active gases including ethane and propane to the atmosphere. However, methanotrophs, bacteria capable of utilising methane as the sole source of carbon and energy, play a significant role in reducing the emissions of methane from many environments. Methylocella-like facultative methanotrophs are a unique group of bacteria that grow on other components of natural gas (i.e. ethane and propane) in addition to methane but a little is known about the distribution and activity of Methylocella in the environment. The purposes of this study were to identify bacteria involved in cycling methane emitted from natural gas seeps and, most importantly, to investigate if Methylocella-like facultative methanotrophs were active utilisers of natural gas at seep sites. RESULTS: The community structure of active methane-consuming bacteria in samples from natural gas seeps from Andreiasu Everlasting Fire (Romania) and Pipe Creek (NY, USA) was investigated by DNA stable isotope probing (DNA-SIP) using 13C-labelled methane. The 16S rRNA gene sequences retrieved from DNA-SIP experiments revealed that of various active methanotrophs, Methylocella was the only active methanotrophic genus common to both natural gas seep environments. We also isolated novel facultative methanotrophs, Methylocella sp. PC1 and PC4 from Pipe Creek, able to utilise methane, ethane, propane and various non-gaseous multicarbon compounds. Functional and comparative genomics of these new isolates revealed genomic and physiological divergence from already known methanotrophs, in particular, the absence of mxa genes encoding calcium-containing methanol dehydrogenase. Methylocella sp. PC1 and PC4 had only the soluble methane monooxygenase (sMMO) and lanthanide-dependent methanol dehydrogenase (XoxF). These are the first Alphaproteobacteria methanotrophs discovered with this reduced functional redundancy for C-1 metabolism (i.e. sMMO only and XoxF only). CONCLUSIONS: Here, we provide evidence, using culture-dependent and culture-independent methods, that Methylocella are abundant and active at terrestrial natural gas seeps, suggesting that they play a significant role in the biogeochemical cycling of these gaseous alkanes. This might also be significant for the design of biotechnological strategies for controlling natural gas emissions, which are increasing globally due to unconventional exploitation of oil and gas.


Asunto(s)
Beijerinckiaceae , Metano/metabolismo , Gas Natural/microbiología , Microbiología del Suelo , Beijerinckiaceae/aislamiento & purificación , Beijerinckiaceae/metabolismo , Carbono/metabolismo , Filogenia , Rumanía , Estados Unidos
5.
Microbiome ; 6(1): 118, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29954460

RESUMEN

BACKGROUND: Natural gas contains methane and the gaseous alkanes ethane, propane and butane, which collectively influence atmospheric chemistry and cause global warming. Methane-oxidising bacteria, methanotrophs, are crucial in mitigating emissions of methane as they oxidise most of the methane produced in soils and the subsurface before it reaches the atmosphere. Methanotrophs are usually obligate, i.e. grow only on methane and not on longer chain alkanes. Bacteria that grow on the other gaseous alkanes in natural gas such as propane have also been characterised, but they do not grow on methane. Recently, it was shown that the facultative methanotroph Methylocella silvestris grew on ethane and propane, other components of natural gas, in addition to methane. Therefore, we hypothesised that Methylocella may be prevalent at natural gas seeps and might play a major role in consuming all components of this potent greenhouse gas mixture before it is released to the atmosphere. RESULTS: Environments known to be exposed to biogenic methane emissions or thermogenic natural gas seeps were surveyed for methanotrophs. 16S rRNA gene amplicon sequencing revealed that Methylocella were the most abundant methanotrophs in natural gas seep environments. New Methylocella-specific molecular tools targeting mmoX (encoding the soluble methane monooxygenase) by PCR and Illumina amplicon sequencing were designed and used to investigate various sites. Functional gene-based assays confirmed that Methylocella were present in all of the natural gas seep sites tested here. This might be due to its ability to use methane and other short chain alkane components of natural gas. We also observed the abundance of Methylocella in other environments exposed to biogenic methane, suggesting that Methylocella has been overlooked in the past as previous ecological studies of methanotrophs often used pmoA (encoding the alpha subunit of particulate methane monooxygenase) as a marker gene. CONCLUSION: New biomolecular tools designed in this study have expanded our ability to detect, and our knowledge of the environmental distribution of Methylocella, a unique facultative methanotroph. This study has revealed that Methylocella are particularly abundant at natural gas seeps and may play a significant role in biogeochemical cycling of gaseous hydrocarbons.


Asunto(s)
Beijerinckiaceae/clasificación , Beijerinckiaceae/aislamiento & purificación , Metano/metabolismo , Gas Natural/microbiología , Oxigenasas/genética , Secuencia de Bases , Beijerinckiaceae/genética , Beijerinckiaceae/metabolismo , Filogenia , Propano/metabolismo , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Microbiología del Suelo
6.
Appl Environ Microbiol ; 82(6): 1917-1923, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26773085

RESUMEN

Methanobactin, a small modified polypeptide synthesized by methanotrophs for copper uptake, has been found to be chromosomally encoded. The gene encoding the polypeptide precursor of methanobactin, mbnA, is part of a gene cluster that also includes several genes encoding proteins of unknown function (but speculated to be involved in methanobactin formation) as well as mbnT, which encodes a TonB-dependent transporter hypothesized to be responsible for methanobactin uptake. To determine if mbnT is truly responsible for methanobactin uptake, a knockout was constructed in Methylosinus trichosporium OB3b using marker exchange mutagenesis. The resulting M. trichosporium mbnT::Gm(r) mutant was found to be able to produce methanobactin but was unable to internalize it. Further, if this mutant was grown in the presence of copper and exogenous methanobactin, copper uptake was significantly reduced. Expression of mmoX and pmoA, encoding polypeptides of the soluble methane monooxygenase (sMMO) and particulate methane monooxygenase (pMMO), respectively, also changed significantly when methanobactin was added, which indicates that the mutant was unable to collect copper under these conditions. Copper uptake and gene expression, however, were not affected in wild-type M. trichosporium OB3b, indicating that the TonB-dependent transporter encoded by mbnT is responsible for methanobactin uptake and that methanobactin is a key mechanism used by methanotrophs for copper uptake. When the mbnT::Gm(r) mutant was grown under a range of copper concentrations in the absence of methanobactin, however, the phenotype of the mutant was indistinguishable from that of wild-type M. trichosporium OB3b, indicating that this methanotroph has multiple mechanisms for copper uptake.


Asunto(s)
Proteínas Bacterianas/metabolismo , Imidazoles/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Methylosinus trichosporium/metabolismo , Oligopéptidos/metabolismo , Cobre/metabolismo , Técnicas de Inactivación de Genes , Proteínas de Transporte de Membrana/genética , Methylosinus trichosporium/genética
7.
Appl Environ Microbiol ; 81(7): 2466-73, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25616801

RESUMEN

Methanotrophs can express a cytoplasmic (soluble) methane monooxygenase (sMMO) or membrane-bound (particulate) methane monooxygenase (pMMO). Expression of these MMOs is strongly regulated by the availability of copper. Many methanotrophs have been found to synthesize a novel compound, methanobactin (Mb), that is responsible for the uptake of copper, and methanobactin produced by Methylosinus trichosporium OB3b plays a key role in controlling expression of MMO genes in this strain. As all known forms of methanobactin are structurally similar, it was hypothesized that methanobactin from one methanotroph may alter gene expression in another. When Methylosinus trichosporium OB3b was grown in the presence of 1 µM CuCl2, expression of mmoX, encoding a subunit of the hydroxylase component of sMMO, was very low. mmoX expression increased, however, when methanobactin from Methylocystis sp. strain SB2 (SB2-Mb) was added, as did whole-cell sMMO activity, but there was no significant change in the amount of copper associated with M. trichosporium OB3b. If M. trichosporium OB3b was grown in the absence of CuCl2, the mmoX expression level was high but decreased by several orders of magnitude if copper prebound to SB2-Mb (Cu-SB2-Mb) was added, and biomass-associated copper was increased. Exposure of Methylosinus trichosporium OB3b to SB2-Mb had no effect on expression of mbnA, encoding the polypeptide precursor of methanobactin in either the presence or absence of CuCl2. mbnA expression, however, was reduced when Cu-SB2-Mb was added in both the absence and presence of CuCl2. These data suggest that methanobactin acts as a general signaling molecule in methanotrophs and that methanobactin "piracy" may be commonplace.


Asunto(s)
Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Imidazoles/aislamiento & purificación , Imidazoles/metabolismo , Methylocystaceae/química , Methylosinus trichosporium/efectos de los fármacos , Methylosinus trichosporium/enzimología , Oligopéptidos/aislamiento & purificación , Oligopéptidos/metabolismo , Oxigenasas/metabolismo , Cobre/metabolismo , Medios de Cultivo/química , Methylosinus trichosporium/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA