Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
bioRxiv ; 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38352366

RESUMEN

The O- GlcNAc transferase OGT interacts robustly with all three mammalian TET methylcytosine dioxygenases. We show here that deletion of the Ogt gene in mouse embryonic stem cells (mESC) results in a widespread increase in the TET product 5-hydroxymethylcytosine (5hmC) in both euchromatic and heterochromatic compartments, with concomitant reduction of the TET substrate 5-methylcytosine (5mC) at the same genomic regions. mESC engineered to abolish the TET1-OGT interaction likewise displayed a genome-wide decrease of 5mC. DNA hypomethylation in OGT-deficient cells was accompanied by de-repression of transposable elements (TEs) predominantly located in heterochromatin, and this increase in TE expression was sometimes accompanied by increased cis -expression of genes and exons located 3' of the expressed TE. Thus, the TET-OGT interaction prevents DNA demethylation and TE expression in heterochromatin by restraining TET activity genome-wide. We suggest that OGT protects the genome against DNA hypomethylation and impaired heterochromatin integrity, preventing the aberrant increase in TE expression observed in cancer, autoimmune-inflammatory diseases, cellular senescence and ageing.

2.
Br J Cancer ; 128(7): 1236-1248, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36707636

RESUMEN

BACKGROUND: Molecular characterisation of hepatocellular carcinoma (HCC) is central to the development of novel therapeutic strategies for the disease. We have previously demonstrated mutagenic consequences of Long-Interspersed Nuclear Element-1 (LINE1s/L1) retrotransposition. However, the role of L1 in HCC, besides somatic mutagenesis, is not well understood. METHODS: We analysed L1 expression in the TCGA-HCC RNAseq dataset (n = 372) and explored potential relationships between L1 expression and clinical features. The findings were confirmed by immunohistochemical (IHC) analysis of an independent human HCC cohort (n = 48) and functional mechanisms explored using in vitro and in vivo model systems. RESULTS: We observed positive associations between L1 and activated TGFß-signalling, TP53 mutation, alpha-fetoprotein and tumour invasion. IHC confirmed a positive association between pSMAD3, a surrogate for TGFß-signalling status, and L1 ORF1p (P < 0.0001, n = 32). Experimental modulation of L1 ORF1p levels revealed an influence of L1 ORF1p on key hepatocarcinogenesis-related pathways. Reduction in cell migration and invasive capacity was observed upon L1 ORF1 knockdown, both in vitro and in vivo. In particular, L1 ORF1p increased PIN1 cytoplasmic localisation. Blocking PIN1 activity abrogated L1 ORF1p-induced NF-κB-mediated inflammatory response genes while further activated TGFß-signalling confirming differential alteration of PIN1 activity in cellular compartments by L1 ORF1p. DISCUSSION: Our data demonstrate a causal link between L1 ORF1p and key oncogenic pathways mediated by PIN1, presenting a novel therapeutic avenue.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Retroelementos , Carcinoma Hepatocelular/genética , Regulación hacia Arriba , Neoplasias Hepáticas/genética , Elementos de Nucleótido Esparcido Largo/genética , Factor de Crecimiento Transformador beta/genética , Peptidilprolil Isomerasa de Interacción con NIMA/genética
3.
Nat Commun ; 13(1): 7470, 2022 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-36463236

RESUMEN

Induced pluripotent stem cells (iPSCs) can in principle differentiate into any cell of the body, and have revolutionized biomedical research and regenerative medicine. Unlike their human counterparts, mouse iPSCs (miPSCs) are reported to silence transposable elements and prevent transposable element-mediated mutagenesis. Here we apply short-read or Oxford Nanopore Technologies long-read genome sequencing to 38 bulk miPSC lines reprogrammed from 10 parental cell types, and 18 single-cell miPSC clones. While single nucleotide variants and structural variants restricted to miPSCs are rare, we find 83 de novo transposable element insertions, including examples intronic to Brca1 and Dmd. LINE-1 retrotransposons are profoundly hypomethylated in miPSCs, beyond other transposable elements and the genome overall, and harbor alternative protein-coding gene promoters. We show that treatment with the LINE-1 inhibitor lamivudine does not hinder reprogramming and efficiently blocks endogenous retrotransposition, as detected by long-read genome sequencing. These experiments reveal the complete spectrum and potential significance of mutations acquired by miPSCs.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Ratones , Animales , Retroelementos/genética , Elementos Transponibles de ADN/genética , Mutación , Elementos de Nucleótido Esparcido Largo/genética
4.
Cancers (Basel) ; 13(20)2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34680227

RESUMEN

Hepatitis C virus (HCV) is a common cause of hepatocellular carcinoma (HCC). The activation and mutagenic consequences of L1 retrotransposons in virus-associated-HCC have been documented. However, the direct influence of HCV upon L1 elements is unclear, and is the focus of the present study. L1 transcript expression was evaluated in a publicly available liver tissue RNA-seq dataset from patients with chronic HCV hepatitis (CHC), as well as healthy controls. L1 transcript expression was significantly higher in CHC than in controls. L1orf1p (a L1 encoded protein) expression was observed in six out of 11 CHC livers by immunohistochemistry. To evaluate the influence of HCV on retrotransposition efficiency, in vitro engineered-L1 retrotransposition assays were employed in Huh7 cells in the presence and absence of an HCV replicon. An increased retrotransposition rate was observed in the presence of replicating HCV RNA, and persisted in cells after viral clearance due to sofosbuvir (PSI7977) treatment. Increased retrotransposition could be due to dysregulation of the DNA-damage repair response, including homologous recombination, due to HCV infection. Altogether these data suggest that L1 expression can be activated before oncogenic transformation in CHC patients, with HCV-upregulated retrotransposition potentially contributing to HCC genomic instability and a risk of transformation that persists post-viral clearance.

5.
Cell Rep ; 36(7): 109530, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34380018

RESUMEN

A recent study proposed that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hijacks the LINE-1 (L1) retrotransposition machinery to integrate into the DNA of infected cells. If confirmed, this finding could have significant clinical implications. Here, we apply deep (>50×) long-read Oxford Nanopore Technologies (ONT) sequencing to HEK293T cells infected with SARS-CoV-2 and do not find the virus integrated into the genome. By examining ONT data from separate HEK293T cultivars, we completely resolve 78 L1 insertions arising in vitro in the absence of L1 overexpression systems. ONT sequencing applied to hepatitis B virus (HBV)-positive liver cancer tissues located a single HBV insertion. These experiments demonstrate reliable resolution of retrotransposon and exogenous virus insertions by ONT sequencing. That we find no evidence of SARS-CoV-2 integration suggests that such events are, at most, extremely rare in vivo and therefore are unlikely to drive oncogenesis or explain post-recovery detection of the virus.


Asunto(s)
COVID-19/virología , ADN Viral/genética , Genoma Humano , SARS-CoV-2/genética , Análisis de Secuencia de ADN , Integración Viral , Anciano , Animales , COVID-19/diagnóstico , Carcinoma Hepatocelular/virología , Chlorocebus aethiops , Células HEK293 , Virus de la Hepatitis B/genética , Interacciones Huésped-Patógeno , Humanos , Neoplasias Hepáticas/virología , Elementos de Nucleótido Esparcido Largo , Masculino , Secuenciación de Nanoporos , Células Vero
6.
Genome Biol ; 22(1): 146, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33971925

RESUMEN

Pseudogenes are gene copies presumed to mainly be functionless relics of evolution due to acquired deleterious mutations or transcriptional silencing. Using deep full-length PacBio cDNA sequencing of normal human tissues and cancer cell lines, we identify here hundreds of novel transcribed pseudogenes expressed in tissue-specific patterns. Some pseudogene transcripts have intact open reading frames and are translated in cultured cells, representing unannotated protein-coding genes. To assess the biological impact of noncoding pseudogenes, we CRISPR-Cas9 delete the nucleus-enriched pseudogene PDCL3P4 and observe hundreds of perturbed genes. This study highlights pseudogenes as a complex and dynamic component of the human transcriptional landscape.


Asunto(s)
ADN Complementario/genética , Seudogenes , Análisis de Secuencia de ADN , Transcriptoma/genética , Línea Celular , Eliminación de Gen , Haploidia , Humanos , Regiones Promotoras Genéticas/genética
7.
Genome Biol ; 22(1): 147, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33971937

RESUMEN

Endogenous retroviruses (ERVs) are emerging as promising therapeutic targets in cancer. As remnants of ancient retroviral infections, ERV-derived regulatory elements coordinate expression from gene networks, including those underpinning embryogenesis and immune cell function. ERV activation can promote an interferon response, a phenomenon termed viral mimicry. Although ERV expression is associated with cancer, and provisionally with autoimmune and neurodegenerative diseases, ERV-mediated inflammation is being explored as a way to sensitize tumors to immunotherapy. Here we review ERV co-option in development and innate immunity, the aberrant contribution of ERVs to tumorigenesis, and the wider biomedical potential of therapies directed at ERVs.


Asunto(s)
Retrovirus Endógenos/fisiología , Neoplasias/terapia , Neoplasias/virología , Animales , Carcinogénesis/genética , Carcinogénesis/patología , Elementos Transponibles de ADN/genética , Redes Reguladoras de Genes , Humanos , Inmunidad Innata , Neoplasias/inmunología
8.
Mol Cell ; 80(5): 915-928.e5, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33186547

RESUMEN

Transposable elements (TEs) drive genome evolution and are a notable source of pathogenesis, including cancer. While CpG methylation regulates TE activity, the locus-specific methylation landscape of mobile human TEs has to date proven largely inaccessible. Here, we apply new computational tools and long-read nanopore sequencing to directly infer CpG methylation of novel and extant TE insertions in hippocampus, heart, and liver, as well as paired tumor and non-tumor liver. As opposed to an indiscriminate stochastic process, we find pronounced demethylation of young long interspersed element 1 (LINE-1) retrotransposons in cancer, often distinct to the adjacent genome and other TEs. SINE-VNTR-Alu (SVA) retrotransposons, including their internal tandem repeat-associated CpG island, are near-universally methylated. We encounter allele-specific TE methylation and demethylation of aberrantly expressed young LINE-1s in normal tissues. Finally, we recover the complete sequences of tumor-specific LINE-1 insertions and their retrotransposition hallmarks, demonstrating how long-read sequencing can simultaneously survey the epigenome and detect somatic TE mobilization.


Asunto(s)
Metilación de ADN , Elementos Transponibles de ADN , ADN de Neoplasias , Epigénesis Genética , Epigenoma , Regulación Neoplásica de la Expresión Génica , Elementos de Nucleótido Esparcido Largo , Secuenciación de Nanoporos , Neoplasias , ADN de Neoplasias/genética , ADN de Neoplasias/metabolismo , Femenino , Perfilación de la Expresión Génica , Humanos , Persona de Mediana Edad , Neoplasias/genética , Neoplasias/metabolismo , Especificidad de Órganos
9.
Mob DNA ; 9: 22, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30002735

RESUMEN

Retrotransposons are transposable elements (TEs) capable of "jumping" in germ, embryonic and tumor cells and, as is now clearly established, in the neuronal lineage. Mosaic TE insertions form part of a broader landscape of somatic genome variation and hold significant potential to generate phenotypic diversity, in the brain and elsewhere. At present, the LINE-1 (L1) retrotransposon family appears to be the most active autonomous TE in most mammals, based on experimental data obtained from disease-causing L1 mutations, engineered L1 reporter systems tested in cultured cells and transgenic rodents, and single-cell genomic analyses. However, the biological consequences of almost all somatic L1 insertions identified thus far remain unknown. In this review, we briefly summarize the current state-of-the-art in the field, including estimates of L1 retrotransposition rate in neurons. We bring forward the hypothesis that an extensive subset of retrotransposition-competent L1s may be de-repressed and mobile in the soma but largely inactive in the germline. We discuss recent reports of non-canonical L1-associated sequence variants in the brain and propose that the elevated L1 DNA content reported in several neurological disorders may predominantly comprise accumulated, unintegrated L1 nucleic acids, rather than somatic L1 insertions. Finally, we consider the main objectives and obstacles going forward in elucidating the biological impact of somatic retrotransposition.

10.
Cell Rep ; 23(13): 3730-3740, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29949758

RESUMEN

LINE-1 (L1) retrotransposons are a source of insertional mutagenesis in tumor cells. However, the clinical significance of L1 mobilization during tumorigenesis remains unclear. Here, we applied retrotransposon capture sequencing (RC-seq) to multiple single-cell clones isolated from five ovarian cancer cell lines and HeLa cells and detected endogenous L1 retrotransposition in vitro. We then applied RC-seq to ovarian tumor and matched blood samples from 19 patients and identified 88 tumor-specific L1 insertions. In one tumor, an intronic de novo L1 insertion supplied a novel cis-enhancer to the putative chemoresistance gene STC1. Notably, the tumor subclone carrying the STC1 L1 mutation increased in prevalence after chemotherapy, further increasing STC1 expression. We also identified hypomethylated donor L1s responsible for new L1 insertions in tumors and cultivated cancer cells. These congruent in vitro and in vivo results highlight L1 insertional mutagenesis as a common component of ovarian tumorigenesis and cancer genome heterogeneity.


Asunto(s)
Evolución Molecular , Elementos de Nucleótido Esparcido Largo/genética , Neoplasias Ováricas/patología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Metilación de ADN , Resistencia a Antineoplásicos , Femenino , Regulación Neoplásica de la Expresión Génica , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Pérdida de Heterocigocidad/genética , Mutagénesis Insercional , Mutación , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética
11.
Genome Res ; 28(5): 639-653, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29643204

RESUMEN

The retrotransposon Long Interspersed Element 1 (LINE-1 or L1) is a continuing source of germline and somatic mutagenesis in mammals. Deregulated L1 activity is a hallmark of cancer, and L1 mutagenesis has been described in numerous human malignancies. We previously employed retrotransposon capture sequencing (RC-seq) to analyze hepatocellular carcinoma (HCC) samples from patients infected with hepatitis B or hepatitis C virus and identified L1 variants responsible for activating oncogenic pathways. Here, we have applied RC-seq and whole-genome sequencing (WGS) to an Abcb4 (Mdr2)-/- mouse model of hepatic carcinogenesis and demonstrated for the first time that L1 mobilization occurs in murine tumors. In 12 HCC nodules obtained from 10 animals, we validated four somatic L1 insertions by PCR and capillary sequencing, including TF subfamily elements, and one GF subfamily example. One of the TF insertions carried a 3' transduction, allowing us to identify its donor L1 and to demonstrate that this full-length TF element retained retrotransposition capacity in cultured cancer cells. Using RC-seq, we also identified eight tumor-specific L1 insertions from 25 HCC patients with a history of alcohol abuse. Finally, we used RC-seq and WGS to identify three tumor-specific L1 insertions among 10 intra-hepatic cholangiocarcinoma (ICC) patients, including one insertion traced to a donor L1 on Chromosome 22 known to be highly active in other cancers. This study reveals L1 mobilization as a common feature of hepatocarcinogenesis in mammals, demonstrating that the phenomenon is not restricted to human viral HCC etiologies and is encountered in murine liver tumors.


Asunto(s)
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Elementos de Nucleótido Esparcido Largo/genética , Retroelementos/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Adulto , Anciano , Anciano de 80 o más Años , Animales , Transformación Celular Neoplásica/genética , Femenino , Humanos , Hígado/metabolismo , Hígado/patología , Masculino , Mamíferos/genética , Ratones Noqueados , Persona de Mediana Edad , Mutagénesis Insercional , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
12.
PLoS Comput Biol ; 14(3): e1005934, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29494619

RESUMEN

Genetic variants underlying complex traits, including disease susceptibility, are enriched within the transcriptional regulatory elements, promoters and enhancers. There is emerging evidence that regulatory elements associated with particular traits or diseases share similar patterns of transcriptional activity. Accordingly, shared transcriptional activity (coexpression) may help prioritise loci associated with a given trait, and help to identify underlying biological processes. Using cap analysis of gene expression (CAGE) profiles of promoter- and enhancer-derived RNAs across 1824 human samples, we have analysed coexpression of RNAs originating from trait-associated regulatory regions using a novel quantitative method (network density analysis; NDA). For most traits studied, phenotype-associated variants in regulatory regions were linked to tightly-coexpressed networks that are likely to share important functional characteristics. Coexpression provides a new signal, independent of phenotype association, to enable fine mapping of causative variants. The NDA coexpression approach identifies new genetic variants associated with specific traits, including an association between the regulation of the OCT1 cation transporter and genetic variants underlying circulating cholesterol levels. NDA strongly implicates particular cell types and tissues in disease pathogenesis. For example, distinct groupings of disease-associated regulatory regions implicate two distinct biological processes in the pathogenesis of ulcerative colitis; a further two separate processes are implicated in Crohn's disease. Thus, our functional analysis of genetic predisposition to disease defines new distinct disease endotypes. We predict that patients with a preponderance of susceptibility variants in each group are likely to respond differently to pharmacological therapy. Together, these findings enable a deeper biological understanding of the causal basis of complex traits.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Genómica/métodos , Regiones Promotoras Genéticas/genética , Enfermedad de Crohn/genética , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Humanos , Transcriptoma/genética
13.
Trends Genet ; 33(11): 802-816, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28797643

RESUMEN

The retrotransposon LINE-1 (long interspersed element 1, L1) is a transposable element that has extensively colonized the mammalian germline. L1 retrotransposition can also occur in somatic cells, causing genomic mosaicism, as well as in cancer. However, the extent of L1-driven mosaicism arising during ontogenesis is unclear. We discuss here recent experimental data which, at a minimum, fully substantiate L1 mosaicism in early embryonic development and neural cells, including post-mitotic neurons. We also consider the possible biological impact of somatic L1 insertions in neurons, the existence of donor L1s that are highly active ('hot') in specific spatiotemporal niches, and the evolutionary selection of donor L1s driving neuronal mosaicism.


Asunto(s)
Mamíferos/genética , Mosaicismo , Animales , Desarrollo Embrionario/genética , Humanos , Elementos de Nucleótido Esparcido Largo , Neuronas/metabolismo , Retroelementos
14.
PLoS Genet ; 13(3): e1006641, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28263993

RESUMEN

The FANTOM5 consortium utilised cap analysis of gene expression (CAGE) to provide an unprecedented insight into transcriptional regulation in human cells and tissues. In the current study, we have used CAGE-based transcriptional profiling on an extended dense time course of the response of human monocyte-derived macrophages grown in macrophage colony-stimulating factor (CSF1) to bacterial lipopolysaccharide (LPS). We propose that this system provides a model for the differentiation and adaptation of monocytes entering the intestinal lamina propria. The response to LPS is shown to be a cascade of successive waves of transient gene expression extending over at least 48 hours, with hundreds of positive and negative regulatory loops. Promoter analysis using motif activity response analysis (MARA) identified some of the transcription factors likely to be responsible for the temporal profile of transcriptional activation. Each LPS-inducible locus was associated with multiple inducible enhancers, and in each case, transient eRNA transcription at multiple sites detected by CAGE preceded the appearance of promoter-associated transcripts. LPS-inducible long non-coding RNAs were commonly associated with clusters of inducible enhancers. We used these data to re-examine the hundreds of loci associated with susceptibility to inflammatory bowel disease (IBD) in genome-wide association studies. Loci associated with IBD were strongly and specifically (relative to rheumatoid arthritis and unrelated traits) enriched for promoters that were regulated in monocyte differentiation or activation. Amongst previously-identified IBD susceptibility loci, the vast majority contained at least one promoter that was regulated in CSF1-dependent monocyte-macrophage transitions and/or in response to LPS. On this basis, we concluded that IBD loci are strongly-enriched for monocyte-specific genes, and identified at least 134 additional candidate genes associated with IBD susceptibility from reanalysis of published GWA studies. We propose that dysregulation of monocyte adaptation to the environment of the gastrointestinal mucosa is the key process leading to inflammatory bowel disease.


Asunto(s)
Enfermedades Inflamatorias del Intestino/genética , Macrófagos/citología , Monocitos/citología , Transcriptoma , Secuencias de Aminoácidos , Diferenciación Celular , Citocinas/metabolismo , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Genómica , Humanos , Inflamación , Enfermedades Inflamatorias del Intestino/etiología , Mucosa Intestinal/metabolismo , Ligandos , Lipopolisacáridos/farmacología , Factor Estimulante de Colonias de Macrófagos/farmacología , Familia de Multigenes , Regiones Promotoras Genéticas , Factores de Tiempo , Factores de Transcripción/metabolismo , Transcripción Genética , Activación Transcripcional
15.
Hepatology ; 65(5): 1708-1719, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27859418

RESUMEN

The ST18 gene has been proposed to act either as a tumor suppressor or as an oncogene in different human cancers, but direct evidence for its role in tumorigenesis has been lacking thus far. Here, we demonstrate that ST18 is critical for tumor progression and maintenance in a mouse model of liver cancer, based on oncogenic transformation and adoptive transfer of primary precursor cells (hepatoblasts). ST18 messenger RNA (mRNA) and protein were detectable neither in normal liver nor in cultured hepatoblasts, but were readily expressed after subcutaneous engraftment and tumor growth. ST18 expression in liver cells was induced by inflammatory cues, including acute or chronic inflammation in vivo, as well as coculture with macrophages in vitro. Knocking down the ST18 mRNA in transplanted hepatoblasts delayed tumor progression. Induction of ST18 knockdown in pre-established tumors caused rapid tumor involution associated with pervasive morphological changes, proliferative arrest, and apoptosis in tumor cells, as well as depletion of tumor-associated macrophages, vascular ectasia, and hemorrhage. Reciprocally, systemic depletion of macrophages in recipient animals had very similar phenotypic consequences, impairing either tumor development or maintenance, and suppressing ST18 expression in hepatoblasts. Finally, RNA sequencing of ST18-depleted tumors before involution revealed down-regulation of inflammatory response genes, pointing to the suppression of nuclear factor kappa B-dependent transcription. CONCLUSION: ST18 expression in epithelial cells is induced by tumor-associated macrophages, contributing to the reciprocal feed-forward loop between both cell types in liver tumorigenesis. Our findings warrant the exploration of means to interfere with ST18-dependent epithelium-macrophage interactions in a therapeutic setting. (Hepatology 2017;65:1708-1719).


Asunto(s)
Carcinoma Hepatocelular/etiología , Neoplasias Hepáticas Experimentales/etiología , Factores de Transcripción/metabolismo , Animales , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas Experimentales/metabolismo , Ratones Endogámicos C57BL
16.
Genome Biol ; 17(1): 259, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27993162

RESUMEN

The mouse genome is replete with retrotransposon sequences, from evolutionarily young elements with mutagenic potential that must be controlled, to inactive molecular fossils whose sequences can be domesticated over evolutionary time to benefit the host genome. In an exciting new study, de la Rica and colleagues have uncovered a complex relationship between ten-eleven translocation (TET) proteins and retrotransposons in mouse embryonic stem cells (ESCs), implicating TETs as enhancers in the exaptation and function of retroelement sequences. Furthermore, they have demonstrated that active demethylation of retrotransposons does not correlate with their increased expression in ESCs, calling into question long-held assumptions regarding the importance of DNA demethylation for retrotransposon expression, and revealing novel epigenetic players in retrotransposon control.Please see related Research article: http://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-1096-8.


Asunto(s)
Proteínas de Unión al ADN/genética , Evolución Molecular , Proteínas Proto-Oncogénicas/genética , Retroelementos/genética , Animales , Metilación de ADN/genética , Epigenómica , Regulación de la Expresión Génica/genética , Genoma , Elementos de Nucleótido Esparcido Largo/genética , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/patología , Secuencias Reguladoras de Ácidos Nucleicos/genética
17.
Mob DNA ; 7: 21, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27843499

RESUMEN

BACKGROUND: LINE-1 (L1) retrotransposons are a notable endogenous source of mutagenesis in mammals. Notably, cancer cells can support unusual L1 retrotransposition and L1-associated sequence rearrangement mechanisms following DNA damage. Recent reports suggest that L1 is mobile in epithelial tumours and neural cells but, paradoxically, not in brain cancers. RESULTS: Here, using retrotransposon capture sequencing (RC-seq), we surveyed L1 mutations in 14 tumours classified as glioblastoma multiforme (GBM) or as a lower grade glioma. In four GBM tumours, we characterised one probable endonuclease-independent L1 insertion, two L1-associated rearrangements and one likely Alu-Alu recombination event adjacent to an L1. These mutations included PCR validated intronic events in MeCP2 and EGFR. Despite sequencing L1 integration sites at up to 250× depth by RC-seq, we found no tumour-specific, endonuclease-dependent L1 insertions. Whole genome sequencing analysis of the tumours carrying the MeCP2 and EGFR L1 mutations also revealed no endonuclease-dependent L1 insertions. In a complementary in vitro assay, wild-type and endonuclease mutant L1 reporter constructs each mobilised very inefficiently in four cultured GBM cell lines. CONCLUSIONS: These experiments altogether highlight the consistent absence of canonical L1 retrotransposition in GBM tumours and cultured cell lines, as well as atypical L1-associated sequence rearrangements following DNA damage in vivo.

18.
Am J Hum Genet ; 98(5): 830-842, 2016 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-27087319

RESUMEN

Gastric adenocarcinoma and proximal polyposis of the stomach (GAPPS) is an autosomal-dominant cancer-predisposition syndrome with a significant risk of gastric, but not colorectal, adenocarcinoma. We mapped the gene to 5q22 and found loss of the wild-type allele on 5q in fundic gland polyps from affected individuals. Whole-exome and -genome sequencing failed to find causal mutations but, through Sanger sequencing, we identified point mutations in APC promoter 1B that co-segregated with disease in all six families. The mutations reduced binding of the YY1 transcription factor and impaired activity of the APC promoter 1B in luciferase assays. Analysis of blood and saliva from carriers showed allelic imbalance of APC, suggesting that these mutations lead to decreased allele-specific expression in vivo. Similar mutations in APC promoter 1B occur in rare families with familial adenomatous polyposis (FAP). Promoter 1A is methylated in GAPPS and sporadic FGPs and in normal stomach, which suggests that 1B transcripts are more important than 1A in gastric mucosa. This might explain why all known GAPPS-affected families carry promoter 1B point mutations but only rare FAP-affected families carry similar mutations, the colonic cells usually being protected by the expression of the 1A isoform. Gastric polyposis and cancer have been previously described in some FAP-affected individuals with large deletions around promoter 1B. Our finding that GAPPS is caused by point mutations in the same promoter suggests that families with mutations affecting the promoter 1B are at risk of gastric adenocarcinoma, regardless of whether or not colorectal polyps are present.


Asunto(s)
Adenocarcinoma/genética , Proteína de la Poliposis Adenomatosa del Colon/genética , Poliposis Adenomatosa del Colon/genética , Pólipos Adenomatosos/genética , Exones/genética , Mutación Puntual/genética , Neoplasias Gástricas/genética , Desequilibrio Alélico/genética , Variaciones en el Número de Copia de ADN/genética , Exoma/genética , Femenino , Mucosa Gástrica/metabolismo , Ligamiento Genético/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Pérdida de Heterocigocidad , Masculino , Linaje , Regiones Promotoras Genéticas/genética
19.
Methods Mol Biol ; 1400: 47-77, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26895046

RESUMEN

Mobile genetic elements (MGEs) are of critical importance in genomics and developmental biology. Polymorphic and somatic MGE insertions have the potential to impact the phenotype of an individual, depending on their genomic locations and functional consequences. However, the identification of polymorphic and somatic insertions among the plethora of copies residing in the genome presents a formidable technical challenge. Whole genome sequencing has the potential to address this problem; however, its efficacy depends on the abundance of cells carrying the new insertion. Robust detection of somatic insertions present in only a subset of cells within a given sample can also be prohibitively expensive due to a requirement for high sequencing depth. Here, we describe retrotransposon capture sequencing (RC-seq), a sequence capture approach in which Illumina libraries are enriched for fragments containing the 5' and 3' termini of specific MGEs. RC-seq allows the detection of known polymorphic insertions present in an individual, as well as the identification of rare or private germline insertions not previously described. Furthermore, RC-seq can be used to detect and characterize somatic insertions, providing a valuable tool to elucidate the extent and characteristics of MGE activity in healthy tissues and in various disease states.


Asunto(s)
Genoma Humano , Genómica , Retroelementos , Biología Computacional/métodos , Biblioteca Genómica , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Elementos de Nucleótido Esparcido Largo , Reacción en Cadena de la Polimerasa , Reproducibilidad de los Resultados
20.
Bioessays ; 36(5): 475-81, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24615986

RESUMEN

Gene retrocopies are generated by reverse transcription and genomic integration of mRNA. As such, retrocopies present an important exception to the central dogma of molecular biology, and have substantially impacted the functional landscape of the metazoan genome. While an estimated 8,000-17,000 retrocopies exist in the human genome reference sequence, the extent of variation between individuals in terms of retrocopy content has remained largely unexplored. Three recent studies by Abyzov et al., Ewing et al. and Schrider et al. have exploited 1,000 Genomes Project Consortium data, as well as other sources of whole-genome sequencing data, to uncover novel gene retrocopies. Here, we compare the methods and results of these three studies, highlight the impact of retrocopies in human diversity and genome evolution, and speculate on the potential for somatic gene retrocopies to impact cancer etiology and genetic diversity among individual neurons in the mammalian brain.


Asunto(s)
Duplicación de Gen , Genes , Variación Genética , Genética de Población , Genoma Humano/genética , ARN Mensajero/genética , Análisis de Secuencia de ADN/métodos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA