Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Future Med Chem ; : 1-20, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949859

RESUMEN

Aim: To synthesize new hybrid cinnamic acids (10a, 10b and 11) and ester derivatives (7, 8 and 9) and investigate their anti-breast cancer activities. Materials & methods: Compounds 7-11 were evaluated (in vitro) for their cytotoxic activities against the MCF-7 cell line. A flow cytometry examination was performed. Protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2), topoisomerase II and caspase-9 were measured by qRT-PCR. Molecular docking studies were conducted. Results: Several components were discovered to be active, mainly component 11, which induced arrest in the cell cycle at phase S, greatly decreased the expression of Nrf2 and topoisomerase II; and upregulated the expression of caspase-9. Conclusion: The newly thiohydantoin-cinnamic acid hybrids can contribute to creating promising candidates for cancer drugs.


[Box: see text].

2.
Front Mol Biosci ; 11: 1387919, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38872915

RESUMEN

Introduction: Increased Actin-like 6A (ACTL6A) expression is associated with various cancers, but its comprehensive investigation across different malignancies is lacking. We aimed to analyze ACTL6A as a potential oncogene and therapeutic target using bioinformatics tools. Methods: We comprehensively analyzed ACTL6A expression profiles across human malignancies, focusing on correlations with tumor grade, stage, metastasis, and patient survival. Genetic alterations were examined, and the epigenetic landscape of ACTL6A was assessed using rigorous methods. The impact of ACTL6A on immune cell infiltration in the tumor microenvironment was evaluated, along with molecular docking studies and machine learning models. Results: Our analysis revealed elevated ACTL6A expression in various tumors, correlating with poor prognostic indicators such as tumor grade, stage, metastasis, and patient survival. Genetic mutations and epigenetic modifications were identified, along with associations with immune cell infiltration and key cellular pathways. Machine learning models demonstrated ACTL6A's potential for cancer detection. Discussion: ACTL6A emerges as a promising diagnostic and therapeutic target in cancer, with implications for prognosis and therapy. Our study provides comprehensive insights into its carcinogenic actions, highlighting its potential as both a prognostic indicator and a target for anti-cancer therapy. This integrative approach enhances our understanding of ACTL6A's role in cancer pathogenesis and treatment.

3.
RSC Adv ; 14(28): 20120-20129, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38915323

RESUMEN

Development of new effective EGFR-targeted antitumor agents is needed because of their clinical significance. A new series of imidazolone-sulphonamide-pyrimidine hybrids was designed and synthesized as modified analogs of some reported EGFR inhibitors. The cytotoxic activity of all the synthesized hybrids was investigated against the breast MCF-7 cancerous cell line using doxorubicin (Dox) as a positive control. 4-(Furan-2-ylmethylene)imidazolone-sulphonamide-pyrimidine 6b had the best potent activity against MCF-7 cells with IC50 result of 1.05 µM, which was better than Dox (IC50 = 1.91 µM). In addition, mechanistic studies revealed the ability of compounds 5g, 5h and 6b to inhibit EGFR kinase. Cell cycle analysis revealed that compound 6b can halt MCF-7 cells at the G1 phase with a concomitant decrease in cellular percentage at the S and G2/M phases. This compound produced a noticeable rise in the proportion of apoptotic cells with regard to the untreated control. Furthermore, the effects of hybrid 6b on the expression levels of pro-apoptotic Bax and pro-survival Bcl2 were assessed. The results showed that this compound upregulated the level of Bax expression as well as declined the expression value of Bcl-2 with regard to the untreated control.

4.
RSC Adv ; 14(16): 11443-11451, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38595714

RESUMEN

The present work aims at design and synthesis of a congeneric series of small hybrids 5 and 6a-i featuring the privileged quinoline scaffold tethered with 2-(arylamido)cinnamide moiety as potential anticancer tubulin polymerization inhibitors. Most of the synthesized hybrids 5 and 6a-i significantly inhibited the growth of the HepG2 cell line, with IC50 ranged from 2.46 to 41.31 µM. In particular, 2-(3,4,5-trimethoxybenzamido)-4-methoxycinnamide-quinoline hybrid 6e displayed potent IC50 value toward the examined cell line, and hence chosen for further mechanistic investigations. It is noteworthy that the antiproliferative action of compound 6e highly correlated well with its ability to inhibit tubulin polymerization. In addition, the most potent hybrid 6e demonstrated a significant modification in the cellular cycle distribution, in addition to provoke of apoptotic death within the tested HepG2 cell line. Furthermore, the mechanistic approach was confirmed by a substantial upregulation in the quantity of active caspase 9 by 5.81-fold relative to untreated control cells.

5.
ACS Omega ; 9(16): 18505-18515, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38680330

RESUMEN

A new series of cinnamide-fluorinated derivatives has been synthesized and characterized by using different spectroscopic and elemental microanalyses methods. All of the prepared p-fluorocinnamide derivatives were evaluated for their cytotoxic activity against the HepG2 liver cancerous cell line. The imidazolone derivative 6, which bears N-(N-pyrimidin-2-ylbenzenesulphamoyl) moiety, displayed antiproliferative activity against HepG2 liver cancerous cells with an IC50 value of 4.23 µM as compared to staurosporin (STU) (IC50 = 5.59 µM). In addition, compound 6 experienced epidermal growth factor receptor (EGFR) inhibitory activity comparable to palatinib. The cell cycle analysis by flow cytometry indicated that compound 6 arrested the cellular cycle of HepG2 cells at the G1 phase. Additionally, as demonstrated by the fluorescence-activated cell sorting (FACS) technique, compound 6 increased both early and late apoptotic ratios compared to control untreated HepG2 cells. Moreover, imidazolone compound 6 induced apoptosis via the intrinsic apoptotic pathway by decreasing the level of mitochondrial membrane polarization (MMP) compared to untreated HepG2 cells. Therefore, the new N-(N-pyrimidin-2-ylbenzenesulphamoyl)imidazolone derivative 6 could be considered a potential platform for further optimizing an antitumor agent against hepatocellular carcinoma.

6.
J Exp Zool A Ecol Integr Physiol ; 341(6): 647-657, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38594572

RESUMEN

Type 1 diabetes stem-cell-based treatment approach is among the leading therapeutic strategies for treating cardiac damage owing to the stem cells' regeneration capabilities. Mesenchymal stem cells derived from adipose tissue (AD-MSCs) have shown great potential in treating diabetic cardiomyopathy (DCM). Herein, we explored the antioxidant-supporting role of N, N'-diphenyl-1,4-phenylenediamine (DPPD) in enhancing the MSCs' therapeutic role in alleviating DCM complications in heart tissues of type 1 diabetic rats. Six male albinos Wistar rat groups have been designed into the control group, DPPD (250 mg/kg, i.p.) group, diabetic-untreated group, and three diabetic rat groups treated with either AD-MSCs (1 × 106 cell/rat, i.v.) or DPPD or both. Interestingly, all three treated diabetic groups exhibited a significant decrease in serum glucose, HbA1c, heart dysfunction markers (lactate dehydrogenase and CK-MP) levels, and lipid profile fractions (except for HDL-C), as well as some cardiac oxidative stress (OS) levels (MDA, AGEs, XO, and ROS). On the contrary, serum insulin, C-peptide, and various cardiac antioxidant levels (GSH, GST, CAT, SOD, TAC, and HO-1), beside viable cardiac cells (G0/G1%), were markedly elevated compared with the diabetic untreated group. In support of these findings, the histological assay reflected a marked enhancement in the cardiac tissues of all diabetic-treated groups, with obvious excellency of the AD-MSCs + DPPD diabetic-treated group. Such results strongly suggested the great therapeutic potentiality of either DPPD or AD-MSCs single injection in enhancing the cardiac function of diabetic rats, with a great noted enhancement superiority of DPPD and AD-MSCs coadministration.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Cardiomiopatías Diabéticas , Ratas Wistar , Animales , Cardiomiopatías Diabéticas/terapia , Masculino , Ratas , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/terapia , Fenilendiaminas/farmacología , Fenilendiaminas/administración & dosificación , Tejido Adiposo , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Estrés Oxidativo/efectos de los fármacos
7.
Future Med Chem ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38488019

RESUMEN

Background: 4-Methylacetophenone is used in the preparation of starting materials, 4-methylphenacyle bromide (2) and 4-methylacetophenone thiosemicarbazole (3). Results: Several novel 2,4-disubstituted-1,3-thiazole analogues were obtained via the treatment of starting materials with 4-methylphenacyl bromide, acetyl chloride, aromatic aldehydes and bromination providing thiazole derivatives 5-8 respectively. Conclusion: Compounds 5-8 were investigated for their cytotoxic activity on MCF-7 and normal breast cells. Active compounds were found and in contrast to staurosporine, compound 8 displayed the most potent cytotoxic action that showed a strong inhibitory effect (aromatase) and (protein tyrosine kinase) enzymes, proving that the novel thiazole derivatives promoted the effective anticancer drug candidates.

8.
ACS Omega ; 8(41): 38394-38405, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37867686

RESUMEN

A variety of 3-(4-chlorophenyl) acrylic acids 4a,b and 3-(4-chlorophenyl)acrylate esters 5a-i were synthesized and structurally proven by spectroscopic studies such as IR, 1H NMR, and 13C NMR as well as mass spectrometry. All substances were investigated for their antiproliferative efficacy against the MDA-MB-231 cell line. Among these, acrylic acid compound 4b demonstrated the most potent cytotoxic effect with an IC50 value of 3.24 ± 0.13 µM, as compared to CA-4 (IC50 = 1.27 ± 09 µM). Additionally, acrylic acid molecule 4b displayed an inhibitory effect against ß-tubulin polymerization with a percentage inhibition of 80.07%. Furthermore, compound 4b was found to produce considerable cell cycle arrest at the G2/M stage and cellular death, as demonstrated by FACS analysis. In addition, the in vivo antitumor screening of the sodium salt of acrylic acid 4b was carried out, and the results have shown that the tested molecule showed a significant decrease in viable EAC count and EAC volume, accompanied by a considerable increase in the life span prolongation, if compared to the positive control group. Furthermore, molecular modeling studies were performed to understand how the highly efficient chemicals 4b and 5e interact with the colchicine-binding region on tubulin. This work aims to shed light on the reasons behind their exceptional cytotoxicity and their better capacity to inhibit tubulin in comparison to CA-4.

9.
Biomedicines ; 11(8)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37626750

RESUMEN

Cyclin dependent kinase inhibitor 2A (CDKN2A) is a well-known tumor suppressor gene as it functions as a cell cycle regulator. While several reports correlate the malfunction of CDKN2A with the initiation and progression of several types of human tumors, there is a lack of a comprehensive study that analyzes the potential effect of CDKN2A genetic alterations on the human immune components and the consequences of that effect on tumor progression and patient survival in a pan-cancer model. The first stage of the current study was the analysis of CDKN2A differential expression in tumor tissues and the corresponding normal ones and correlating that with tumor stage, grade, metastasis, and clinical outcome. Next, a detailed profile of CDKN2A genetic alteration under tumor conditions was described and assessed for its effect on the status of different human immune components. CDKN2A was found to be upregulated in cancerous tissues versus normal ones and that predicted the progression of tumor stage, grade, and metastasis in addition to poor prognosis under different forms of tumors. Additionally, CDKN2A experienced different forms of genetic alteration under tumor conditions, a characteristic that influenced the infiltration and the status of CD8, the chemokine CCL4, and the chemokine receptor CCR6. Collectively, the current study demonstrates the potential employment of CDKN2A genetic alteration as a prognostic and immunological biomarker under several types of human cancers.

10.
RSC Adv ; 13(34): 23538-23546, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37546218

RESUMEN

A new series of acrylic acid and acrylate ester derivatives as modified analogs of tubulin polymerization inhibitors were designed and synthesized. The antiproliferative activity of the constructed molecules was investigated against MCF-7 breast carcinoma cells using CA-4 as positive molecule. Methyl acrylate ester 6e emerged as the most potent cytotoxic agent against MCF-7 cells, with an IC50 value of 2.57 ± 0.16 µM. Also, methyl acrylate ester molecule 6e showed good ß-tubulin polymerization inhibition activity. Cellular cycle analysis showed that compound 6e can arrest MCF-7 cells at the G2/M phase. In addition, this compound produced a significant increase in apoptotic power as compared to control untreated MCF-7 cells. Furthermore, the effect of acrylate ester 6e on the gene expression levels of p53, Bax and Bcl-2 was investigated. This molecule increased the expression levels of both p53 and Bax, and decreased the gene expression level of Bcl-2 as compared to control untreated MCF-7 carcinoma cells.

11.
Int J Pharm ; 640: 123023, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37150270

RESUMEN

A newly synthesized nanoplatform of hyaluronic acid and chitosan nanoparticles (HA/CNPs) was applied to improve the therapeutic efficacy and protection of bone marrow mesenchymal stem cells (BM-MSCs) against cisplatin (CDDP)-induced nephrotoxicity in rats. CDDP administration causes significant increases in levels of serum creatinine (SCr), urea, and KIM-1 coupled with significant albumin level falls, as indicative of acute renal dysfunction. Moreover, the level of the antioxidant enzyme (GSH) was significantly decreased, while the levels of lipid peroxidation (MDA) and inflammatory (IL-6) and apoptotic (caspase-3) markers were significantly increased, indicating a decline in the kidney's antioxidant defense and increased inflammation. In contrast, when rats were pre-treated with either MSCs or MSCs-HA/CNPs before receiving CDDP, the levels of SCr, urea, KIM-1, MDA, IL-6, and caspase-3 were significantly decreased with simultaneous significant rises in GSH and albumin, impelling a great improvement in the antioxidant and anti-inflammatory defenses of the kidney as well as its functions. Intriguingly, MSCs-HA/CNPs were more effective against caspase-3 than MSCs alone, revealing the high anti-apoptotic capability of HA/CNPs. This finding suggests that HA/CNPs could effectively protect MSCs from oxidative stress and apoptosis and thus increase their stability and longevity.


Asunto(s)
Quitosano , Células Madre Mesenquimatosas , Ratas , Animales , Cisplatino/toxicidad , Cisplatino/metabolismo , Ácido Hialurónico/farmacología , Caspasa 3/metabolismo , Quitosano/farmacología , Antioxidantes/farmacología , Antioxidantes/metabolismo , Interleucina-6/metabolismo , Riñón , Adyuvantes Inmunológicos/farmacología , Estrés Oxidativo , Urea/metabolismo , Apoptosis
12.
Front Mol Biosci ; 10: 1017148, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37033447

RESUMEN

Introduction: Several recent studies pointed out that chromodomain-helicase-DNA-binding protein 1-like (CHD1L) is a putative oncogene in many human tumors. However, up to date, there is no pan-cancer analysis performed to study the different aspects of this gene expression and behavior in tumor tissues. Methods: Here, we applied several bioinformatics tools to make a comprehensive analysis for CHD1L. Firstly we assessed the expression of CHD1L in several types of human tumors and tried to correlate that with the stage and grade of the analyzed tumors. Following that, we performed a survival analysis to study the correlation between CHD1L upregulation in tumors and the clinical outcome. Additionally, we investigated the mutation forms, the correlation with several immune cell infiltration, and the potential molecular mechanisms of CHD1L in the tumor tissue. Result and discussion: The results demonstrated that CHD1L is a highly expressed gene across several types of tumors and that was correlated with a poor prognosis for most cancer patients. Moreover, it was found that CHD1L affects the tumor immune microenvironment by influencing the infiltration level of several immune cells. Collectively, the current study provides a comprehensive overview of the oncogenic roles of CHD1L where our results nominate CHD1L as a potential prognostic biomarker and target for antitumor therapy development.

13.
Biology (Basel) ; 12(4)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37106813

RESUMEN

Epithelial cell transforming 2 (ECT2) is a potential oncogene and a number of recent studies have correlated it with the progression of several human cancers. Despite this elevated attention for ECT2 in oncology-related reports, there is no collective study to combine and integrate the expression and oncogenic behavior of ECT2 in a panel of human cancers. The current study started with a differential expression analysis of ECT2 in cancerous versus normal tissue. Following that, the study asked for the correlation between ECT2 upregulation and tumor stage, grade, and metastasis, along with its effect on patient survival. Moreover, the methylation and phosphorylation status of ECT2 in tumor versus normal tissue was assessed, in addition to the investigation of the ECT2 effect on the immune cell infiltration in the tumor microenvironment. The current study revealed that ECT2 was upregulated as mRNA and protein levels in a list of human tumors, a feature that allowed for the increased filtration of myeloid-derived suppressor cells (MDSC) and decreased the level of natural killer T (NKT) cells, which ultimately led to a poor prognosis survival. Lastly, we screened for several drugs that could inhibit ECT2 and act as antitumor agents. Collectively, this study nominated ECT2 as a prognostic and immunological biomarker, with reported inhibitors that represent potential antitumor drugs.

14.
Front Genet ; 13: 872845, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36051694

RESUMEN

The NRAS gene is a well-known oncogene that acts as a major player in carcinogenesis. Mutations in the NRAS gene have been linked to multiple types of human tumors. Therefore, the identification of the most deleterious single nucleotide polymorphisms (SNPs) in the NRAS gene is necessary to understand the key factors of tumor pathogenesis and therapy. We aimed to retrieve NRAS missense SNPs and analyze them comprehensively using sequence and structure approaches to determine the most deleterious SNPs that could increase the risk of carcinogenesis. We also adopted structural biology methods and docking tools to investigate the behavior of the filtered SNPs. After retrieving missense SNPs and analyzing them using six in silico tools, 17 mutations were found to be the most deleterious mutations in NRAS. All SNPs except S145L were found to decrease NRAS stability, and all SNPs were found on highly conserved residues and important functional domains, except R164C. In addition, all mutations except G60E and S145L showed a higher binding affinity to GTP, implicating an increase in malignancy tendency. As a consequence, all other 14 mutations were expected to increase the risk of carcinogenesis, with 5 mutations (G13R, G13C, G13V, P34R, and V152F) expected to have the highest risk. Thermodynamic stability was ensured for these SNP models through molecular dynamics simulation based on trajectory analysis. Free binding affinity toward the natural substrate, GTP, was higher for these models as compared to the native NRAS protein. The Gly13 SNP proteins depict a differential conformational state that could favor nucleotide exchange and catalytic potentiality. A further application of experimental methods with all these 14 mutations could reveal new insights into the pathogenesis and management of different types of tumors.

15.
Nanomaterials (Basel) ; 12(17)2022 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-36080111

RESUMEN

An evaluation of the ameliorative effect of pomegranate peel extract (PPE) in counteracting the toxicity of iron oxide nanoparticles (Fe2O3-NPs) that cause hepatic tissue damage is focused on herein. Forty male albino mice were haphazardly grouped into four groups as follows: the first control group was orally gavage daily with physiological saline; the second group received 100 mg/kg of PPE by the oral route day after day; the third group received 30 mg/kg Fe2O3-NPs orally; and the fourth group received both PPE and Fe2O3-NPs by the oral route, the same as the second and third sets. Later, after the completion of the experiment, we collected the liver, blood, and bone marrow of bone specimens that were obtained for further laboratory tests. For instance, exposure to Fe2O3-NPs significantly altered serum antioxidant biomarkers by decreasing the levels of total antioxidant capacity (TAC), catalase (CAT), and glutathione s-transferase (GST). Additionally, it caused changes in the morphology of hepatocytes, hepatic sinusoids, and inflammatory Kupffer cells. Furthermore, they significantly elevated the number of chromosomal aberrations including gaps, breaks, deletions, fragments, polyploidies, and ring chromosomes. Moreover, they caused a significant overexpression of TIMP-1, TNF-α, and BAX mRNA levels. Finally, the use of PPE alleviates the toxicity of Fe2O3-NPs that were induced in the hepatic tissues of mice. It is concluded that PPE extract has mitigative roles against the damage induced by Fe2O3-NPs, as it serves as an antioxidant and hepatoprotective agent. The use of PPE as a modulator of Fe2O3-NPs' hepatotoxicity could be considered as a pioneering method in the use of phytochemicals against the toxicity of nanoparticles.

16.
Molecules ; 27(14)2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35889493

RESUMEN

A group of novel trimethoxyphenyl (TMP)-based analogues were synthesized by varying the azalactone ring of 2-(3,4-dimethoxyphenyl)-4-(3,4,5-trimethoxybenzylidene)oxazolone 1 and characterized using NMR spectral data as well as elemental microanalyses. All synthesized compounds were screened for their cytotoxic activity utilizing the hepatocellular carcinoma (HepG2) cell line. Compounds 9, 10 and 11 exhibited good cytotoxic potency with IC50 values ranging from 1.38 to 3.21 µM compared to podophyllotoxin (podo) as a reference compound. In addition, compounds 9, 10 and 11 exhibited potent inhibition of ß-tubulin polymerization. DNA flow cytometry analysis of compound 9 shows cell cycle disturbance at the G2/M phase and a significant increase in Annexin-V-positive cells compared with the untreated control. Compound 9 was further studied regarding its apoptotic potential in HepG2 cells; it decreased the level of MMP and Bcl-2 as well as boosted the level of p53 and Bax compared with the control HepG2 cells.


Asunto(s)
Antineoplásicos , Apoptosis , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Estructura Molecular , Relación Estructura-Actividad , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacología
17.
Sci Rep ; 12(1): 11839, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35821255

RESUMEN

Cinnamon is a well-known natural spice and flavoring substance used worldwide. The objective of the present work is to explore the possible antitumor and immunomodulatory potencies of cinnamon essential oil (Cinn) on Ehrlich ascites carcinoma (EAC). A total of fifty female Swiss albino mice were sub-grouped into five groups (n = 10), namely, normal (a non-tumorized and non-treated) group; EAC-tumorized and non-treated group; Cinn (non-tumorized mice received Cinn, 50 mg/kg per body weight daily) group; a group of EAC-tumorized mice treated with Cinn and the final positive control group of EAC-tumorized mice received cisplatin. Eight compounds were identified from Cinn using UPLC-MS-Qtof and NMR analysis. Compared to EAC untreated group, Cinn successfully (P < 0.05) inhibited tumor growth by reducing tumor cell count (45%), viability (53%) and, proliferation accompanied by the inhibition of tumor growth rate. Moreover, a significant (P < 0.05) arrest in the cell cycle at G0/G1 phase was noticed following Cinn treatments (~ 24.5%) compared to EAC group. Moreover, Cinn markedly evoked an antitumor immune response by elevating the percentage of splenic T helper (CD3+CD4+) and T cytotoxic (CD3+CD8+) cells. It is noteworthy that Cinn treatments significantly restored different hematological alterations as well as liver and kidney functions in EAC-tumorized mice. In conclusion, results suggest that Cinn has a good antitumor and immunostimulatory potencies against Ehrlich ascites carcinoma in vivo. The mechanism underlying its antitumor activity may be attributed to its immunostimulatory effects which increase its potential as a promising anticancer candidate.


Asunto(s)
Antineoplásicos Fitogénicos , Carcinoma de Ehrlich , Aceites Volátiles , Animales , Antineoplásicos Fitogénicos/farmacología , Ascitis , Carcinoma de Ehrlich/patología , Cromatografía Liquida , Cinnamomum zeylanicum , Femenino , Inmunidad , Ratones , Ratones Endogámicos , Aceites Volátiles/farmacología , Aceites Volátiles/uso terapéutico , Espectrometría de Masas en Tándem
18.
Molecules ; 27(12)2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35745081

RESUMEN

A novel series of amides based TMP moiety was designed, synthesized and evaluated for their antiproliferative as well as enzyme inhibition activity. Compounds 6a and 6b showed remarkable cytotoxic activity against HepG2 cells with IC50 values 0.65 and 0.92 µM, respectively compared with SAHA and CA-4 as reference compounds. In addition, compound 6a demonstrated good HDAC-tubulin dual inhibition activity as it showed better HDAC activity as well as anti-tubulin activity. Moreover, compound 6a exhibited G2/M phase arrest and pre-G1 apoptosis as demonstrated by cell cycle analysis and Annexin V assays. Further apoptosis studies demonstrated that compound 6a boosted the level of caspase 3/7. Caspase 3/7 activation and apoptosis induction were evidenced by decrease in mitochondrial permeability suggesting that activation of caspase 3/7 may occur via mitochondrial apoptotic pathway.


Asunto(s)
Amidas , Antineoplásicos , Amidas/farmacología , Antineoplásicos/farmacología , Apoptosis , Caspasa 3/metabolismo , Línea Celular Tumoral , Proliferación Celular , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Células Hep G2 , Humanos , Relación Estructura-Actividad
19.
Curr Issues Mol Biol ; 44(4): 1677-1687, 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35723373

RESUMEN

Hepatocellular carcinoma (HCC) is the most common form of malignancy in the liver. Autophagy was found to have a significant effect in controlling HCC. Anthocyanins, which are naturally occurring pigments in a variety of fruits and vegetables, have been thoroughly documented to be involved in a variety of bioactive activities and are widely employed for their antioxidant capabilities. Cyanidin-3-glucoside (C3G) extracted from Morus alba L. has promising antioxidant and anti-tumour activities. The current study aims to examine the protective action of C3G against hepatocellular carcinoma through the investigation of the autophagy protein ATG16L1 expression along with its related RNA molecules (hsa_circ_0001345 and miRNA106b) in Wistar rats. In vivo precancerous lesions (PCL) were induced using diethylnitrosamine (DEN) and acetamidofluorene (2-AAF). Rats were treated with C3G (10, 15, and 20 mg/kg; 4 times weekly) for 112 days (16 weeks). Liver function tests, alfa fetoprotein, ATG16L1 expression, hsa_circ_0001345, and miRNA106b differential expression were examined. Liver sections were examined by histological and immunohistochemical approaches. The current study's findings indicated that C3G administration protects against the negative effects of DEN-2-AAF on liver functions and liver histopathological sections, which nominated C3G as a potential prophylactic agent against HCC.

20.
Diagnostics (Basel) ; 12(4)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35453838

RESUMEN

Background: Early detection and screening of breast cancer (BC) might help improve the prognosis of BC patients. This study evaluated the use of serum microRNAs (miRs) as non-invasive biomarkers in BC patients. Methods: Using quantitative real-time polymerase chain reaction, we evaluated the serum expression of four candidate miRs (miR-155, miR-373, miR-10b, and miR-34a) in 99 Egyptian BC patients and 40 healthy subjects (as a control). The miRs expression was correlated with clinicopathological data. In addition, the sensitivity and specificity of the miRs were determined using receiver operating characteristic (ROC) curve analysis. Results: Serum miR-155, miR-373, and miR-10b expression were significantly upregulated (p < 0.001), while serum miR-34a was downregulated (p < 0.00) in nonmetastatic (M0) BC patients compared to the control group. In addition, serum miR-155 and miR-10b were upregulated in BC patients with large tumor sizes and extensive nodal involvement (p < 0.001). ROC curve analysis showed high diagnostic accuracy (area under the curve = 1.0) when the four miRs were combined. Serum miR-373 was significantly upregulated in the human epidermal growth factor 2−negative (p < 0.001), estrogen receptor−positive (p < 0.005), and progesterone receptor (PR)-positive (p < 0.024) in BC patients, and serum miR-155 was significantly upregulated in PR-negative (p < 0.001) BC patients while both serum miR-155 and miR-373 were positively correlated with the tumor grade. Conclusions: Circulating serum miR-155, miR-373, miR-10b, and miR-34a are potential biomarkers for early BC detection in Egyptian patients and their combination shows high sensitivity and specificity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA