Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Front Cardiovasc Med ; 10: 1164499, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153468

RESUMEN

Periodontitis, the leading cause of adult tooth loss, has been identified as an independent risk factor for cardiovascular disease (CVD). Studies suggest that periodontitis, like other CVD risk factors, shows the persistence of increased CVD risk even after mitigation. We hypothesized that periodontitis induces epigenetic changes in hematopoietic stem cells in the bone marrow (BM), and such changes persist after the clinical elimination of the disease and underlie the increased CVD risk. We used a BM transplant approach to simulate the clinical elimination of periodontitis and the persistence of the hypothesized epigenetic reprogramming. Using the low-density lipoprotein receptor knockout (LDLRo ) atherosclerosis mouse model, BM donor mice were fed a high-fat diet to induce atherosclerosis and orally inoculated with Porphyromonas gingivalis (Pg), a keystone periodontal pathogen; the second group was sham-inoculated. Naïve LDLR o mice were irradiated and transplanted with BM from one of the two donor groups. Recipients of BM from Pg-inoculated donors developed significantly more atherosclerosis, accompanied by cytokine/chemokines that suggested BM progenitor cell mobilization and were associated with atherosclerosis and/or PD. Using whole-genome bisulfite sequencing, 375 differentially methylated regions (DMRs) and global hypomethylation in recipients of BM from Pg-inoculated donors were observed. Some DMRs pointed to the involvement of enzymes with major roles in DNA methylation and demethylation. In validation assays, we found a significant increase in the activity of ten-eleven translocase-2 and a decrease in the activity of DNA methyltransferases. Plasma S-adenosylhomocysteine levels were significantly higher, and the S-adenosylmethionine to S-adenosylhomocysteine ratio was decreased, both of which have been associated with CVD. These changes may be related to increased oxidative stress as a result of Pg infection. These data suggest a novel and paradigm-shifting mechanism in the long-term association between periodontitis and atherosclerotic CVD.

2.
J Clin Invest ; 132(9)2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35271504

RESUMEN

Clearance of dying cells by efferocytosis is necessary for cardiac repair after myocardial infarction (MI). Recent reports have suggested a protective role for vascular endothelial growth factor C (VEGFC) during acute cardiac lymphangiogenesis after MI. Here, we report that defective efferocytosis by macrophages after experimental MI led to a reduction in cardiac lymphangiogenesis and Vegfc expression. Cell-intrinsic evidence for efferocytic induction of Vegfc was revealed after adding apoptotic cells to cultured primary macrophages, which subsequently triggered Vegfc transcription and VEGFC secretion. Similarly, cardiac macrophages elevated Vegfc expression levels after MI, and mice deficient for myeloid Vegfc exhibited impaired ventricular contractility, adverse tissue remodeling, and reduced lymphangiogenesis. These results were observed in mouse models of permanent coronary occlusion and clinically relevant ischemia and reperfusion. Interestingly, myeloid Vegfc deficiency also led to increases in acute infarct size, prior to the amplitude of the acute cardiac lymphangiogenesis response. RNA-Seq and cardiac flow cytometry revealed that myeloid Vegfc deficiency was also characterized by a defective inflammatory response, and macrophage-produced VEGFC was directly effective at suppressing proinflammatory macrophage activation. Taken together, our findings indicate that cardiac macrophages promote healing through the promotion of myocardial lymphangiogenesis and the suppression of inflammatory cytokines.


Asunto(s)
Lesiones Cardíacas , Infarto del Miocardio , Factor C de Crecimiento Endotelial Vascular/metabolismo , Animales , Lesiones Cardíacas/metabolismo , Inflamación/genética , Inflamación/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/metabolismo , Fagocitosis , Factor C de Crecimiento Endotelial Vascular/genética
3.
Front Cardiovasc Med ; 8: 768481, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34888367

RESUMEN

High-fat Western diets contribute to tissue dysregulation of fatty acid and glucose intake, resulting in obesity and insulin resistance and their sequelae, including atherosclerosis. New therapies are desperately needed to interrupt this epidemic. The significant idea driving this research is that the understudied regulation of fatty acid entry into tissues at the endothelial cell (EC) interface can provide novel therapeutic targets that will greatly modify health outcomes and advance health-related knowledge. Dysfunctional endothelium, defined as activated, pro-inflammatory, and pro-thrombotic, is critical in atherosclerosis initiation, in modulating thrombotic events that could result in myocardial infarction and stroke, and is a hallmark of insulin resistance. Dyslipidemia from high-fat diets overwhelmingly contributes to the development of dysfunctional endothelium. CD36 acts as a receptor for pathological ligands generated by high-fat diets and in fatty acid uptake, and therefore, it may additionally contribute to EC dysfunction. We created EC CD36 knockout (CD36°) mice using cre-lox technology and a cre-promoter that does not eliminate CD36 in hematopoietic cells (Tie2e cre). These mice were studied on different diets, and crossed to the low density lipoprotein receptor (LDLR) knockout for atherosclerosis assessment. Our data show that EC CD36° and EC CD36°/LDLR° mice have metabolic changes suggestive of an uncompensated role for EC CD36 in fatty acid uptake. The mice lacking expression of EC CD36 had increased glucose clearance compared with controls when fed with multiple diets. EC CD36° male mice showed increased carbohydrate utilization and decreased energy expenditure by indirect calorimetry. Female EC CD36°/LDLR° mice have reduced atherosclerosis. Taken together, these data support a significant role for EC CD36 in systemic metabolism and reveal sex-specific impact on atherosclerosis and energy substrate use.

4.
JCI Insight ; 6(17)2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34314388

RESUMEN

The mechanism controlling long-chain fatty acid (LCFA) mobilization from adipose tissue is not well understood. Here, we investigated how the LCFA transporter CD36 regulates this process. By using tissue-specific KO mouse models, we showed that CD36 in adipocytes and endothelial cells mediated both LCFA deposition into and release from adipose tissue. We demonstrated the role of adipocytic and endothelial CD36 in promoting tumor growth and chemoresistance conferred by adipose tissue-derived LCFAs. We showed that dynamic cysteine S-acylation of CD36 in adipocytes, endothelial cells, and cancer cells mediated intercellular LCFA transport. We demonstrated that lipolysis induction in adipocytes triggered CD36 deacylation and deglycosylation, as well as its dissociation from interacting proteins, prohibitin-1 (PHB) and annexin 2 (ANX2). Our data indicate that lipolysis triggers caveolar endocytosis and translocation of CD36 from the cell membrane to lipid droplets. This study suggests a mechanism for both outside-in and inside-out cellular LCFA transport regulated by CD36 S-acylation and its interactions with PHB and ANX2.


Asunto(s)
Adipocitos/metabolismo , Antígenos CD36/genética , ADN/genética , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica , Enfermedades Metabólicas/genética , Procesamiento Proteico-Postraduccional , Adipocitos/patología , Tejido Adiposo/metabolismo , Animales , Animales Modificados Genéticamente , Transporte Biológico , Antígenos CD36/biosíntesis , Membrana Celular/metabolismo , Células Cultivadas , ADN/metabolismo , Modelos Animales de Enfermedad , Lipólisis , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/patología , Ratones , Ratones Endogámicos C57BL
5.
Blood ; 137(5): 678-689, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33538796

RESUMEN

Thrombospondin-1 (TSP-1) is released by platelets upon activation and can increase platelet activation, but its role in hemostasis in vivo is unclear. We show that TSP-1 is a critical mediator of hemostasis that promotes platelet activation by modulating inhibitory cyclic adenosine monophosphate (cAMP) signaling. Genetic deletion of TSP-1 did not affect platelet activation in vitro, but in vivo models of hemostasis and thrombosis showed that TSP-1-deficient mice had prolonged bleeding, defective thrombosis, and increased sensitivity to the prostacyclin mimetic iloprost. Adoptive transfer of wild-type (WT) but not TSP-1-/- platelets ameliorated the thrombotic phenotype, suggesting a key role for platelet-derived TSP-1. In functional assays, TSP-1-deficient platelets showed an increased sensitivity to cAMP signaling, inhibition of platelet aggregation, and arrest under flow by prostacyclin (PGI2). Plasma swap experiments showed that plasma TSP-1 did not correct PGI2 hypersensitivity in TSP-1-/- platelets. By contrast, incubation of TSP-1-/- platelets with releasates from WT platelets or purified TSP-1, but not releasates from TSP-1-/- platelets, reduced the inhibitory effects of PGI2. Activation of WT platelets resulted in diminished cAMP accumulation and downstream signaling, which was associated with increased activity of the cAMP hydrolyzing enzyme phosphodiesterase 3A (PDE3A). PDE3A activity and cAMP accumulation were unaffected in platelets from TSP-1-/- mice. Platelets deficient in CD36, a TSP-1 receptor, showed increased sensitivity to PGI2/cAMP signaling and diminished PDE3A activity, which was unaffected by platelet-derived or purified TSP-1. This scenario suggests that the release of TSP-1 regulates hemostasis in vivo through modulation of platelet cAMP signaling at sites of vascular injury.


Asunto(s)
Plaquetas/fisiología , AMP Cíclico/fisiología , Trastornos Hemorrágicos/genética , Hemostasis/fisiología , Trombospondina 1/fisiología , Animales , Tiempo de Sangría , Plaquetas/efectos de los fármacos , Antígenos CD36/deficiencia , Antígenos CD36/fisiología , Células Cultivadas , Cloruros/toxicidad , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/metabolismo , Gránulos Citoplasmáticos/metabolismo , Epoprostenol/fisiología , Compuestos Férricos/toxicidad , Humanos , Iloprost/farmacología , Ratones , Ratones Endogámicos C57BL , Transfusión de Plaquetas , Sistemas de Mensajero Secundario/fisiología , Trombosis/inducido químicamente , Trombosis/prevención & control , Trombospondina 1/deficiencia , Trombospondina 1/farmacología
6.
J Periodontal Res ; 55(4): 503-510, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32096230

RESUMEN

OBJECTIVES: The aim of this study was to investigate whether a peptide-based coating can prevent the adhesion of Porphyromonas gingivalis, a key human pathogen associated with periodontitis and peri-implantitis. BACKGROUND: Nonsurgical and surgical interventions have been used for the treatment of peri-implantitis; however, the effectiveness of these approaches is usually unsatisfactory. The main reason is that dental plaque on the surface of the implant is difficult to remove due to its rough surface and thread design. Recently, a peptide-based coating for implant surfaces that can reject the adhesion of Escherichia coli and improve the attachment of host cells was developed. METHODS: A salivary pellicle was created on the surfaces of peptide-coated bare discs and verified with anti-human immunoglobulin G, A and M, and anti-fibrinogen. Early colonizers, Veillonella parvula and Streptococcus sobrinus, and the later colonizer, Porphyromonas gingivalis, were labelled with green and red fluorescent dyes, respectively, and seeded on the discs. Bacterial attachment was semi-quantified by fluorescence intensity. RESULTS: The salivary pellicle was evenly distributed on the discs, with or without the peptide coating, with an average thickness of 3.84 µm. A multi-species dental biofilm was created on the salivary pellicle. The peptide coating resulted in an approximate 25% reduction in the attachment of Veillonella parvula and Streptococcus sobrinus, and a 50% reduction in Porphyromonas gingivalis, when compared to control, uncoated implant discs. CONCLUSION: The novel peptide-based coating can inhibit the attachment of Porphyromonas gingivalis. It may have the potential to impede the development of peri-implantitis.


Asunto(s)
Implantes Dentales , Periimplantitis , Porphyromonas gingivalis , Biopelículas , Implantes Dentales/microbiología , Humanos , Porphyromonas gingivalis/aislamiento & purificación , Veillonella
7.
Haematologica ; 105(3): 808-819, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31289200

RESUMEN

Prostacyclin (PGI2) controls platelet activation and thrombosis through a cyclic adenosine monophosphate (cAMP) signaling cascade. However, in patients with cardiovascular diseases this protective mechanism fails for reasons that are unclear. Using both pharmacological and genetic approaches we describe a mechanism by which oxidized low density lipoproteins (oxLDL) associated with dyslipidemia promote platelet activation through impaired PGI2 sensitivity and diminished cAMP signaling. In functional assays using human platelets, oxLDL modulated the inhibitory effects of PGI2, but not a phosphodiesterase (PDE)-insensitive cAMP analog, on platelet aggregation, granule secretion and in vitro thrombosis. Examination of the mechanism revealed that oxLDL promoted the hydrolysis of cAMP through the phosphorylation and activation of PDE3A, leading to diminished cAMP signaling. PDE3A activation by oxLDL required Src family kinases, Syk and protein kinase C. The effects of oxLDL on platelet function and cAMP signaling were blocked by pharmacological inhibition of CD36, mimicked by CD36-specific oxidized phospholipids and ablated in CD36-/- murine platelets. The injection of oxLDL into wild-type mice strongly promoted FeCl3-induced carotid thrombosis in vivo, which was prevented by pharmacological inhibition of PDE3A. Furthermore, blood from dyslipidemic mice was associated with increased oxidative lipid stress, reduced platelet sensitivity to PGI2 ex vivo and diminished PKA signaling. In contrast, platelet sensitivity to a PDE-resistant cAMP analog remained normal. Genetic deletion of CD36 protected dyslipidemic animals from PGI2 hyposensitivity and restored PKA signaling. These data suggest that CD36 can translate atherogenic lipid stress into platelet hyperactivity through modulation of inhibitory cAMP signaling.


Asunto(s)
Plaquetas , Epoprostenol , Animales , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/genética , Humanos , Lípidos , Ratones , Activación Plaquetaria , Agregación Plaquetaria
8.
Cell Rep ; 29(11): 3405-3420.e5, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31825825

RESUMEN

Although it is established that fatty acid (FA) synthesis supports anabolic growth in cancer, the role of exogenous FA uptake remains elusive. Here we show that, during acquisition of resistance to HER2 inhibition, metabolic rewiring of breast cancer cells favors reliance on exogenous FA uptake over de novo FA synthesis. Through cDNA microarray analysis, we identify the FA transporter CD36 as a critical gene upregulated in cells with acquired resistance to the HER2 inhibitor lapatinib. Accordingly, resistant cells exhibit increased exogenous FA uptake and metabolic plasticity. Genetic or pharmacological inhibition of CD36 suppresses the growth of lapatinib-resistant but not lapatinib-sensitive cells in vitro and in vivo. Deletion of Cd36 in mammary tissues of MMTV-neu mice significantly attenuates tumorigenesis. In breast cancer patients, CD36 expression increases following anti-HER2 therapy, which correlates with a poor prognosis. Our results define CD36-mediated metabolic rewiring as an essential survival mechanism in HER2-positive breast cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Antígenos CD36/metabolismo , Resistencia a Antineoplásicos , Ácidos Grasos/metabolismo , Receptor ErbB-2/antagonistas & inhibidores , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Antígenos CD36/genética , Línea Celular Tumoral , Femenino , Humanos , Lapatinib/farmacología , Lapatinib/uso terapéutico , Ratones , Ratones Endogámicos NOD , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
9.
J Dtsch Dermatol Ges ; 17(12): 1227-1238, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31846220

RESUMEN

Loricrin downregulation has been associated with age-related changes as well as inherited and inflammatory skin diseases. We hypothesize that changes in loricrin could be more related to altered barrier function and consequently disorders that affect epithelial cells, such as psoriasis, atopic dermatitis (AD), erythrokeratoderma, loricrin keratoderma (LK) and periodontitis. The aim of this review is to summarize what is known about the association between loricrin downregulation and epithelial-related disorders (ERDs). A search was performed on the following databases: Medline, Cochrane Library, PubMed, EMBASE, Lilacs, Scopus and Google Scholar, resulting in 16 included articles. Loricrin keratoderma was the ERD most frequently associated with loricrin mutations (730insG, 709insC and 578insG; 5/7 cases - 71.44 %). Atopic dermatitis was the ERD most frequently associated with loricrin downregulation (2/7 cases - 28.6 %). Mutilating palmoplantar keratoderma, progressive symmetrical erythrokeratoderma and a new type of erythrokeratoderma were not associated with any mutations. At the gene level, periodontitis patients showed the highest decrease (-6.89x), followed by AD (-6.5x) and psoriasis patients (-0.5x). In summary, loricrin mutation and downregulation were associated with several ERDs. The diversity in disease presentation is likely related to whether there is a total loss of loricrin, mislocalization and/or if the mutant form of loricrin causes dysfunction of other proteins and/or changes in cornification.


Asunto(s)
Proteínas de la Membrana/metabolismo , Mutación , Enfermedades de la Piel/metabolismo , Análisis Mutacional de ADN , Regulación hacia Abajo , Femenino , Expresión Génica , Humanos , Queratosis/genética , Queratosis/metabolismo , Masculino , Proteínas de la Membrana/genética , Membrana Mucosa/metabolismo , Psoriasis/genética , Psoriasis/metabolismo , ARN Mensajero/metabolismo , Enfermedades de la Piel/genética
10.
Sci Transl Med ; 11(478)2019 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-30728288

RESUMEN

Metabolism alterations are hallmarks of cancer, but the involvement of lipid metabolism in disease progression is unclear. We investigated the role of lipid metabolism in prostate cancer using tissue from patients with prostate cancer and patient-derived xenograft mouse models. We showed that fatty acid uptake was increased in human prostate cancer and that these fatty acids were directed toward biomass production. These changes were mediated, at least partly, by the fatty acid transporter CD36, which was associated with aggressive disease. Deleting Cd36 in the prostate of cancer-susceptible Pten-/- mice reduced fatty acid uptake and the abundance of oncogenic signaling lipids and slowed cancer progression. Moreover, CD36 antibody therapy reduced cancer severity in patient-derived xenografts. We further demonstrated cross-talk between fatty acid uptake and de novo lipogenesis and found that dual targeting of these pathways more potently inhibited proliferation of human cancer-derived organoids compared to the single treatments. These findings identify a critical role for CD36-mediated fatty acid uptake in prostate cancer and suggest that targeting fatty acid uptake might be an effective strategy for treating prostate cancer.


Asunto(s)
Ácidos Grasos/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Animales , Anticuerpos Monoclonales/metabolismo , Biomasa , Antígenos CD36/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Células Epiteliales/metabolismo , Eliminación de Gen , Silenciador del Gen , Humanos , Metabolismo de los Lípidos , Masculino , Ratones , Invasividad Neoplásica , Fosfohidrolasa PTEN/deficiencia , Fosfohidrolasa PTEN/metabolismo , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , ARN Interferente Pequeño/metabolismo , Carga Tumoral
11.
Platelets ; 30(4): 467-472, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-29733744

RESUMEN

Oxidized low-density lipoprotein (oxLDL) and associated oxidized phosphocholine-headgroup phospholipids (oxPCs) activate blood platelets through ligation of the scavenger receptor CD36. Previously, we found that oxLDL stimulated phosphorylation of phospholipase Cγ2 (PLCγ2). However, the functional relevance of PLCγ2 phosphorylation in oxLDL-mediated platelet hyperactivity remained elusive. Here, we set out to explore the functional importance of PLCγ2 in oxLDL-mediated platelet activation using human and genetically modified murine platelets. The CD36-specific oxidized phospholipid (oxPCCD36) triggered the generation of reactive oxygen species (ROS) in platelets under static and arterial flow conditions. The ROS generation in response to oxPCCD36 was sustained for up to 3 h but ablated in CD36- and PLCγ2-deficient platelets. The functional importance of ROS generation in response to atherogenic lipid stress was examined through measurement of P-selectin expression. OxPCCD36 induced P-selectin expression, but required up to 60 min incubation, consistent with the timeline for ROS generation. P-selectin expression was not observed in CD36- and PLCγ2-deficient mice. The ability of oxPCCD36 and oxLDL to stimulate P-selectin expression was prevented by incubation of platelets with the ROS scavenger N-acetyl-cysteine (NAC) and the NOX-2 inhibitor gp91ds-tat, but not with the NOX-1 inhibitor ML171. In summary, we provide evidence that prolonged exposure to oxLDL-associated oxidized phospholipids induces platelet activation via NOX-2-mediated ROS production in a CD36- and PLCγ2-dependent manner.


Asunto(s)
Dislipidemias/diagnóstico , Dislipidemias/genética , Lipoproteínas LDL/metabolismo , Fosfolipasa C gamma/metabolismo , Activación Plaquetaria/genética , Animales , Dislipidemias/patología , Humanos , Ratones , Especies Reactivas de Oxígeno
12.
Arterioscler Thromb Vasc Biol ; 39(2): 263-275, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30567481

RESUMEN

Objective- Dysregulated proliferation of vascular smooth muscle cells (VSMC) plays an essential role in neointimal hyperplasia. CD36 functions critically in atherogenesis and thrombosis. We hypothesize that CD36 regulates VSMC proliferation and contributes to the development of obstructive vascular diseases. Approach and Results- We found by immunofluorescent staining that CD36 was highly expressed in human vessels with obstructive diseases. Using guidewire-induced carotid artery injury and shear stress-induced intima thickening models, we compared neointimal hyperplasia in Apoe-/-, Cd36-/- /Apoe-/-, and CD36 specifically deleted in VSMC (VSMC cd36-/-) mice. CD36 deficiency, either global or VSMC-specific, dramatically reduced injury-induced neointimal thickening. Correspondingly, carotid artery blood flow was significantly increased in Cd36-/- /Apoe-/- compared with Apoe-/- mice. In cultured VSMCs from thoracic aorta of wild-type and Cd36-/- mice, we found that loss of CD36 significantly decreased serum-stimulated proliferation and increased cell populations in S phase, suggesting that CD36 is necessary for VSMC S/G2-M-phase transition. Treatment of VSMCs with a TSR (thrombospondin type 1 repeat) peptide significantly increased wild-type, but not Cd36-/- VSMC proliferation. TSR or serum treatment significantly increased cyclin A expression in wild-type, but not in Cd36-/- VSMCs. STAT3 (signal transducer and activator of transcription), which reportedly enhances both VSMC differentiation and maturation, was higher in Cd36-/- VSMCs. CD36 deficiency significantly decreased expression of Col1A1 (type 1 collagen A1 chain) and TGF-ß1 (transforming growth factor beta 1), and increased expression of contractile proteins, including calponin 1 and smooth muscle α actin, and dramatically increased cell contraction. Conclusions- CD36 promotes VSMC proliferation via upregulation of cyclin A expression that contributes to the development of neointimal hyperplasia, collagen deposition, and obstructive vascular diseases.


Asunto(s)
Antígenos CD36/fisiología , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/fisiología , Neointima/patología , Animales , Antígenos CD36/análisis , Proliferación Celular , Ciclina A/análisis , Hiperplasia , Masculino , Ratones , Ratones Endogámicos C57BL , Factor de Transcripción STAT3/fisiología
13.
FASEB J ; 32(2): 807-818, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29018142

RESUMEN

CD36 is a multiligand receptor involved in lipid metabolism. We investigated the mechanisms underlying the cardioprotective effect of CP-3(iv), an azapeptide belonging to a new class of selective CD36 ligands. The role of CP-3(iv) in mediating cardioprotection was investigated because CD36 signaling leads to activation of peroxisome proliferator-activated receptor-γ, a transcriptional regulator of adiponectin. CP-3(iv) pretreatment reduced infarct size by 54% and preserved hemodynamics in C57BL/6 mice subjected to 30 min coronary ligation and reperfusion but had no effect in CD36-deficient mice. The effects of CP-3(iv) were associated with an increase in circulating adiponectin levels, epididymal fat adiponectin gene expression, and adiponectin transcriptional regulators ( Pparg, Cebpb, Sirt1) after 6 h of reperfusion. Reduced myocardial oxidative stress and apoptosis were observed along with an increase in expression of myocardial adiponectin target proteins, including cyclooxygenase-2, phospho-AMPK, and phospho-Akt. Moreover, CP-3(iv) increased myocardial performance in isolated hearts, whereas blockade of adiponectin with an anti-adiponectin antibody abrogated it. CP-3(iv) exerts cardioprotection against myocardial ischemia and reperfusion (MI/R) injury and dysfunction, at least in part, by increasing circulating and myocardial adiponectin levels. Hence, both paracrine and endocrine effects of adiponectin may contribute to reduced reactive oxygen species generation and apoptosis after MI/R, in a CD36-dependent manner.-Huynh, D. N., Bessi, V. L., Ménard, L., Piquereau, J., Proulx, C., Febbraio, M., Lubell, W. D., Carpentier, A. C., Burelle, Y., Ong, H., Marleau, S. Adiponectin has a pivotal role in the cardioprotective effect of CP-3(iv), a selective CD36 azapeptide ligand, after transient coronary artery occlusion in mice.


Asunto(s)
Adiponectina/biosíntesis , Antígenos CD36/agonistas , Cardiotónicos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Miocardio/metabolismo , Péptidos/farmacología , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocardio/patología , Estrés Oxidativo/efectos de los fármacos
14.
J Immunol ; 198(12): 4855-4867, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28500072

RESUMEN

Macrophage accumulation is a critical step during development of chronic inflammation, initiating progression of many devastating diseases. Leukocyte-specific integrin αDß2 (CD11d/CD18) is dramatically upregulated on macrophages at inflammatory sites. Previously we found that CD11d overexpression on cell surfaces inhibits in vitro cell migration due to excessive adhesion. In this study, we have investigated how inflammation-mediated CD11d upregulation contributes to macrophage retention at inflammatory sites during atherogenesis. Atherosclerosis was evaluated in CD11d-/-/ApoE-/- mice after 16 wk on a Western diet. CD11d deficiency led to a marked reduction in lipid deposition in aortas and isolated macrophages. Macrophage numbers in aortic sinuses of CD11d-/- mice were reduced without affecting their apoptosis and proliferation. Adoptive transfer of fluorescently labeled wild-type and CD11d-/- monocytes into ApoE-/- mice demonstrated similar recruitment from circulation, but reduced accumulation of CD11d-/- macrophages within the aortas. Furthermore, CD11d expression was significantly upregulated on macrophages in atherosclerotic lesions and M1 macrophages in vitro. Interestingly, expression of the related ligand-sharing integrin CD11b was not altered. This difference defines their distinct roles in the regulation of macrophage migration. CD11d-deficient M1 macrophages demonstrated improved migration in a three-dimensional fibrin matrix and during resolution of peritoneal inflammation, whereas migration of CD11b-/- M1 macrophages was not affected. These results prove the contribution of high densities of CD11d to macrophage arrest during atherogenesis. Because high expression of CD11d was detected in several inflammation-dependent diseases, we suggest that CD11d/CD18 upregulation on proinflammatory macrophages may represent a common mechanism for macrophage retention at inflammatory sites, thereby promoting chronic inflammation and disease development.


Asunto(s)
Aterosclerosis/inmunología , Vasos Sanguíneos/patología , Antígenos CD11/genética , Antígenos CD18/genética , Cadenas alfa de Integrinas/genética , Macrófagos/inmunología , Animales , Aorta/inmunología , Aorta/patología , Apolipoproteínas E/deficiencia , Aterosclerosis/etiología , Aterosclerosis/patología , Vasos Sanguíneos/inmunología , Antígenos CD11/inmunología , Antígenos CD18/inmunología , Dieta Occidental , Humanos , Inflamación/patología , Mediadores de Inflamación/metabolismo , Cadenas alfa de Integrinas/deficiencia , Cadenas alfa de Integrinas/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Ratones Noqueados , Peritonitis/inmunología , Peritonitis/patología , Activación Transcripcional , Regulación hacia Arriba
15.
J Biol Chem ; 292(22): 9394-9408, 2017 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-28416609

RESUMEN

In malaria, CD36 plays several roles, including mediating parasite sequestration to host organs, phagocytic clearance of parasites, and regulation of immunity. Although the functions of CD36 in parasite sequestration and phagocytosis have been clearly defined, less is known about its role in malaria immunity. Here, to understand the function of CD36 in malaria immunity, we studied parasite growth, innate and adaptive immune responses, and host survival in WT and Cd36-/- mice infected with a non-lethal strain of Plasmodium yoelii Compared with Cd36-/- mice, WT mice had lower parasitemias and were resistant to death. At early but not at later stages of infection, WT mice had higher circulatory proinflammatory cytokines and lower anti-inflammatory cytokines than Cd36-/- mice. WT mice showed higher frequencies of proinflammatory cytokine-producing and lower frequencies of anti-inflammatory cytokine-producing dendritic cells (DCs) and natural killer cells than Cd36-/- mice. Cytokines produced by co-cultures of DCs from infected mice and ovalbumin-specific, MHC class II-restricted α/ß (OT-II) T cells reflected CD36-dependent DC function. WT mice also showed increased Th1 and reduced Th2 responses compared with Cd36-/- mice, mainly at early stages of infection. Furthermore, in infected WT mice, macrophages and neutrophils expressed higher levels of phagocytic receptors and showed enhanced phagocytosis of parasite-infected erythrocytes than those in Cd36-/- mice in an IFN-γ-dependent manner. However, there were no differences in malaria-induced humoral responses between WT and Cd36-/- mice. Overall, the results show that CD36 plays a significant role in controlling parasite burden by contributing to proinflammatory cytokine responses by DCs and natural killer cells, Th1 development, phagocytic receptor expression, and phagocytic activity.


Asunto(s)
Antígenos CD36/inmunología , Inmunidad Humoral , Malaria/inmunología , Parasitemia/inmunología , Plasmodium yoelii/inmunología , Animales , Antígenos CD36/genética , Células Dendríticas/inmunología , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/inmunología , Interferón gamma/genética , Interferón gamma/inmunología , Células Asesinas Naturales/inmunología , Macrófagos/inmunología , Malaria/genética , Ratones , Ratones Noqueados , Neutrófilos/inmunología , Parasitemia/genética , Fagocitosis/genética , Células TH1/inmunología , Células Th2/inmunología
16.
Am J Physiol Heart Circ Physiol ; 312(3): H552-H560, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28062415

RESUMEN

Previous studies have shown that loss of CD36 protects the heart from dysfunction induced by pressure overload in the presence of diet-induced insulin resistance and/or obesity. The beneficial effects of CD36 ablation in this context are mediated by preventing excessive cardiac fatty acid (FA) entry and reducing lipotoxic injury. However, whether or not the loss of CD36 can prevent pressure overload-induced cardiac dysfunction in the absence of chronic exposure to high circulating FAs is presently unknown. To address this, we utilized a tamoxifen-inducible cardiomyocyte-specific CD36 knockout (icCD36KO) mouse and genetically deleted CD36 in adulthood. Control mice (CD36 floxed/floxed mice) and icCD36KO mice were treated with tamoxifen and subsequently subjected to transverse aortic constriction (TAC) surgery to generate pressure overload-induced cardiac hypertrophy. Consistent with CD36 mediating a significant proportion of FA entry into the cardiomyocyte and subsequent FA utilization for ATP production, hearts from icCD36KO mice were metabolically inefficient and displayed signs of energetic stress, including activation of the energetic stress kinase, AMPK. In addition, impaired energetics in icCD36KO mice contributed to a rapid progression from compensated hypertrophy to heart failure. However, icCD36KO mice fed a medium-chain FA diet, whereby medium-chain FAs can enter into the cardiomyocyte independent from CD36, were protected from TAC-induced heart failure. Together these data suggest that limiting FA uptake and partial inhibition of FA oxidation in the heart via CD36 ablation may be detrimental for the compensated hypertrophic heart in the absence of sufficiently elevated circulating FAs to provide an adequate energy source.NEW & NOTEWORTHY Limiting CD36-mediated fatty acid uptake in the setting of obesity and/or insulin resistance protects the heart from cardiac hypertrophy and dysfunction. However, cardiomyocyte-specific CD36 ablation in the absence of elevated circulating fatty acid levels accelerates the progression of pressure overload-induced cardiac hypertrophy to systolic heart failure.


Asunto(s)
Antígenos CD36/genética , Cardiomegalia/genética , Cardiomegalia/patología , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Miocitos Cardíacos/patología , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Trifosfato/biosíntesis , Animales , Cardiomegalia/inducido químicamente , Progresión de la Enfermedad , Metabolismo Energético/genética , Antagonistas de Estrógenos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/patología , Tamoxifeno , Triglicéridos/sangre
17.
J Immunol ; 195(5): 2294-302, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26223653

RESUMEN

Staphylococcus aureus is the primary cause of skin and skin structure infections (SSSIs) in the United States. α-Hemolysin (Hla), a pore-forming toxin secreted by S. aureus and a major contributor to tissue necrosis, prompts recruitment of neutrophils critical for host defense against S. aureus infections. However, the failure to clear apoptotic neutrophils can result in damage to host tissues, suggesting that mechanisms of neutrophil clearance are essential to limiting Hla-mediated dermonecrosis. We hypothesized that CD36, a scavenger receptor which facilitates recognition of apoptosing cells, would play a significant role in regulating Hla-mediated inflammation and tissue injury during S. aureus SSSI. In this study, we show that CD36 on macrophages negatively regulates dermonecrosis caused by Hla-producing S. aureus. This regulation is independent of bacterial burden, as CD36 also limits dermonecrosis caused by intoxication with sterile bacterial supernatant or purified Hla. Dermonecrotic lesions of supernatant intoxicated CD36(-/-) mice are significantly larger, with increased neutrophil accumulation and IL-1ß expression, compared with CD36(+/+) (wild-type) mice. Neutrophil depletion of CD36(-/-) mice prevents this phenotype, demonstrating the contribution of neutrophils to tissue injury in this model. Furthermore, administration of CD36(+/+) but not CD36(-/-) macrophages near the site of intoxication reduces dermonecrosis, IL-1ß production and neutrophil accumulation to levels seen in wild-type mice. This therapeutic effect is reversed by inhibiting actin polymerization in the CD36(+/+) macrophages, supporting a mechanism of action whereby CD36-dependent macrophage phagocytosis of apoptotic neutrophils regulates Hla-mediated dermonecrosis. Taken together, these data demonstrate that CD36 is essential for controlling the host innate response to S. aureus skin infection.


Asunto(s)
Toxinas Bacterianas/inmunología , Antígenos CD36/inmunología , Proteínas Hemolisinas/inmunología , Inmunidad Innata/inmunología , Enfermedades Cutáneas Bacterianas/inmunología , Infecciones Estafilocócicas/inmunología , Animales , Apoptosis/inmunología , Western Blotting , Antígenos CD36/genética , Antígenos CD36/metabolismo , Modelos Animales de Enfermedad , Citometría de Flujo , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata/genética , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Interleucina-1beta/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/inmunología , Neutrófilos/metabolismo , Fagocitosis/inmunología , Receptores Depuradores/genética , Receptores Depuradores/inmunología , Receptores Depuradores/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Enfermedades Cutáneas Bacterianas/genética , Enfermedades Cutáneas Bacterianas/microbiología , Infecciones Estafilocócicas/genética , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/inmunología , Staphylococcus aureus/fisiología
18.
Am J Pathol ; 185(8): 2232-45, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26092500

RESUMEN

The removal of apoptotic cells is an innate function of tissue macrophages; however, its role in disease progression is unclear. The present study was designed to investigate the role of macrophage CD36, a recognized receptor of apoptotic cells and oxidized lipids, in two models of kidney injury: unilateral ureteral obstruction (UUO) and ischemia reperfusion. To differentiate the macrophage CD36-specific effects in vivo, we generated CD36 chimeric mice by bone marrow transplantation and evaluated the two models. Fibrosis severity was substantially decreased after UUO with a corresponding decrease in matrix synthesis in macrophage CD36-deficient mice. Despite a reduction in fibrosis severity, a 56% increase in apoptotic cells was found without an increase in apoptotic effectors. In addition, a substantial reduction was observed in tumor necrosis factor-α and transforming growth factor-ß1 mRNA levels and intracellular bioactive oxidized lipid levels in CD36-deficient macrophages. To validate the functional role of macrophage CD36, we performed unilateral ischemia reperfusion, followed by contralateral nephrectomy. Similarly, we found that the severity of fibrosis was reduced by 55% with a corresponding improvement in kidney function by 88% in macrophage CD36-deficient mice. Taken together, these data suggest that macrophage CD36 is a critical regulator of oxidative fibrogenic signaling and that CD36-mediated phagocytosis of apoptotic cells may serve as an important pathway in the progression of fibrosis.


Asunto(s)
Apoptosis/fisiología , Antígenos CD36/metabolismo , Macrófagos/metabolismo , Daño por Reperfusión/metabolismo , Obstrucción Ureteral/metabolismo , Animales , Antígenos CD36/genética , Fibrosis , Riñón/metabolismo , Riñón/patología , Activación de Macrófagos/fisiología , Macrófagos/patología , Masculino , Ratones , Ratones Noqueados , Daño por Reperfusión/patología , Obstrucción Ureteral/patología
19.
PLoS One ; 10(5): e0125126, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25938460

RESUMEN

There is strong epidemiological association between periodontal disease and cardiovascular disease but underlying mechanisms remain ill-defined. Because the human periodontal disease pathogen, Porphyromonas gingivalis (Pg), interacts with innate immune receptors Toll-like Receptor (TLR) 2 and CD36/scavenger receptor-B2 (SR-B2), we studied how CD36/SR-B2 and TLR pathways promote Pg-mediated atherosclerosis. Western diet fed low density lipoprotein receptor knockout (Ldlr°) mice infected orally with Pg had a significant increase in lesion burden compared with uninfected controls.This increase was entirely CD36/SR-B2-dependent, as there was no significant change in lesion burden between infected and uninfected Cd36o/Ldlro mice [corrected]. Western diet feeding promoted enhanced CD36/SR-B2-dependent IL1ß generation and foam cell formation as a result of Pg lipopolysaccharide (PgLPS) exposure. CD36/SR-B2 and TLR2 were necessary for inflammasome activation and optimal IL1ß generation, but also resulted in LPS induced lethality (pyroptosis). Modified forms of LDL inhibited Pg-mediated IL1ß generation in a CD36/SR-B2-dependent manner and prevented pyroptosis, but promoted foam cell formation. Our data show that Pg infection in the oral cavity can lead to significant TLR2-CD36/SR-B2 dependent IL1ß release. In the vessel wall, macrophages encountering systemic release of IL1ß, PgLPS and modified LDL have increased lipid uptake, foam cell formation, and release of IL1ß, but because pyroptosis is inhibited, this enables macrophage survival and promotes increased plaque development. These studies may explain increased lesion burden as a result of periodontal disease, and suggest strategies for development of therapeutics.


Asunto(s)
Aterosclerosis/complicaciones , Aterosclerosis/microbiología , Antígenos CD36/metabolismo , Porphyromonas gingivalis/fisiología , Receptores de LDL/deficiencia , Receptor Toll-Like 2/metabolismo , Animales , Anticuerpos Monoclonales/farmacología , Apoptosis/efectos de los fármacos , Aterosclerosis/sangre , Infecciones por Bacteroidaceae/sangre , Infecciones por Bacteroidaceae/complicaciones , Infecciones por Bacteroidaceae/metabolismo , Infecciones por Bacteroidaceae/patología , Peso Corporal/efectos de los fármacos , Proteínas Portadoras/metabolismo , Modelos Animales de Enfermedad , Conducta Alimentaria , Femenino , Células Espumosas/metabolismo , Inflamasomas/metabolismo , Interferón gamma/sangre , Interleucina-1beta/metabolismo , Interleucina-6/sangre , Lipopolisacáridos/farmacología , Lipoproteínas LDL/farmacología , Masculino , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR , Porphyromonas gingivalis/efectos de los fármacos , Receptores de LDL/metabolismo , Factores de Riesgo , Seno Aórtico/efectos de los fármacos , Seno Aórtico/microbiología , Seno Aórtico/patología
20.
Aging (Albany NY) ; 6(4): 281-95, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24751397

RESUMEN

CD36 has been associated with obesity and diabetes in human liver diseases, however, its role in age-associated nonalcoholic fatty liver disease (NAFLD) is unknown. Therefore, liver biopsies were collected from individuals with histologically normal livers (n=30), and from patients diagnosed with simple steatosis (NAS; n=26). Patients were divided into two groups according to age and liver biopsy samples were immunostained for CD36. NAFLD parameters were examined in young (12-week) and middle-aged (52-week) C57BL/6J mice, some fed with chow-diet and some fed with low-fat (LFD; 10% kcal fat) or high-fat diet (HFD; 60% kcal fat) for 12-weeks. CD36 expression was positively associated with age in individuals with normal livers but not in NAS patients. However, CD36 was predominantly located at the plasma membrane of hepatocytes in aged NAS patients as compared to young. In chow-fed mice, aging, despite an increase in hepatic CD36 expression, was not associated with the development of NAFLD. However, middle-aged mice did exhibit the development of HFD-induced NAFLD, mediated by an increase of CD36 on the membrane. Enhanced CD36-mediated hepatic fat uptake may contribute to an accelerated progression of NAFLD in mice and humans. Therapies to prevent the increase in CD36 expression and/or CD36 from anchoring at the membrane may prevent the development of NAFLD.


Asunto(s)
Antígenos CD36/biosíntesis , Hepatocitos/metabolismo , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Adulto , Anciano , Envejecimiento , Animales , Membrana Celular/metabolismo , Femenino , Humanos , Immunoblotting , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Reacción en Cadena en Tiempo Real de la Polimerasa , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA