Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Sci Rep ; 14(1): 15407, 2024 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965251

RESUMEN

The kidney and brain play critical roles in the regulation of blood pressure. Neuropeptide FF (NPFF), originally isolated from the bovine brain, has been suggested to contribute to the pathogenesis of hypertension. However, the roles of NPFF and its receptors, NPFF-R1 and NPFF-R2, in the regulation of blood pressure, via the kidney, are not known. In this study, we found that the transcripts and proteins of NPFF and its receptors, NPFF-R1 and NPFF-R2, were expressed in mouse and human renal proximal tubules (RPTs). In mouse RPT cells (RPTCs), NPFF, but not RF-amide-related peptide-2 (RFRP-2), decreased the forskolin-stimulated cAMP production in a concentration- and time-dependent manner. Furthermore, dopamine D1-like receptors colocalized and co-immunoprecipitated with NPFF-R1 and NPFF-R2 in human RPTCs. The increase in cAMP production in human RPTCs caused by fenoldopam, a D1-like receptor agonist, was attenuated by NPFF, indicating an antagonistic interaction between NPFF and D1-like receptors. The renal subcapsular infusion of NPFF in C57BL/6 mice decreased renal sodium excretion and increased blood pressure. The NPFF-mediated increase in blood pressure was prevented by RF-9, an antagonist of NPFF receptors. Taken together, our findings suggest that autocrine NPFF and its receptors in the kidney regulate blood pressure, but the mechanisms remain to be determined.


Asunto(s)
Comunicación Autocrina , Presión Sanguínea , AMP Cíclico , Oligopéptidos , Transducción de Señal , Animales , Humanos , Ratones , AMP Cíclico/metabolismo , Oligopéptidos/farmacología , Oligopéptidos/metabolismo , Receptores de Neuropéptido/metabolismo , Túbulos Renales Proximales/metabolismo , Masculino , Riñón/metabolismo , Ratones Endogámicos C57BL , Receptores de Dopamina D1/metabolismo
2.
Antioxid Redox Signal ; 38(16-18): 1150-1166, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36401517

RESUMEN

Aims: Reactive oxygen species are highly reactive molecules generated in different subcellular compartments. Both the dopamine D5 receptor (D5R) and endoplasmic reticulum (ER)-resident peroxiredoxin-4 (PRDX4) play protective roles against oxidative stress. This study is aimed at investigating the interaction between PRDX4 and D5R in regulating oxidative stress in the kidney. Results: Fenoldopam (FEN), a D1R and D5R agonist, increased PRDX4 protein expression, mainly in non-lipid rafts, in D5R-HEK 293 cells. FEN increased the co-immunoprecipitation of D5R and PRDX4 and their colocalization, particularly in the ER. The efficiency of Förster resonance energy transfer was increased with FEN treatment measured with fluorescence lifetime imaging microscopy. Silencing of PRDX4 increased hydrogen peroxide production, impaired the inhibitory effect of FEN on hydrogen peroxide production, and increased the production of interleukin-1ß, tumor necrosis factor (TNF), and caspase-12 in renal cells. Furthermore, in Drd5-/- mice, which are in a state of oxidative stress, renal cortical PRDX4 was decreased whereas interleukin-1ß, TNF, and caspase-12 were increased, relative to their normotensive wild-type Drd5+/+ littermates. Innovation: Our findings demonstrate a novel relationship between D5R and PRDX4 and the consequent effects of this relationship in attenuating hydrogen peroxide production in the ER and the production of proinflammatory cytokines. This study provides the potential for the development of biomarkers and new therapeutics for renal inflammatory disorders, including hypertension. Conclusion: PRDX4 interacts with D5R to decrease oxidative stress and inflammation in renal cells that may have the potential for translational significance. Antioxid. Redox Signal. 38, 1150-1166.


Asunto(s)
Peróxido de Hidrógeno , Receptores de Dopamina D5 , Ratones , Humanos , Animales , Receptores de Dopamina D5/metabolismo , Interleucina-1beta/metabolismo , Peróxido de Hidrógeno/metabolismo , Caspasa 12/metabolismo , Células HEK293 , Riñón/metabolismo , Fenoldopam/metabolismo , Fenoldopam/farmacología , Estrés Oxidativo , Inflamación/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo
3.
J Cell Sci Ther ; 13(2)2022.
Artículo en Inglés | MEDLINE | ID: mdl-37994311

RESUMEN

Hypertension and breast cancer are two common diseases occurring in women. Clinical studies have shown increased breast cancer incidence in hypertensive women. Several lines of evidence demonstrate that G protein-coupled Receptor Kinase 4 (GRK4) could be a common risk factor for hypertension and breast cancer. This article reviews our current understanding of molecular mechanisms of GRK4 in hypertension and breast cancer.

4.
Oncotarget ; 12(20): 2022-2038, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34611477

RESUMEN

Lung cancer is the leading cause of cancer-related deaths in the USA and worldwide. Yet, about 95% of new drug candidates validated in preclinical phase eventually fail in clinical trials. Such a high attrition rate is attributed mostly to the inability of conventional two-dimensionally (2D) cultured cancer cells to mimic native three-dimensional (3D) growth of malignant cells in human tumors. To ascertain phenotypical differences between these two distinct culture conditions, we carried out a comparative proteomic analysis of a membrane fraction obtained from 3D- and 2D-cultured NSCLC model cell line NCI-H23. This analysis revealed a map of 1,166 (24%) protein species regulated in culture dependent manner, including differential regulation of a subset of cell surface-based CD molecules. We confirmed exclusive expression of CD99, CD146 and CD239 in 3D culture. Furthermore, label-free quantitation, targeting KRas proteoform-specific peptides, revealed upregulation of both wild type and monoallelic KRas4BG12C mutant at the surface of 3D cultured cells. In order to reduce the high attrition rate of new drug candidates, the results of this study strongly suggests exploiting base-line molecular profiling of a large number of patient-derived NSCLC cell lines grown in 2D and 3D culture, prior to actual drug candidate testing.

5.
Breast Cancer (Auckl) ; 15: 11782234211015753, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34103922

RESUMEN

PURPOSE: Clinical studies have shown that breast cancer risk is increased in hypertensive women. The underlying molecular mechanism remains undetermined. The current study tests our hypothesis that G protein coupled receptor kinase 4 (GRK4) is a molecule that links hypertension and breast cancer. GRK4 plays an important role in regulation of renal sodium excretion. Sustained activation of GRK4 as in the circumstances of single nucleotide polymorphism (SNPs) causes hypertension. Expression of GRK4 in the kidney is regulated by cMyc, an oncogene that is amplified in breast cancer. METHODS: Western analysis was used to evaluate GRK4 protein expression in seven breast cancer cell lines. GRK4 gene single nucleotide polymorphism in breast cancer cell lines and in breast cancer cDNA arrays were determined using TaqMan Genotyping qPRC. The function of GRK4 was evaluated in MCF-7 cells with cMyc knock-down and GRK4 re-expression and in MDA-MB-468 cells expressing inducible GRK4 shRNA lentivirus constructs. Nuclei counting and 5-Bromo-2'-deoxy-uridine (BrdU) labeling were used to evaluate cell growth and proliferation. RESULTS: Genotyping of GRK4 SNPs in breast cancer cDNA arrays (n = 94) revealed that the frequency of carrying two hypertension related SNPs A142 V or R65 L is threefold higher in breast cancer patients than in healthy people (P = 7.53E-11). GRK4 protein is expressed in seven breast cancer cell lines but not the benign mammary epithelial cell line, MCF-10A. Three hypertension related SNPs in the GRK4 gene were identified in the breast cancer cell lines. Except for BT20, all other breast cancer lines have 1-3 GRK4 SNPs of which A142 V occurs in all 6 lines. MDA-MB-468 cells contain homozygous A142 V and R65 L SNPs. Knocking down cMyc in MCF-7 cells significantly reduced the growth rate, which was rescued by re-expression of GRK4. We then generated three stable GRK4 knock-down MDA-MB-468 lines using inducible lentiviral shRNA vectors. Doxycycline (Dox) induced GRK4 silencing significantly reduced GRK4 mRNA and protein levels, growth rates, and proliferation. As a marker of cell proliferation, the percentage of BrdU-labeled cells decreased from 45 ± 3% in the cells without Dox to 32 ± 5% in the cells treated with 0.1 µg/mL Dox. CONCLUSIONS: GRK4 acts as an independent proliferation promotor in breast cancer. Our results suggest that targeted inhibition of GRK4 could be a new therapy for both hypertension and breast cancer.

6.
Hypertens Res ; 44(6): 628-641, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33820956

RESUMEN

Overproduction of reactive oxygen species (ROS) plays an important role in the pathogenesis of hypertension. The dopamine D5 receptor (D5R) is known to decrease ROS production, but the mechanism is not completely understood. In HEK293 cells overexpressing D5R, fenoldopam, an agonist of the two D1-like receptors, D1R and D5R, decreased the production of mitochondria-derived ROS (mito-ROS). The fenoldopam-mediated decrease in mito-ROS production was mimicked by Sp-cAMPS but blocked by Rp-cAMPS. In human renal proximal tubule cells with DRD1 gene silencing to eliminate the confounding effect of D1R, fenoldopam still decreased mito-ROS production. By contrast, Sch23390, a D1R and D5R antagonist, increased mito-ROS production in the absence of D1R, D5R is constitutively active. The fenoldopam-mediated inhibition of mito-ROS production may have been related to autophagy because fenoldopam increased the expression of the autophagy hallmark proteins, autophagy protein 5 (ATG5), and the microtubule-associated protein 1 light chain (LC)3-II. In the presence of chloroquine or spautin-1, inhibitors of autophagy, fenoldopam further increased ATG5 and LC3-II expression, indicating an important role of D5R in the positive regulation of autophagy. However, when autophagy was inhibited, fenoldopam was unable to inhibit ROS production. Indeed, the levels of these autophagy hallmark proteins were decreased in the kidney cortices of Drd5-/- mice. Moreover, ROS production was increased in mitochondria isolated from the kidney cortices of Drd5-/- mice, relative to Drd5+/+ littermates. In conclusion, D5R-mediated activation of autophagy plays a role in the D5R-mediated inhibition of mito-ROS production in the kidneys.


Asunto(s)
Mitocondrias , Especies Reactivas de Oxígeno , Receptores de Dopamina D5 , Animales , Autofagia , AMP Cíclico/metabolismo , Fenoldopam , Células HEK293 , Humanos , Riñón/metabolismo , Ratones , Mitocondrias/metabolismo , Receptores de Dopamina D5/metabolismo
7.
Sci Adv ; 6(44)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33115740

RESUMEN

Sodium/potassium-transporting adenosine triphosphatase (Na+/K+-ATPase) is one of the most abundant cell membrane proteins and is essential for eukaryotes. Endogenous negative regulators have long been postulated to play an important role in regulating the activity and stability of Na+/K+-ATPase, but characterization of these regulators has been elusive. Mechanisms of regulating Na+/K+-ATPase homeostatic turnover are unknown. Here, we report that 5-diphosphoinositol 1,2,3,4,6-pentakisphosphate (5-InsP7), generated by inositol hexakisphosphate kinase 1 (IP6K1), promotes physiological endocytosis and downstream degradation of Na+/K+-ATPase-α1. Deletion of IP6K1 elicits a twofold enrichment of Na+/K+-ATPase-α1 in plasma membranes of multiple tissues and cell types. Using a suite of synthetic chemical biology tools, we found that 5-InsP7 binds the RhoGAP domain of phosphatidylinositol 3-kinase (PI3K) p85α to disinhibit its interaction with Na+/K+-ATPase-α1. This recruits adaptor protein 2 (AP2) and triggers the clathrin-mediated endocytosis of Na+/K+-ATPase-α1. Our study identifies 5-InsP7 as an endogenous negative regulator of Na+/K+-ATPase-α1.

8.
FASEB J ; 34(5): 6999-7017, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32259353

RESUMEN

Effective receptor signaling is anchored on the preferential localization of the receptor in lipid rafts, which are plasma membrane platforms replete with cholesterol and sphingolipids. We hypothesized that the dopamine D1 receptor (D1 R) contains structural features that allow it to reside in lipid rafts for its activity. Mutation of C347 palmitoylation site and Y218 of a newly identified Cholesterol Recognition Amino Acid Consensus motif resulted in the exclusion of D1 R from lipid rafts, blunted cAMP response, impaired sodium transport, and increased oxidative stress in renal proximal tubule cells (RPTCs). Kidney-restricted silencing of Drd1 in C57BL/6J mice increased blood pressure (BP) that was normalized by renal tubule-restricted rescue with D1 R-wild-type but not the mutant D1 R 347A that lacks a palmitoylation site. Kidney-restricted disruption of lipid rafts by ß-MCD jettisoned the D1 R from the brush border, decreased sodium excretion, and increased oxidative stress and BP in C57BL/6J mice. Deletion of the PX domain of the novel D1 R-binding partner sorting nexin 19 (SNX19) resulted in D1 R partitioning solely to non-raft domains, while silencing of SNX19 impaired D1 R function in RPTCs. Kidney-restricted silencing of Snx19 resulted in hypertension in C57BL/6J mice. Our results highlight the essential role of lipid rafts for effective D1 R signaling.


Asunto(s)
Riñón/metabolismo , Microdominios de Membrana/metabolismo , Receptores de Dopamina D1/metabolismo , Animales , Sitios de Unión/genética , Presión Sanguínea/genética , Presión Sanguínea/fisiología , Células Cultivadas , AMP Cíclico/metabolismo , Silenciador del Gen , Humanos , Túbulos Renales Proximales/metabolismo , Lipoilación , Masculino , Ratones , Ratones Endogámicos C57BL , Mutagénesis Sitio-Dirigida , Estrés Oxidativo , Receptores de Dopamina D1/deficiencia , Receptores de Dopamina D1/genética , Sodio/metabolismo
9.
J Mol Endocrinol ; 64(2): 53-65, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31794424

RESUMEN

Gastrin, secreted by stomach G cells in response to ingested sodium, stimulates the renal cholecystokinin B receptor (CCKBR) to increase renal sodium excretion. It is not known how dietary sodium, independent of food, can increase gastrin secretion in human G cells. However, fenofibrate (FFB), a peroxisome proliferator-activated receptor-α (PPAR-α) agonist, increases gastrin secretion in rodents and several human gastrin-secreting cells, via a gastrin transcriptional promoter. We tested the following hypotheses: (1.) the sodium sensor in G cells plays a critical role in the sodium-mediated increase in gastrin expression/secretion, and (2.) dopamine, via the D1R and PPAR-α, is involved. Intact human stomach antrum and G cells were compared with human gastrin-secreting gastric and ovarian adenocarcinoma cells. When extra- or intracellular sodium was increased in human antrum, human G cells, and adenocarcinoma cells, gastrin mRNA and protein expression/secretion were increased. In human G cells, the PPAR-α agonist FFB increased gastrin protein expression that was blocked by GW6471, a PPAR-α antagonist, and LE300, a D1-like receptor antagonist. LE300 prevented the ability of FFB to increase gastrin protein expression in human G cells via the D1R, because the D5R, the other D1-like receptor, is not expressed in human G cells. Human G cells also express tyrosine hydroxylase and DOPA decarboxylase, enzymes needed to synthesize dopamine. G cells in the stomach may be the sodium sensor that stimulates gastrin secretion, which enables the kidney to eliminate acutely an oral sodium load. Dopamine, via the D1R, by interacting with PPAR-α, is involved in this process.


Asunto(s)
Gastrinas/metabolismo , Neoplasias Ováricas/metabolismo , PPAR alfa/metabolismo , Antro Pilórico/metabolismo , Receptores de Dopamina D1/metabolismo , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Femenino , Fenofibrato/farmacología , Técnica del Anticuerpo Fluorescente , Células Secretoras de Gastrina/efectos de los fármacos , Células Secretoras de Gastrina/metabolismo , Humanos , Inmunohistoquímica , Fitohemaglutininas/metabolismo , Antro Pilórico/efectos de los fármacos , ARN Mensajero/metabolismo , Receptores de Dopamina D1/agonistas , Cloruro de Sodio/farmacología
10.
Sci Rep ; 9(1): 16861, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31727925

RESUMEN

The Wnt/ß-catenin pathway is one of the most conserved signaling pathways across species with essential roles in development, cell proliferation, and disease. Wnt signaling occurs at the protein level and via ß-catenin-mediated transcription of target genes. However, little is known about the underlying mechanisms regulating the expression of the key Wnt ligand Wnt3a or the modulation of its activity. Here, we provide evidence that there is significant cross-talk between the dopamine D2 receptor (D2R) and Wnt/ß-catenin signaling pathways. Our data suggest that D2R-dependent cross-talk modulates Wnt3a expression via an evolutionarily-conserved TCF/LEF site within the WNT3A promoter. Moreover, D2R signaling also modulates cell proliferation and modifies the pathology in a renal ischemia/reperfusion-injury disease model, via its effects on Wnt/ß-catenin signaling. Together, our results suggest that D2R is a transcriptional modulator of Wnt/ß-catenin signal transduction with broad implications for health and development of new therapeutics.


Asunto(s)
Células Epiteliales/metabolismo , Túbulos Renales Proximales/metabolismo , Receptores de Dopamina D2/genética , Daño por Reperfusión/genética , Proteína Wnt3A/genética , beta Catenina/genética , Animales , Proliferación Celular , Dependovirus/genética , Dependovirus/metabolismo , Modelos Animales de Enfermedad , Embrión de Mamíferos , Células Epiteliales/patología , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Túbulos Renales Proximales/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Cultivo Primario de Células , Regiones Promotoras Genéticas , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores de Dopamina D2/metabolismo , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Transducción de Señal , Transfección , Proteína Wnt3A/metabolismo , beta Catenina/metabolismo
11.
Transl Res ; 165(4): 505-11, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25134060

RESUMEN

Salt sensitivity of blood pressure, whether in hypertensive or normotensive subjects, is associated with increased cardiovascular risk and overall mortality. Salt sensitivity can be treated by reducing NaCl consumption. However, decreasing salt intake in some may actually increase cardiovascular risk, including an increase in blood pressure, that is, inverse salt sensitivity. Several genes have been associated with salt sensitivity and inverse salt sensitivity. Some of these genes encode proteins expressed in the kidney that are needed to excrete a sodium load, for example, dopamine receptors and their regulators, G protein-coupled receptor kinase 4 (GRK4). We review here research in this field that has provided several translational opportunities, ranging from diagnostic tests to gene therapy, such as (1) a test in renal proximal tubule cells isolated from the urine of humans that may determine the salt-sensitive phenotype by analyzing the recruitment of dopamine D1 receptors to the plasma membrane; (2) the presence of common GRK4 gene variants that are not only associated with hypertension but may also be predictive of the response to antihypertensive therapy; (3) genetic testing for polymorphisms of the dopamine D2 receptor that may be associated with hypertension and inverse salt sensitivity and may increase the susceptibility to chronic kidney disease because of loss of the antioxidant and anti-inflammatory effects of the renal dopamine D2 receptor, and (4) in vivo renal selective amelioration of renal tubular genetic defects by a gene transfer approach, using adeno-associated viral vectors introduced to the kidney by retrograde ureteral infusion.


Asunto(s)
Dopamina/metabolismo , Hipertensión/tratamiento farmacológico , Enfermedades Renales/tratamiento farmacológico , Riñón/metabolismo , Animales , Quinasa 4 del Receptor Acoplado a Proteína-G/metabolismo , Humanos , Hipertensión/metabolismo , Enfermedades Renales/metabolismo , Receptores Dopaminérgicos/genética , Receptores Dopaminérgicos/metabolismo
12.
Obes Res Clin Pract ; 8(4): e364-73, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25091358

RESUMEN

OBJECTIVE: To determine success rates in controlling target blood pressures longitudinally by measuring several factors, including lifestyle characteristics associated with uncontrolled blood pressures for target treatment goals. METHODS AND PATIENTS: This prospective observational cohort study (September 2008-September 2010) collected information on blood pressure control status and healthy lifestyle factors listed in Breslow's seven health practices through medical records and self-administered questionnaires from 884 of the 1264 Japanese hypertensive patients initially registered in the FRESH study. Multivariate analysis adjusted for associated factors was performed to estimate the association between lifestyle change and "uncontrolled blood pressures" at the final follow-up survey. RESULTS: Median age and proportion of men were 73 years and 39.1%, respectively. All survey failure rates were 37.6% among non-elderly patients (<65 years of age) without diabetes mellitus or chronic kidney disease, and 35.0% among patients with these diseases or myocardial infarction. Maintaining a healthy lifestyle was a protective factor against uncontrolled blood pressures in multivariate analysis. Obesity and smoking status were associated with uncontrolled blood pressures, and exercise frequency was borderline significance. The number of participants with healthy responses for these factors remained relatively low during follow up. CONCLUSION: Our study revealed low rates of controlled blood pressures, especially in non-elderly patients without diabetes mellitus or chronic kidney disease, and patients with these diseases or myocardial infarction. Our data indicate the need to maintain a healthy lifestyle, in particular, ideal body weight and adequate exercise frequency, for better hypertension management according to treatment guidelines.


Asunto(s)
Pueblo Asiatico , Presión Sanguínea , Conductas Relacionadas con la Salud , Hipertensión/terapia , Estilo de Vida , Adulto , Anciano , Anciano de 80 o más Años , Determinación de la Presión Sanguínea , Índice de Masa Corporal , Femenino , Estudios de Seguimiento , Humanos , Hipertensión/complicaciones , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Análisis Multivariante , Obesidad/complicaciones , Obesidad/terapia , Estudios Prospectivos , Encuestas y Cuestionarios , Circunferencia de la Cintura
13.
Clin Biochem ; 47(15): 89-94, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24976626

RESUMEN

OBJECTIVES: Exosomes are 50-90nm extracellular membrane particles that may mediate trans-cellular communication between cells and tissues. We have reported that human urinary exosomes contain miRNA that are biomarkers for salt sensitivity and inverse salt sensitivity of blood pressure. This study examines exosomal transfer between cultured human renal proximal tubule cells (RPTCs) and from RPTCs to human distal tubule and collecting duct cells. DESIGN AND METHODS: For RPTC-to-RPTC exosomal transfer, we utilized 5 RPTC lines producing exosomes that were fluorescently labeled with exosomal-specific markers CD63-EGFP or CD9-RFP. Transfer between RPTCs was demonstrated by co-culturing CD63-EGFP and CD9-RFP stable clones and performing live confocal microscopy. For RPTC-to-distal segment exosomal transfer, we utilized 5 distal tubule and 3 collecting duct immortalized cell lines. RESULTS: Time-lapse videos revealed unique proximal tubule cellular uptake patterns for exosomes and eventual accumulation into the multivesicular body. Using culture supernatant containing exosomes from 3 CD9-RFP and 2 CD63-EGFP RPTC cell lines, all 5 distal tubule cell lines and all 3 collecting duct cell lines showed exosomal uptake as measured by microplate fluorometry. Furthermore, we found that RPTCs stimulated with fenoldopam (dopamine receptor agonist) had increased production of exosomes, which upon transfer to distal tubule and collecting duct cells, reduced the basal reactive oxygen species (ROS) production rates in those recipient cells. CONCLUSION: Due to the complex diversity of exosomal contents, this proximal-to-distal vesicular inter-nephron transfer may represent a previously unrecognized trans-renal communication system.


Asunto(s)
Exosomas/metabolismo , Túbulos Renales Colectores/metabolismo , Túbulos Renales Distales/metabolismo , Túbulos Renales Proximales/metabolismo , Comunicación Celular , Línea Celular , Exosomas/genética , Humanos , Riñón/citología , Riñón/metabolismo , Túbulos Renales Colectores/citología , Túbulos Renales Distales/citología , Túbulos Renales Proximales/citología , MicroARNs/genética , Nefronas/metabolismo , Tetraspanina 29/genética , Tetraspanina 30/genética
14.
Hypertension ; 63(3): e74-80, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24379187

RESUMEN

The dopamine D2 receptor (D2R) negatively regulates inflammation in mouse renal proximal tubule cells (RPTCs), and lack or downregulation of the receptor in mice increases the vulnerability to renal inflammation independent of blood pressure. Some common single-nucleotide polymorphisms (SNPs; rs6276, rs6277, and rs1800497) in the human DRD2 gene are associated with decreased D2R expression and function, as well as high blood pressure. We tested the hypothesis that human RPTCs (hRPTCs) expressing these SNPs have increased expression of inflammatory and injury markers. We studied immortalized hRPTCs carrying D2R SNPs and compared them with cells carrying no D2R SNPs. RPTCs with D2R SNPs had decreased D2R expression and function. The expressions of the proinflammatory tumor necrosis factor-α and the profibrotic transforming growth factor-ß1 and its signaling targets Smad3 and Snail1 were increased in hRPTC with D2R SNPs. These cells also showed induction of epithelial mesenchymal transition and production of extracellular matrix proteins, assessed by increased vimentin, fibronectin 1, and collagen I a1. To test the specificity of these D2R SNP effects, hRPTC with D2R SNPs were transfected with a plasmid encoding wild-type DRD2. The expression of D2R was increased and that of transforming growth factor-ß1, Smad3, Snail1, vimentin, fibronectin 1, and collagen I a1 was decreased in hRPTC with D2R SNPs transfected with wild-type DRD2 compared with hRPTC-D2R SNP transfected with empty vector. These data support the hypothesis that D2R function has protective effects in hRPTCs and suggest that carriers of these SNPs may be prone to chronic renal disease and high blood pressure.


Asunto(s)
Inflamación/genética , Túbulos Renales Proximales/metabolismo , Polimorfismo de Nucleótido Simple , ARN Neoplásico/genética , Receptores de Dopamina D2/genética , Animales , Carcinoma de Células Renales/patología , Fibrosis/genética , Fibrosis/metabolismo , Fibrosis/patología , Genotipo , Humanos , Immunoblotting , Inflamación/metabolismo , Inflamación/patología , Neoplasias Renales/patología , Túbulos Renales Proximales/patología , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Dopamina D2/metabolismo , Transducción de Señal/genética , Células Tumorales Cultivadas
15.
Kidney Int ; 85(3): 561-9, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24132210

RESUMEN

Renal proximal tubule cells from spontaneously hypertensive rats (SHR), compared with normotensive Wistar-Kyoto rats (WKY), have increased oxidative stress. The contribution of mitochondrial oxidative phosphorylation to the subsequent hypertensive phenotype remains unclear. We found that renal proximal tubule cells from SHR, relative to WKY, had significantly higher basal oxygen consumption rates, adenosine triphosphate synthesis-linked oxygen consumption rates, and maximum and reserve respiration. These bioenergetic parameters indicated increased mitochondrial function in renal proximal tubule cells from SHR compared with WKY. Pyruvate dehydrogenase complex activity was consistently higher in both renal proximal tubule cells and cortical homogenates from SHR than those from WKY. Treatment for 6 days with dichloroacetate, an inhibitor of pyruvate dehydrogenase kinase, significantly increased renal pyruvate dehydrogenase complex activity and systolic blood pressure in 3-week-old WKY and SHR. Therefore, mitochondrial oxidative phosphorylation is higher in renal proximal tubule cells from SHR compared with WKY. Thus, the pyruvate dehydrogenase complex is a determinant of increased mitochondrial metabolism that could be a causal contributor to the hypertension in SHR.


Asunto(s)
Hipertensión/metabolismo , Túbulos Renales Proximales/metabolismo , Mitocondrias/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Presión Sanguínea , Células Cultivadas , Glucólisis , Túbulos Renales Proximales/citología , Masculino , Complejo Piruvato Deshidrogenasa/metabolismo , Ratas Endogámicas SHR , Ratas Endogámicas WKY
16.
Clin Chim Acta ; 421: 236-42, 2013 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-23454474

RESUMEN

BACKGROUND: Salt sensitivity (SS) of blood pressure (BP) affects 25% of adults, shares comorbidity with hypertension, and has no convenient diagnostic test. We tested the hypothesis that urine-derived exfoliated renal proximal tubule cells (RPTCs) could diagnose the degree of an individual's SS of BP. METHODS: Subjects were selected who had their SS of BP determined 5 y prior to this study (salt-sensitive: ≥7 mm Hg increase in mean arterial pressure (MAP) following transition from a random weekly diet of low (10 mmol/day) to high (300 mmol/day) sodium (Na(+)) intake, N=4; inverse salt-sensitive (ISS): ≥7 mm Hg increase in MAP transitioning from a high to low Na(+) diet, N=3, and salt-resistant (SR): <7 mm Hg change in MAP transitioned on either diet, N=5). RPTC responses to 2 independent Na(+) transport pathways were measured. RESULTS: There was a negative correlation between the degree of SS and dopamine-1 receptor (D1R) plasma membrane recruitment (y=-0.0107x+0.68 relative fluorescent units (RFU), R(2)=0.88, N=12, P<0.0001) and angiotensin II-stimulated intracellular Ca(++) (y=-0.0016x+0.0336, R(2)=0.7112, P<0.001, N=10) concentration over baseline. CONCLUSIONS: Isolating RPTCs from urine provides a personalized cell-based diagnostic test of SS index that offers advantages over a 2-week controlled diet with respect to cost and patient compliance. Furthermore, the linear relationship between the change in MAP and response to 2 Na(+) regulatory pathways suggests that an individual's RPTC response to intracellular Na(+) is personalized and predictive.


Asunto(s)
Presión Arterial/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Túbulos Renales Proximales/efectos de los fármacos , Sodio en la Dieta/farmacología , Angiotensina II/genética , Angiotensina II/metabolismo , Biomarcadores/metabolismo , Calcio/metabolismo , Separación Celular , Células Cultivadas , Células Epiteliales/citología , Células Epiteliales/metabolismo , Expresión Génica , Humanos , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Sodio en la Dieta/metabolismo
17.
Hypertension ; 61(5): 1021-7, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23509080

RESUMEN

The G protein-coupled receptor kinase 4 (GRK4) negatively regulates the dopaminergic system by desensitizing the dopamine-1-receptor. The expressional control of GRK4 has not been reported, but here we show that the transcription factor c-Myc binds to the promoter of GRK4 and positively regulates GRK4 protein expression in human renal proximal tubule cells (RPTCs). Addition of phorbol esters to RPTCs not only increased c-Myc binding to the GRK4 promoter but also increased both phospho-c-Myc and GRK4 expression. The phorbol ester-mediated increase in GRK4 expression was completely blocked by the c-Myc inhibitor, 10074-G5, indicating that GRK4 is downstream of phospho-c-Myc. The autocrine production of angiotensin II (Ang II) in RPTCs increased the phosphorylation and activation of c-Myc and subsequently GRK4 expression. 3-Amino-4-thio-butyl sulfonate, an inhibitor of aminopeptidase A, increased RPTC secretion of Ang II. 3-Amino-4-thio-butyl sulfonate or Ang II increased the expression of both phospho-c-Myc and GRK4, which was blocked by 10074-G5. Blockade of the Ang II type 1 receptor with losartan decreased phospho-c-Myc and GRK4 expression. Both inhibition of c-Myc activity and blockade of Ang II type 1 receptor restored the coupling of dopamine-1-receptor to adenylyl cyclase stimulation in uncoupled RPTCs, whereas phorbol esters or Ang II caused the uncoupling of normally coupled RPTCs. We suggest that the Ang II type 1 receptor impairs dopamine-1-receptor function via c-Myc activation of GRK4. This novel pathway may be involved in the increase in blood pressure in hypertension that is mediated by increased activity of the renin-angiotensin system and decreased activity of the renal dopaminergic system.


Asunto(s)
Quinasa 4 del Receptor Acoplado a Proteína-G/metabolismo , Túbulos Renales Proximales/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transcripción Genética/fisiología , Angiotensina II/metabolismo , Línea Celular , Células Cultivadas , Quinasa 4 del Receptor Acoplado a Proteína-G/genética , Humanos , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/efectos de los fármacos , Losartán/farmacología , Oxadiazoles/farmacología , Ésteres del Forbol/farmacología , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Receptor de Angiotensina Tipo 1/metabolismo , Receptores Dopaminérgicos/metabolismo , Transcripción Genética/efectos de los fármacos
18.
Methods Mol Biol ; 945: 329-45, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23097116

RESUMEN

The kidney is a highly heterogeneous organ that is responsible for fluid and electrolyte balance. Much interest is focused on determining the function of specific renal epithelial cells in humans, which can only be accomplished through the isolation and growth of nephron segment-specific epithelial cells. However, human renal epithelial cells are notoriously difficult to maintain in culture. This chapter describes the isolation, growth, immortalization, and characterization of the human renal proximal tubule cell. In addition, we describe new paradigms in 3D cell culture which allow the cells to maintain more in vivo-like morphology and function.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Separación Celular/métodos , Células Epiteliales/citología , Túbulos Renales Proximales/citología , Adenoviridae/genética , Antígenos Transformadores de Poliomavirus/genética , Proliferación Celular , Criopreservación , Células Epiteliales/metabolismo , Células HEK293 , Humanos , Lentivirus/genética , Telomerasa/genética , Transducción Genética
19.
Curr Opin Nephrol Hypertens ; 22(1): 65-76, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23197156

RESUMEN

PURPOSE OF REVIEW: One-third of the world's population has hypertension and it is responsible for almost 50% of deaths from stroke or coronary heart disease. These statistics do not distinguish salt-sensitive from salt-resistant hypertension or include normotensives who are salt-sensitive even though salt sensitivity, independent of blood pressure, is a risk factor for cardiovascular and other diseases, including cancer. This review describes new personalized diagnostic tools for salt sensitivity. RECENT FINDINGS: The relationship between salt intake and cardiovascular risk is not linear, but rather fits a J-shaped curve relationship. Thus, a low-salt diet may not be beneficial to everyone and may paradoxically increase blood pressure in some individuals. Current surrogate markers of salt sensitivity are not adequately sensitive or specific. Tests in the urine that could be surrogate markers of salt sensitivity with a quick turn-around time include renal proximal tubule cells, exosomes, and microRNA shed in the urine. SUMMARY: Accurate testing of salt sensitivity is not only laborious but also expensive, and with low patient compliance. Patients who have normal blood pressure but are salt-sensitive cannot be diagnosed in an office setting and there are no laboratory tests for salt sensitivity. Urinary surrogate markers for salt sensitivity are being developed.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Pruebas Genéticas , Hipertensión/diagnóstico , Hipertensión/genética , Cloruro de Sodio Dietético/efectos adversos , Biomarcadores , Presión Sanguínea/genética , Exosomas , Quinasa 4 del Receptor Acoplado a Proteína-G/genética , Humanos , Túbulos Renales Proximales/citología
20.
J Biol Chem ; 288(1): 152-63, 2013 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-23152498

RESUMEN

The peripheral dopaminergic system plays a crucial role in blood pressure regulation through its actions on renal hemodynamics and epithelial ion transport. The dopamine D5 receptor (D(5)R) interacts with sorting nexin 1 (SNX1), a protein involved in receptor retrieval from the trans-Golgi network. In this report, we elucidated the spatial, temporal, and functional significance of this interaction in human renal proximal tubule cells and HEK293 cells stably expressing human D(5)R and in mice. Silencing of SNX1 expression via RNAi resulted in the failure of D(5)R to internalize and bind GTP, blunting of the agonist-induced increase in cAMP production and decrease in sodium transport, and up-regulation of angiotensin II receptor expression, of which expression was previously shown to be negatively regulated by D(5)R. Moreover, siRNA-mediated depletion of renal SNX1 in C57BL/6J and BALB/cJ mice resulted in increased blood pressure and blunted natriuretic response to agonist in salt-loaded BALB/cJ mice. These data demonstrate a crucial role for SNX1 in D(5)R trafficking and that SNX1 depletion results in D(5)R dysfunction and thus may represent a novel mechanism for the pathogenesis of essential hypertension.


Asunto(s)
Regulación de la Expresión Génica , Hipertensión/metabolismo , Túbulos Renales Proximales/citología , Receptores de Dopamina D5/metabolismo , Nexinas de Clasificación/fisiología , Animales , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Silenciador del Gen , Guanosina Trifosfato/química , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Interferencia de ARN , Receptores de Dopamina D5/genética , Nexinas de Clasificación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA