Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Neurosci ; 41(17): 3932-3943, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33741721

RESUMEN

The Abelson-helper integration site 1 (AHI1) gene encodes for a ciliary transition zone localizing protein that when mutated causes the human ciliopathy, Joubert syndrome. We prepared and examined neuronal cultures derived from male and female embryonic Ahi1+/+ and Ahi1-/- mice (littermates) and found that the distribution of ciliary melanin-concentrating hormone receptor-1 (MchR1) was significantly reduced in Ahi1-/- neurons; however, the total and surface expression of MchR1 on Ahi1-/- neurons was similar to controls (Ahi1+/+). This indicates that a pathway for MchR1 trafficking to the surface plasma membrane is intact, but the process of targeting MchR1 into cilia is impaired in Ahi1-deficient mouse neurons, indicating a role for Ahi1 in localizing MchR1 to the cilium. Mouse Ahi1-/- neurons that fail to accumulate MchR1 in the ciliary membrane have significant decreases in two downstream MchR1 signaling pathways [cAMP and extracellular signal-regulated kinase (Erk)] on MCH stimulation. These results suggest that the ciliary localization of MchR1 is necessary and critical for MchR1 signaling, with Ahi1 participating in regulating MchR1 localization to cilia, and further supporting cilia as critical signaling centers in neurons.SIGNIFICANCE STATEMENT Our work here demonstrates that neuronal primary cilia are powerful and focused signaling centers for the G-protein-coupled receptor (GPCR), melanin-concentrating hormone receptor-1 (MCHR1), with a role for the ciliary transition zone protein, Abelson-helper integration site 1 (AHI1), in mediating ciliary trafficking of MCHR1. Moreover, our manuscript further expands the repertoire of cilia functions on neurons, a cell type that has not received significant attention in the cilia field. Lastly, our work demonstrates the significant influence of ciliary GPCR signaling in the overall signaling of neurons.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/fisiología , Cilios/fisiología , Neuronas/fisiología , Receptores de Somatostatina/fisiología , Transducción de Señal/fisiología , Anomalías Múltiples/genética , Anomalías Múltiples/fisiopatología , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Membrana Celular/fisiología , Cerebelo/anomalías , Cerebelo/fisiopatología , AMP Cíclico/metabolismo , Anomalías del Ojo/genética , Anomalías del Ojo/fisiopatología , Femenino , Enfermedades Renales Quísticas/genética , Enfermedades Renales Quísticas/fisiopatología , Sistema de Señalización de MAP Quinasas/genética , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Ratones Noqueados , Embarazo , Receptores de Somatostatina/genética , Retina/anomalías , Retina/fisiopatología , Transducción de Señal/genética
2.
Dev Biol ; 448(1): 36-47, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30695685

RESUMEN

Joubert syndrome (JBTS) is a predominantly autosomal recessive neurodevelopmental disorder that presents with characteristic malformations of the cerebellar vermis, superior cerebellar peduncles and midbrain in humans. Accompanying these malformations are a heterogeneous set of clinical symptoms, which frequently include deficits in motor and muscle function, such as hypotonia (low muscle tone) and ataxia (clumsiness). These symptoms are attributed to improper development of the hindbrain, but no direct evidence has been reported linking these in JBTS. Here, we describe muscle developmental defects in a mouse with a targeted deletion of the Abelson helper integration site 1 gene, Ahi1, one of the genes known to cause JBTS in humans. While FVB/NJ Ahi1-/- mice display no gross malformations of the cerebellum, deficits are observed in several measures of motor function, strength, and body development. Specifically, Ahi1-/- mice show delayed physical development, delays in surface reflex righting as neonates, and reductions in grip strength and spontaneous locomotor activity as adults. Additionally, Ahi1-/- mice showed evidence of muscle-specific contributions to this phenotype, such as reductions in 1) myoblast differentiation potential in vitro, 2) muscle desmin expression, and 3) overall muscle mass, myonuclear domain, and muscle fiber cross-sectional area. Together, these data suggest that loss of Ahi1 may cause abnormalities in the differentiation of myoblasts to mature muscle cells. Moreover, Ahi1 loss impacts muscle development directly, outside of any indirect impact of cerebellar malformations, revealing a novel myogenic cause for hypotonia in JBTS.


Asunto(s)
Anomalías Múltiples/embriología , Diferenciación Celular , Cerebelo/anomalías , Anomalías del Ojo/embriología , Enfermedades Renales Quísticas/embriología , Desarrollo de Músculos , Trastornos del Neurodesarrollo/metabolismo , Proteínas Proto-Oncogénicas/deficiencia , Retina/anomalías , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Proteínas Adaptadoras del Transporte Vesicular , Animales , Cerebelo/embriología , Cerebelo/patología , Desmina/genética , Desmina/metabolismo , Anomalías del Ojo/genética , Anomalías del Ojo/patología , Enfermedades Renales Quísticas/genética , Enfermedades Renales Quísticas/patología , Locomoción/genética , Ratones , Ratones Noqueados , Fuerza Muscular/genética , Mioblastos/metabolismo , Mioblastos/patología , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Proteínas Proto-Oncogénicas/metabolismo , Reflejo de Enderezamiento/genética , Retina/embriología , Retina/patología
3.
Epilepsy Res ; 109: 183-96, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25524858

RESUMEN

Significant differences in seizure characteristics between inbred mouse strains highlight the importance of genetic predisposition to epilepsy. Here, we examined the genetic differences between the seizure-resistant C57BL/6J (B6) mouse strain and the seizure-susceptible DBA/2J (D2) strain in the phospho-Erk and Fos pathways to examine seizure-induced neuronal activity to uncover potential mechanistic correlates to these disparate seizure responsivities. Expression of neural activity markers was examined following 1, 5, or 8 seizures, or after 8 seizures, a 28 day rest period, and a final flurothyl rechallenge. Two brain regions, the hippocampus and ventromedial nucleus of the hypothalamus (VMH), had significantly different Fos expression profiles following seizures. Fos expression was highly robust in B6 hippocampus following one seizure and remained elevated following multiple seizures. Conversely, there was an absence of Fos (and phospho-Erk) expression in D2 hippocampus following one generalized seizure that increased with multiple seizures. This lack of Fos expression occurred despite intracranial electroencephalographic recordings indicating that the D2 hippocampus propagated ictal discharge during the first flurothyl seizure suggesting a dissociation of seizure discharge from Fos and phospho-Erk expression. Global transcriptional analysis confirmed a dysregulation of the c-fos pathway in D2 mice following 1 seizure. Moreover, global analysis of RNA expression differences between B6 and D2 hippocampus revealed a unique pattern of transcripts that were co-regulated with Fos in D2 hippocampus following 1 seizure. These expression differences could, in part, account for D2's seizure susceptibility phenotype. Following 8 seizures, a 28 day rest period, and a final flurothyl rechallenge, ∼85% of B6 mice develop a more complex seizure phenotype consisting of a clonic-forebrain seizure that uninterruptedly progresses into a brainstem seizure. This seizure phenotype in B6 mice is highly correlated with bilateral Fos expression in the VMH and was not observed in D2 mice, which always express clonic-forebrain seizures upon flurothyl retest. Overall, these results illustrate specific differences in protein and RNA expression in different inbred strains following seizures that precede the reorganizational events that affect seizure susceptibility and changes in seizure semiology over time.


Asunto(s)
Hipocampo/fisiopatología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Convulsiones/fisiopatología , Animales , Western Blotting , Modelos Animales de Enfermedad , Electrodos Implantados , Electroencefalografía , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Flurotilo , Expresión Génica , Predisposición Genética a la Enfermedad , Inmunohistoquímica , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Especificidad de la Especie
4.
Am J Hum Genet ; 94(1): 62-72, 2014 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-24360808

RESUMEN

Joubert syndrome (JBTS) is a recessive ciliopathy in which a subset of affected individuals also have the skeletal dysplasia Jeune asphyxiating thoracic dystrophy (JATD). Here, we have identified biallelic truncating CSPP1 (centrosome and spindle pole associated protein 1) mutations in 19 JBTS-affected individuals, four of whom also have features of JATD. CSPP1 mutations explain ∼5% of JBTS in our cohort, and despite truncating mutations in all affected individuals, the range of phenotypic severity is broad. Morpholino knockdown of cspp1 in zebrafish caused phenotypes reported in other zebrafish models of JBTS (curved body shape, pronephric cysts, and cerebellar abnormalities) and reduced ciliary localization of Arl13b, further supporting loss of CSPP1 function as a cause of JBTS. Fibroblasts from affected individuals with CSPP1 mutations showed reduced numbers of primary cilia and/or short primary cilia, as well as reduced axonemal localization of ciliary proteins ARL13B and adenylyl cyclase III. In summary, CSPP1 mutations are a major cause of the Joubert-Jeune phenotype in humans; however, the mechanism by which these mutations lead to both JBTS and JATD remains unknown.


Asunto(s)
Proteínas de Ciclo Celular/genética , Enfermedades Cerebelosas/genética , Cilios/genética , Síndrome de Ellis-Van Creveld/genética , Anomalías del Ojo/genética , Enfermedades Renales Quísticas/genética , Proteínas Asociadas a Microtúbulos/genética , Mutación , Retina/anomalías , Anomalías Múltiples , Adolescente , Animales , Cerebelo/anomalías , Niño , Preescolar , Cilios/patología , Exones , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Lactante , Masculino , Fenotipo , Análisis de Secuencia de ADN , Adulto Joven , Pez Cebra/genética
5.
J Biol Chem ; 288(19): 13676-94, 2013 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-23532844

RESUMEN

BACKGROUND: Missense mutations in AHI1 result in the neurodevelopmental ciliopathy called Joubert syndrome. RESULTS: Mutations in AHI1 decrease cilia formation, alter its localization and stability, and change its binding to HAP1 and NPHP1. CONCLUSION: Mutations in AHI1 affect ciliogenesis, AHI1 protein localization, and AHI1-protein interactions. SIGNIFICANCE: This study begins to describe how missense mutations in AHI1 can cause Joubert syndrome. Mutations in AHI1 cause Joubert syndrome (JBTS), a neurodevelopmental ciliopathy, characterized by midbrain-hindbrain malformations and motor/cognitive deficits. Here, we show that primary cilia (PC) formation is decreased in fibroblasts from individuals with JBTS and AHI1 mutations. Most missense mutations in AHI1, causing JBTS, occur in known protein domains, however, a common V443D mutation in AHI1 is found in a region with no known protein motifs. We show that cells transfected with AHI1-V443D, or a new JBTS-causing mutation, AHI1-R351L, have aberrant localization of AHI1 at the basal bodies of PC and at cell-cell junctions, likely through decreased binding of mutant AHI1 to NPHP1 (another JBTS-causing protein). The AHI1-V443D mutation causes decreased AHI1 stability because there is a 50% reduction in AHI1-V443D protein levels compared with wild type AHI1. Huntingtin-associated protein-1 (Hap1) is a regulatory protein that binds Ahi1, and Hap1 knock-out mice have been reported to have JBTS-like phenotypes, suggesting a role for Hap1 in ciliogenesis. Fibroblasts and neurons with Hap1 deficiency form PC with normal growth factor-induced ciliary signaling, indicating that the Hap1 JBTS phenotype is likely not through effects at PC. These results also suggest that the binding of Ahi1 and Hap1 may not be critical for ciliary function. However, we show that HAP1 has decreased binding to AHI1-V443D indicating that this altered binding could be responsible for the JBTS-like phenotype through an unknown pathway. Thus, these JBTS-associated missense mutations alter their subcellular distribution and protein interactions, compromising functions of AHI1 in cell polarity and cilium-mediated signaling, thereby contributing to JBTS.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Enfermedades Cerebelosas/genética , Anomalías del Ojo/genética , Enfermedades Renales Quísticas/genética , Mutación Missense , Anomalías Múltiples , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras del Transporte Vesicular , Secuencia de Aminoácidos , Animales , Encéfalo/metabolismo , Encéfalo/patología , Polaridad Celular , Células Cultivadas , Enfermedades Cerebelosas/metabolismo , Enfermedades Cerebelosas/patología , Cerebelo/anomalías , Cilios/metabolismo , Cilios/patología , Secuencia Conservada , Proteínas del Citoesqueleto , Anomalías del Ojo/metabolismo , Anomalías del Ojo/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Uniones Intercelulares/metabolismo , Enfermedades Renales Quísticas/metabolismo , Enfermedades Renales Quísticas/patología , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Mapas de Interacción de Proteínas , Estabilidad Proteica , Transporte de Proteínas , Retina/anomalías , Retina/metabolismo , Retina/patología , Transducción de Señal , Técnicas del Sistema de Dos Híbridos
6.
J Neurosci ; 30(26): 8759-68, 2010 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-20592197

RESUMEN

Vertebrate photoreceptors have a modified cilium composed of a basal body, axoneme and outer segment. The outer segment includes stacked membrane discs, containing opsin and the signal transduction apparatus mediating phototransduction. In photoreceptors, two distinct classes of vesicles are trafficked. Synaptic vesicles are transported down the axon to the synapse, whereas opsin-containing vesicles are transported to the outer segment. The continuous replacement of the outer segments imposes a significant biosynthetic and trafficking burden on the photoreceptors. Here, we show that Ahi1, a gene that when mutated results in the neurodevelopmental disorder, Joubert syndrome (JBTS), is required for photoreceptor sensory cilia formation and the development of photoreceptor outer segments. In mice with a targeted deletion of Ahi1, photoreceptors undergo early degeneration. Whereas synaptic proteins are correctly trafficked, photoreceptor outer segment proteins fail to be transported appropriately or are significantly reduced in their expression levels (i.e., transducin and Rom1) in Ahi1(-/-) mice. We show that vesicular targeting defects in Ahi1(-/-) mice are cilium specific, and our evidence suggests that the defects are caused by a decrease in expression of the small GTPase Rab8a, a protein required for accurate polarized vesicular trafficking. Thus, our results suggest that Ahi1 plays a role in stabilizing the outer segment proteins, transducin and Rom1, and that Ahi1 is an important component of Rab8a-mediated vesicular trafficking in photoreceptors. The retinal degeneration observed in Ahi1(-/-) mice recapitulates aspects of the retinal phenotype observed in patients with JBTS and suggests the importance of Ahi1 in photoreceptor function.


Asunto(s)
Proteínas Proto-Oncogénicas/metabolismo , Degeneración Retiniana/metabolismo , Segmento Externo de las Células Fotorreceptoras Retinianas/metabolismo , Proteínas Adaptadoras del Transporte Vesicular , Animales , Encefalopatías , Cilios/metabolismo , Proteínas del Ojo/metabolismo , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Eliminación de Gen , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Proteínas Proto-Oncogénicas/genética , Retina/metabolismo , Vesículas Sinápticas/metabolismo , Síndrome , Tetraspaninas , Transducina/metabolismo , Proteínas de Unión al GTP rab/metabolismo
7.
Hum Mol Genet ; 18(20): 3926-41, 2009 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-19625297

RESUMEN

The primary non-motile cilium, a membrane-ensheathed, microtubule-bundled organelle, extends from virtually all cells and is important for development. Normal functioning of the cilium requires proper axoneme assembly, membrane biogenesis and ciliary protein localization, in tight coordination with the intraflagellar transport system and vesicular trafficking. Disruptions at any level can induce severe alterations in cell function, giving rise to a myriad of human genetic diseases known as ciliopathies. Here we show that the Abelson helper integration site 1 (Ahi1) gene, whose human ortholog is mutated in Joubert syndrome, regulates cilium formation via its interaction with Rab8a, a small GTPase critical for polarized membrane trafficking. We find that the Ahi1 protein localizes to a single centriole, the mother centriole, which becomes the basal body of the primary cilium. In order to determine whether Ahi1 functions in ciliogenesis, loss of function analysis of Ahi1 was performed in cell culture models of ciliogenesis. Knockdown of Ahi1 expression by shRNAi in cells or targeted deletion of Ahi1 (Ahi1 knockout mouse) leads to impairments in ciliogenesis. In Ahi1-knockdown cells, Rab8a is destabilized and does not properly localize to the basal body. Since Rab8a is implicated in vesicular trafficking, we next examined this process in Ahi1-knockdown cells. Defects in the trafficking of endocytic vesicles from the plasma membrane to the Golgi and back to the plasma membrane were observed in Ahi1-knockdown cells. Overall, our data indicate that the distribution and functioning of Rab8a is regulated by Ahi1, not only affecting cilium formation, but also vesicle transport.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Cilios/metabolismo , Mutación , Enfermedades del Sistema Nervioso/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Vesículas Transportadoras/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras del Transporte Vesicular , Animales , Línea Celular , Células Cultivadas , Cilios/genética , Femenino , Fibroblastos/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedades del Sistema Nervioso/genética , Unión Proteica , Transporte de Proteínas , Proteínas Proto-Oncogénicas/genética , Proteínas de Unión al GTP rab/genética
8.
J Comp Neurol ; 511(2): 238-56, 2008 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-18785627

RESUMEN

Joubert syndrome (JBTS) is an autosomal recessive disorder characterized by cerebellum and brainstem malformations. Individuals with JBTS have abnormal breathing and eye movements, ataxia, hypotonia, and cognitive difficulty, and they display mirror movements. Mutations in the Abelson-helper integration site-1 gene (AHI1) cause JBTS in humans, suggesting that AHI1 is required for hindbrain development; however AHI1 may also be required for neuronal function. Support for this idea comes from studies demonstrating that the AHI1 locus is associated with schizophrenia. To gain further insight into the function of AHI1 in both the developing and mature central nervous system, we determined the spatial and temporal expression patterns of the gene products of AHI1 orthologs throughout development, in human, mouse, and zebrafish. Murine Ahi1 was distributed throughout the cytoplasm, dendrites, and axons of neurons, but was absent in glial cells. Ahi1 expression in the mouse brain was observed as early as embryonic day 10.5 and persisted into adulthood, with peak expression during the first postnatal week. Murine Ahi1 was observed in neurons of the hindbrain, midbrain, and ventral forebrain. Generally, the AHI1/Ahi1/ahi1 orthologs had a conserved distribution pattern in human, mouse, and zebrafish, but mouse Ahi1 was not present in the developing and mature cerebellum. Ahi1 was also observed consistently in the stigmoid body, a poorly characterized cytoplasmic organelle found in neurons. Overall, these results suggest roles for AHI1 in neurodevelopmental processes that underlie most of the neuroanatomical defects in JBTS, and perhaps in neuronal functions that contribute to schizophrenia.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Encefalopatías , Encéfalo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas de Pez Cebra/metabolismo , Anomalías Múltiples/genética , Anomalías Múltiples/metabolismo , Anomalías Múltiples/patología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras del Transporte Vesicular , Animales , Encéfalo/anomalías , Encéfalo/anatomía & histología , Encefalopatías/genética , Encefalopatías/metabolismo , Encefalopatías/patología , Proteínas Portadoras , Humanos , Hibridación in Situ , Ratones , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Neuronas/metabolismo , Proteínas Proto-Oncogénicas/genética , Síndrome , Distribución Tisular , Pez Cebra/anatomía & histología , Pez Cebra/embriología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
9.
Ann Neurol ; 60(1): 137-44, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16642511

RESUMEN

OBJECTIVE: Miller-Dieker syndrome (MDS) is a malformation of cortical development that results in lissencephaly (meaning smooth brain). This disorder is caused by heterozygous deletions on chromosome 17p13.3, including the lissencephaly 1 (LIS1) gene. Various mouse models have been used as an experimental paradigm in understanding human lissencephaly, but clear limitations exist in these studies, particularly because mice are naturally lissencephalic. Thus, the objective of this article was to establish human neural precursor cell lines from postmortem MDS tissue and to characterize the pathological cellular processes that contribute to the human lissencephalic phenotype. METHODS: Human neural precursors were isolated and expanded from the frontal cortices of a 33-week postmortem fetus with MDS and an age-matched control subject. Relative rates of proliferation and cell death were assessed in vitro, whereas the migration of precursors was examined after transplantation in vivo. RESULTS: Precursors showed haploinsufficiency of the LIS1 gene and a reduction in LIS1 protein. Precursors could also differentiate into both neurons and glia. MDS precursors demonstrated impairments in neuronal migration, diminished rates of cell proliferation, and increased cell death. INTERPRETATION: These results suggest that, in addition to migration, disruption in cell proliferation could play a more important role in the development of lissencephaly than previously suspected.


Asunto(s)
Movimiento Celular/fisiología , Corteza Cerebral/anomalías , Corteza Cerebral/patología , Proteínas Asociadas a Microtúbulos/genética , Células Madre/patología , 1-Alquil-2-acetilglicerofosfocolina Esterasa , Muerte Celular/fisiología , Diferenciación Celular/fisiología , División Celular/fisiología , Línea Celular , Cromosomas Humanos Par 17 , Feto/citología , Eliminación de Gen , Humanos , Neuroglía/citología , Neuronas/citología , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA