Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
Elife ; 72018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29620522

RESUMEN

Angiogenesis is coordinated by VEGF and Notch signaling. DLL4-induced Notch signaling inhibits tip cell formation and vessel branching. To ensure proper Notch signaling, receptors and ligands are clustered at adherens junctions. However, little is known about factors that control Notch activity by influencing the cellular localization of Notch ligands. Here, we show that the multiple PDZ domain protein (MPDZ) enhances Notch signaling activity. MPDZ physically interacts with the intracellular carboxyterminus of DLL1 and DLL4 and enables their interaction with the adherens junction protein Nectin-2. Inactivation of the MPDZ gene leads to impaired Notch signaling activity and increased blood vessel sprouting in cellular models and the embryonic mouse hindbrain. Tumor angiogenesis was enhanced upon endothelial-specific inactivation of MPDZ leading to an excessively branched and poorly functional vessel network resulting in tumor hypoxia. As such, we identified MPDZ as a novel modulator of Notch signaling by controlling ligand recruitment to adherens junctions.


Asunto(s)
Carcinoma Pulmonar de Lewis/irrigación sanguínea , Proteínas Portadoras/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Melanoma Experimental/irrigación sanguínea , Proteínas de la Membrana/metabolismo , Neovascularización Patológica/patología , Neovascularización Fisiológica , Receptores Notch/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de Unión al Calcio , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patología , Células Cultivadas , Células Endoteliales de la Vena Umbilical Humana , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Receptores Notch/genética , Transducción de Señal
2.
FASEB J ; 32(4): 2021-2035, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29208700

RESUMEN

G protein-mediated signaling plays a decisive role in blood pressure regulation and the phenotype of vascular smooth muscle cells (VSMCs); however, the relevance of proteins that restrict G protein activity is not well characterized in this context. Here, we investigated the influence of regulator of G protein signaling 5 (RGS5), an inhibitor of Gαq/11 and Gαi/o activity, on blood pressure and the VSMC phenotype during experimental hypertension. In mice, loss of RGS5 did not affect baseline blood pressure, but prevented hypertension-induced structural remodeling. RGS5-deficient arterial VSMCs did not acquire a synthetic phenotype as evidenced by their inability to decrease the abundance of contractile markers-α-smooth muscle actin and smooth muscle-myosin heavy chain-or to proliferate under these conditions. Mechanistically, hypertensive pressure levels or biomechanical stretch are sufficient to increase the expression of RGS5. Loss of RGS5 severely impairs the activation of RhoA and stress fiber formation. In stretch-exposed VSMCs, RhoA activity was amplified upon inhibition of PKC, which mimics the downstream effects evoked by RGS5-mediated inhibition of Gαq/11 signaling. Collectively, our findings underline that RhoA activation may depend on the restriction of G protein activity and identify RGS5 as a mechanosensitive regulatory protein that is required to promote the synthetic VSMC phenotype as a prerequisite for structural renovation of the arterial wall during hypertension.-Arnold, C., Demirel, E., Feldner, A., Genové, G., Zhang, H., Sticht, C., Wieland, T., Hecker, M., Heximer, S., Korff, T. Hypertension-evoked RhoA activity in vascular smooth muscle cells requires RGS5.


Asunto(s)
Hipertensión/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteínas RGS/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Animales , Células Cultivadas , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Humanos , Masculino , Mecanotransducción Celular , Ratones , Ratones Endogámicos C57BL , Músculo Liso Vascular/citología , Miosinas/metabolismo , Proteína Quinasa C/metabolismo , Proteínas RGS/genética , Fibras de Estrés/metabolismo , Proteína de Unión al GTP rhoA
3.
EMBO Mol Med ; 9(7): 890-905, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28500065

RESUMEN

Hydrocephalus is a common congenital anomaly. LCAM1 and MPDZ (MUPP1) are the only known human gene loci associated with non-syndromic hydrocephalus. To investigate functions of the tight junction-associated protein Mpdz, we generated mouse models. Global Mpdz gene deletion or conditional inactivation in Nestin-positive cells led to formation of supratentorial hydrocephalus in the early postnatal period. Blood vessels, epithelial cells of the choroid plexus, and cilia on ependymal cells, which line the ventricular system, remained morphologically intact in Mpdz-deficient brains. However, flow of cerebrospinal fluid through the cerebral aqueduct was blocked from postnatal day 3 onward. Silencing of Mpdz expression in cultured epithelial cells impaired barrier integrity, and loss of Mpdz in astrocytes increased RhoA activity. In Mpdz-deficient mice, ependymal cells had morphologically normal tight junctions, but expression of the interacting planar cell polarity protein Pals1 was diminished and barrier integrity got progressively lost. Ependymal denudation was accompanied by reactive astrogliosis leading to aqueductal stenosis. This work provides a relevant hydrocephalus mouse model and demonstrates that Mpdz is essential to maintain integrity of the ependyma.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Modelos Animales de Enfermedad , Epéndimo/patología , Hidrocefalia/fisiopatología , Animales , Astrocitos/fisiología , Células Cultivadas , Células Epiteliales/fisiología , Eliminación de Gen , Técnicas de Silenciamiento del Gen , Humanos , Proteínas de la Membrana , Ratones
4.
Circ Res ; 113(11): 1206-18, 2013 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-24025447

RESUMEN

RATIONALE: The formation of novel blood vessels is initiated by vascular endothelial growth factor. Subsequently, DLL4-Notch signaling controls the selection of tip cells, which guide new sprouts, and trailing stalk cells. Notch signaling in stalk cells is induced by DLL4 on the tip cells. Moreover, DLL4 and DLL1 are expressed in the stalk cell plexus to maintain Notch signaling. Notch loss-of-function causes formation of a hyperdense vascular network with disturbed blood flow. OBJECTIVE: This study was aimed at identifying novel modifiers of Notch signaling that interact with the intracellular domains of DLL1 and DLL4. METHODS AND RESULTS: Synaptojanin-2 binding protein (SYNJ2BP, also known as ARIP2) interacted with the PDZ binding motif of DLL1 and DLL4, but not with the Notch ligand Jagged-1. SYNJ2BP was preferentially expressed in stalk cells, enhanced DLL1 and DLL4 protein stability, and promoted Notch signaling in endothelial cells. SYNJ2BP induced expression of the Notch target genes HEY1, lunatic fringe (LFNG), and ephrin-B2, reduced phosphorylation of ERK1/2, and decreased expression of the angiogenic factor vascular endothelial growth factor (VEGF)-C. It inhibited the expression of genes enriched in tip cells, such as angiopoietin-2, ESM1, and Apelin, and impaired tip cell formation. SYNJ2BP inhibited endothelial cell migration, proliferation, and VEGF-induced angiogenesis. This could be rescued by blockade of Notch signaling or application of angiopoietin-2. SYNJ2BP-silenced human endothelial cells formed a functional vascular network in immunocompromised mice with significantly increased vascular density. CONCLUSIONS: These data identify SYNJ2BP as a novel inhibitor of tip cell formation, executing its functions predominately by promoting Delta-Notch signaling.


Asunto(s)
Proteínas Portadoras/fisiología , Péptidos y Proteínas de Señalización Intercelular/fisiología , Proteínas de la Membrana/fisiología , Neovascularización Fisiológica/fisiología , Receptores Notch/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de Unión al Calcio , Movimiento Celular/fisiología , Proliferación Celular , Células Cultivadas , Endotelio Vascular/citología , Endotelio Vascular/fisiología , Femenino , Humanos , Ratones , Ratones SCID , Modelos Animales , Transducción de Señal/fisiología , Factor A de Crecimiento Endotelial Vascular/fisiología
5.
PLoS One ; 7(12): e53074, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23300864

RESUMEN

The Delta-Notch pathway is a signal exchanger between adjacent cells to regulate numerous differentiation steps during embryonic development. Blood vessel formation by sprouting angiogenesis requires high expression of the Notch ligand DLL4 in the leading tip cell, while Notch receptors in the trailing stalk cells are activated by DLL4 to achieve strong Notch signaling activity. Upon ligand binding, Notch receptors are cleaved by ADAM proteases and gamma-secretase. This releases the intracellular Notch domain that acts as a transcription factor. There is evidence that also Notch ligands (DLL1, DLL4, JAG1, JAG2) are processed upon receptor binding to influence transcription in the ligand-expressing cell. Thus, the existence of bi-directional Delta-Notch signaling has been proposed. We report here that the Notch ligands DLL1 and JAG1 are processed in endothelial cells in a gamma-secretase-dependent manner and that the intracellular ligand domains accumulate in the cell nucleus. Overexpression of JAG1 intracellular domain (ICD) as well as DLL1-ICD, DLL4-ICD and NOTCH1-ICD inhibited endothelial proliferation. Whereas NOTCH1-ICD strongly repressed endothelial migration and sprouting angiogenesis, JAG1-ICD, DLL1-ICD and DLL4-ICD had no significant effects. Consistently, global gene expression patterns were only marginally affected by the processed Notch ligands. In addition to its effects as a transcription factor, NOTCH1-ICD promotes cell adhesion to the extracellular matrix in a transcription-independent manner. However, JAG1-ICD, DLL1-ICD and DLL4-ICD did not influence endothelial cell adhesion. In summary, reverse signaling of Notch ligands appears to be dispensable for angiogenesis in cellular systems.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/metabolismo , Neovascularización Fisiológica/fisiología , Receptor Notch1/metabolismo , Transducción de Señal/fisiología , Proteínas Adaptadoras Transductoras de Señales , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Proteínas de Unión al Calcio/genética , Adhesión Celular/fisiología , Movimiento Celular/fisiología , Proliferación Celular , Células Cultivadas , Perfilación de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Proteína Jagged-1 , Proteínas de la Membrana/genética , Receptor Notch1/genética , Proteínas Serrate-Jagged
6.
FASEB J ; 25(10): 3613-21, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21685329

RESUMEN

An increase in circumferential wall tension (CWT) is an important determinant of vascular remodeling during hypertension or arteriosclerosis but also arteriogenesis. Although pivotal for such processes, the effect of this biomechanical force on venous remodeling has not yet been delineated. To this end, we raised the filling pressure in veins of the mouse auricle, which led to a 2.5-fold enlargement of these blood vessels within 4 d along with an increase in smooth muscle cell proliferation, matrix metalloproteinase 2 (MMP-2) expression and gelatinase activity. These changes were likewise observed in tissue samples of human varicose veins. Topical treatment of the auricles with a decoy oligonucleotide-neutralizing activator protein 1 (AP-1) inhibited these effects. Likewise, proliferation, MMP-2 expression, and gelatinase activity in both native and cultured venous smooth muscle cells exposed to enhanced stretch was decreased by up to 80% through inhibiting AP-1. In contrast, mutant control oligonucleotides had no effect on smooth muscle cell activation. These findings indicate that an increase in venous filling pressure and thus CWT is sufficient to activate AP-1, which, in turn, triggers varicose remodeling through fuelling MMP-2 activity and smooth muscle cell hyperplasia in the venous vessel wall.


Asunto(s)
Miocitos del Músculo Liso/metabolismo , Neovascularización Patológica/metabolismo , Factor de Transcripción AP-1/metabolismo , Animales , Células Cultivadas , Pabellón Auricular/irrigación sanguínea , Gelatinasas/metabolismo , Regulación de la Expresión Génica , Humanos , Hipertensión , Masculino , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Ratones , Presión , Factor de Transcripción AP-1/antagonistas & inhibidores , Factor de Transcripción AP-1/genética
7.
J Clin Invest ; 120(7): 2307-18, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20551518

RESUMEN

Cellular contractility and, thus, the ability to alter cell shape are prerequisites for a number of important biological processes such as cytokinesis, movement, differentiation, and substrate adherence. The contractile capacity of vascular smooth muscle cells (VSMCs) is pivotal for the regulation of vascular tone and thus blood pressure and flow. Here, we report that conditional ablation of the transcriptional regulator Junb results in impaired arterial contractility in vivo and in vitro. This was exemplified by resistance of Junb-deficient mice to DOCA-salt-induced volume-dependent hypertension as well as by a decreased contractile capacity of isolated arteries. Detailed analyses of Junb-deficient VSMCs, mouse embryonic fibroblasts, and endothelial cells revealed a general failure in stress fiber formation and impaired cellular motility. Concomitantly, we identified myosin regulatory light chain 9 (Myl9), which is critically involved in actomyosin contractility and stress fiber assembly, as a Junb target. Consistent with these findings, reexpression of either Junb or Myl9 in Junb-deficient cells restored stress fiber formation, cellular motility, and contractile capacity. Our data establish a molecular link between the activator protein-1 transcription factor subunit Junb and actomyosin-based cellular motility as well as cellular and vascular contractility by governing Myl9 transcription.


Asunto(s)
Movimiento Celular/fisiología , Regulación de la Expresión Génica , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Actomiosina/metabolismo , Animales , Arterias/metabolismo , Presión Sanguínea , Diferenciación Celular , Células/metabolismo , Citoesqueleto/metabolismo , Fibroblastos/metabolismo , Hipertensión/metabolismo , Ratones , Ratones Transgénicos , Contracción Muscular , Factor de Transcripción AP-1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA