Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Toxins (Basel) ; 15(9)2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37755975

RESUMEN

Snake venoms constitute a complex, rapidly evolving trait, whose composition varies between and within populations depending on geographical location, age and preys (diets). These factors have determined the adaptive evolution for predatory success and link venom heterogeneity with prey specificity. Moreover, understanding the evolutionary drivers of animal venoms has streamlined the biodiscovery of venom-derived compounds as drug candidates in biomedicine and biotechnology. The king cobra (Ophiophagus hannah; Cantor, 1836) is distributed in diverse habitats, forming independent populations, which confer differing scale markings, including between hatchlings and adults. Furthermore, king cobra venoms possess unique cytotoxic properties that are used as a defensive trait, but their toxins may also have utility as promising anticancer-agent candidates. However, the impact of geographical distribution and age on these potential venom applications has been typically neglected. In this study, we hypothesised that ontogenetic venom variation accompanies the morphological distinction between hatchlings and adults. We used non-transformed neonatal foreskin (NFF) fibroblasts to examine and compare the variability of venom cytotoxicity between adult captive breeding pairs from Malaysian and Chinese lineages, along with that of their progeny upon hatching. In parallel, we assessed the anticancer potential of these venoms in human-melanoma-patient-derived cells (MM96L). We found that in a geographical distribution and gender-independent manner, venoms from hatchlings were significantly less cytotoxic than those from adults (NFF; ~Log EC50: 0.5-0.6 vs. 0.2-0.35 mg/mL). This is consistent with neonates occupying a semifossorial habitat, while adults inhabit more above-ground habitats and are therefore more conspicuous to potential predators. We also observed that Malaysian venoms exhibited a slightly higher cytotoxicity than those from the Chinese cobra cohorts (NFF; Log EC50: 0.1-0.3 vs. 0.3-0.4 mg/mL), which is consistent with Malaysian king cobras being more strongly aposematically marked. These variations are therefore suggestive of differential anti-predator strategies associated with the occupation of distinct niches. However, all cobra venoms were similarly cytotoxic in both melanoma cells and fibroblasts, limiting their potential medical applications in their native forms.


Asunto(s)
Venenos Elapídicos , Fibroblastos , Melanoma , Adulto , Animales , Humanos , Recién Nacido , Masculino , Prepucio/citología , Geografía , Melanoma/tratamiento farmacológico , Ophiophagus hannah , Fibroblastos/efectos de los fármacos
2.
Biofactors ; 49(4): 912-927, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37171157

RESUMEN

The liver is the only solid organ capable of regenerating itself to regain 100% of its mass and function after liver injury and/or partial hepatectomy (PH). This exceptional property represents a therapeutic opportunity for severe liver disease patients. However, liver regeneration (LR) might fail due to poorly understood causes. Here, we have investigated the regulation of liver proteome and phosphoproteome at a short time after PH (9 h), to depict a detailed mechanistic background of the early LR phase. Furthermore, we analyzed the dynamic changes of the serum proteome and metabolome of healthy living donor liver transplant (LDLT) donors at different time points after surgery. The molecular profiles from both analyses were then correlated. Insulin and FXR-FGF15/19 signaling were stimulated in mouse liver after PH, leading to the activation of the main intermediary kinases (AKT and ERK). Besides, inhibition of the hippo pathway led to an increased expression of its target genes and of one of its intermediary proteins (14-3-3 protein), contributing to cell proliferation. In association with these processes, metabolic reprogramming coupled to enhanced mitochondrial activity cope for the energy and biosynthetic requirements of LR. In human serum of LDLT donors, we identified 56 proteins and 13 metabolites statistically differential which recapitulate some of the main cellular processes orchestrating LR in its early phase. These results provide mechanisms and protein mediators of LR that might prove useful for the follow-up of the regenerative process in the liver after PH as well as preventing the occurrence of complications associated with liver resection.


Asunto(s)
Regeneración Hepática , Trasplante de Hígado , Ratones , Animales , Humanos , Regeneración Hepática/genética , Trasplante de Hígado/métodos , Proteoma/genética , Proteoma/metabolismo , Donadores Vivos , Hígado/cirugía , Hígado/metabolismo
3.
Br J Pharmacol ; 179(20): 4878-4896, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35818835

RESUMEN

BACKGROUND AND PURPOSE: Over past decades, targeted therapies and immunotherapy have improved survival and reduced the morbidity of patients with BRAF-mutated melanoma. However, drug resistance and relapse hinder overall success. Therefore, there is an urgent need for novel compounds with therapeutic efficacy against BRAF-melanoma. This prompted us to investigate the antiproliferative profile of a tachykinin-peptide from the Octopus kaurna, Octpep-1 in melanoma. EXPERIMENTAL APPROACH: We evaluated the cytotoxicity of Octpep-1 by MTT assay. Mechanistic insights on viability and cellular damage caused by Octpep-1 were gained via flow cytometry and bioenergetics. Structural and pharmacological characterization was conducted by molecular modelling, molecular biology, CRISPR/Cas9 technology, high-throughput mRNA and calcium flux analysis. In vivo efficacy was validated in two independent xerograph animal models (mice and zebrafish). KEY RESULTS: Octpep-1 selectively reduced the proliferative capacity of human melanoma BRAFV600E -mutated cells with minimal effects on fibroblasts. In melanoma-treated cells, Octpep-1 increased ROS with unaltered mitochondrial membrane potential and promoted non-mitochondrial and mitochondrial respiration with inefficient ATP coupling. Molecular modelling revealed that the cytotoxicity of Octpep-1 depends upon the α-helix and polyproline conformation in the C-terminal region of the peptide. A truncated form of the C-terminal end of Octpep-1 displayed enhanced potency and efficacy against melanoma. Octpep-1 reduced the progression of tumours in xenograft melanoma mice and zebrafish. CONCLUSION AND IMPLICATIONS: We unravel the intrinsic anti-tumoural properties of a tachykinin peptide. This peptide mediates the selective cytotoxicity in BRAF-mutated melanoma in vitro and prevents tumour progression in vivo, providing a foundation for a therapy against melanoma.


Asunto(s)
Antineoplásicos , Melanoma , Adenosina Trifosfato , Animales , Antineoplásicos/farmacología , Calcio , Línea Celular Tumoral , Humanos , Melanoma/tratamiento farmacológico , Melanoma/patología , Ratones , Mutación , Octopodiformes/química , Péptidos/farmacología , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/uso terapéutico , ARN Mensajero , Especies Reactivas de Oxígeno , Taquicininas/genética , Taquicininas/uso terapéutico , Pez Cebra/genética
4.
Toxins (Basel) ; 13(2)2021 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-33672955

RESUMEN

Melanoma is the main cause of skin cancer deaths, with special emphasis in those cases carrying BRAF mutations that trigger the mitogen-activated protein kinases (MAPK) signaling and unrestrained cell proliferation in the absence of mitogens. Current therapies targeting MAPK are hindered by drug resistance and relapse that rely on metabolic rewiring and Akt activation. To identify new drug candidates against melanoma, we investigated the molecular mechanism of action of the Octopus Kaurna-derived peptide, Octpep-1, in human BRAF(V600E) melanoma cells using proteomics and RNAseq coupled with metabolic analysis. Fluorescence microscopy verified that Octpep-1 tagged with fluorescein enters MM96L and NFF cells and distributes preferentially in the perinuclear area of MM96L cells. Proteomics and RNAseq revealed that Octpep-1 targets PI3K/AKT/mTOR signaling in MM96L cells. In addition, Octpep-1 combined with rapamycin (mTORC1 inhibitor) or LY3214996 (ERK1/2 inhibitor) augmented the cytotoxicity against BRAF(V600E) melanoma cells in comparison with the inhibitors or Octpep-1 alone. Octpep-1-treated MM96L cells displayed reduced glycolysis and mitochondrial respiration when combined with LY3214996. Altogether these data support Octpep-1 as an optimal candidate in combination therapies for melanoma BRAF(V600E) mutations.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Melanoma/tratamiento farmacológico , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/genética , Sirolimus/farmacología , Neoplasias Cutáneas/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Melanoma/enzimología , Melanoma/genética , Melanoma/patología , Transducción de Señal , Neoplasias Cutáneas/enzimología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología
5.
Toxins (Basel) ; 13(2)2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33540884

RESUMEN

Snakes of the genera Pseudocerastes and Eristicophis (Viperidae: Viperinae) are known as the desert vipers due to their association with the arid environments of the Middle East. These species have received limited research attention and little is known about their venom or ecology. In this study, a comprehensive analysis of desert viper venoms was conducted by visualising the venom proteomes via gel electrophoresis and assessing the crude venoms for their cytotoxic, haemotoxic, and neurotoxic properties. Plasmas sourced from human, toad, and chicken were used as models to assess possible prey-linked venom activity. The venoms demonstrated substantial divergence in composition and bioactivity across all experiments. Pseudocerastes urarachnoides venom activated human coagulation factors X and prothrombin and demonstrated potent procoagulant activity in human, toad, and chicken plasmas, in stark contrast to the potent neurotoxic venom of P. fieldi. The venom of E. macmahonii also induced coagulation, though this did not appear to be via the activation of factor X or prothrombin. The coagulant properties of P. fieldi and P. persicus venoms varied among plasmas, demonstrating strong anticoagulant activity in the amphibian and human plasmas but no significant effect in that of bird. This is conjectured to reflect prey-specific toxin activity, though further ecological studies are required to confirm any dietary associations. This study reinforces the notion that phylogenetic relatedness of snakes cannot readily predict venom protein composition or function. The significant venom variation between these species raises serious concerns regarding antivenom paraspecificity. Future assessment of antivenom is crucial.


Asunto(s)
Coagulación Sanguínea/efectos de los fármacos , Unión Neuromuscular/efectos de los fármacos , Conducta Predatoria , Proteínas de Reptiles/toxicidad , Mordeduras de Serpientes/metabolismo , Ponzoñas/toxicidad , Viperidae/metabolismo , Animales , Anuros , Línea Celular Tumoral , Pollos , Humanos , Masculino , Unión Neuromuscular/fisiopatología , Proteoma , Proteómica , Proteínas de Reptiles/metabolismo , Mordeduras de Serpientes/sangre , Mordeduras de Serpientes/fisiopatología , Especificidad de la Especie , Ponzoñas/metabolismo
6.
Hepatology ; 73(2): 759-775, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32342533

RESUMEN

BACKGROUND AND AIMS: Growth hormone (GH) is important for liver regeneration after partial hepatectomy (PHx). We investigated this process in C57BL/6 mice that express different forms of the GH receptor (GHR) with deletions in key signaling domains. APPROACH AND RESULTS: PHx was performed on C57BL/6 mice lacking GHR (Ghr-/- ), disabled for all GH-dependent Janus kinase 2 signaling (Box1-/- ), or lacking only GH-dependent signal transducer and activator of transcription 5 (STAT5) signaling (Ghr391-/- ), and wild-type littermates. C57BL/6 Ghr-/- mice showed striking mortality within 48 hours after PHx, whereas Box1-/- or Ghr391-/- mice survived with normal liver regeneration. Ghr-/- mortality was associated with increased apoptosis and elevated natural killer/natural killer T cell and macrophage cell markers. We identified H2-Bl, a key immunotolerance protein, which is up-regulated by PHx through a GH-mediated, Janus kinase 2-independent, SRC family kinase-dependent pathway. GH treatment was confirmed to up-regulate expression of the human homolog of H2-Bl (human leukocyte antigen G [HLA-G]) in primary human hepatocytes and in the serum of GH-deficient patients. We find that injury-associated innate immune attack by natural killer/natural killer T cell and macrophage cells are instrumental in the failure of liver regeneration, and this can be overcome in Ghr-/- mice by adenoviral delivery of H2-Bl or by infusion of HLA-G protein. Further, H2-Bl knockdown in wild-type C57BL/6 mice showed elevated markers of inflammation after PHx, whereas Ghr-/- backcrossed on a strain with high endogenous H2-Bl expression showed a high rate of survival following PHx. CONCLUSIONS: GH induction of H2-Bl expression is crucial for reducing innate immune-mediated apoptosis and promoting survival after PHx in C57BL/6 mice. Treatment with HLA-G may lead to improved clinical outcomes following liver surgery or transplantation.


Asunto(s)
Hormona del Crecimiento/deficiencia , Antígenos H-2/metabolismo , Antígenos HLA-G/metabolismo , Regeneración Hepática/inmunología , Hígado/fisiología , Animales , Apoptosis/inmunología , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Células Cultivadas , Técnicas de Cocultivo , Técnicas de Silenciamiento del Gen , Antígenos H-2/genética , Antígenos HLA-G/genética , Antígenos HLA-G/aislamiento & purificación , Hepatectomía , Hepatocitos , Humanos , Inmunidad Innata , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Hígado/cirugía , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Células T Asesinas Naturales/inmunología , Células T Asesinas Naturales/metabolismo , Cultivo Primario de Células , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Transducción de Señal/genética , Transducción de Señal/inmunología
7.
Int J Mol Sci ; 21(24)2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33316927

RESUMEN

Since its discovery twenty-five years ago, the fat-derived hormone leptin has provided a revolutionary framework for studying the physiological role of adipose tissue as an endocrine organ. Leptin exerts pleiotropic effects on many metabolic pathways and is tightly connected with the liver, the major player in systemic metabolism. As a consequence, understanding the metabolic and hormonal interplay between the liver and adipose tissue could provide us with new therapeutic targets for some chronic liver diseases, an increasing problem worldwide. In this review, we assess relevant literature regarding the main metabolic effects of leptin on the liver, by direct regulation or through the central nervous system (CNS). We draw special attention to the contribution of leptin to the non-alcoholic fatty liver disease (NAFLD) pathogenesis and its progression to more advanced stages of the disease as non-alcoholic steatohepatitis (NASH). Likewise, we describe the contribution of leptin to the liver regeneration process after partial hepatectomy, the mainstay of treatment for certain hepatic malignant tumors.


Asunto(s)
Leptina/metabolismo , Regeneración Hepática , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Tejido Adiposo/metabolismo , Animales , Humanos , Hígado/fisiología
8.
J Vis Exp ; (157)2020 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-32225165

RESUMEN

Understanding the mechanisms of liver injury, hepatic fibrosis, and cirrhosis that underlie chronic liver diseases (i.e., viral hepatitis, non-alcoholic fatty liver disease, metabolic liver disease, and liver cancer) requires experimental manipulation of animal models and in vitro cell cultures. Both techniques have limitations, such as the requirement of large numbers of animals for in vivo manipulation. However, in vitro cell cultures do not reproduce the structure and function of the multicellular hepatic environment. The use of precision-cut liver slices is a technique in which uniform slices of viable mouse liver are maintained in laboratory tissue culture for experimental manipulation. This technique occupies an experimental niche that exists between animal studies and in vitro cell culture methods. The presented protocol describes a straightforward and reliable method to isolate and culture precision-cut liver slices from mice. As an application of this technique, ex vivo liver slices are treated with bile acids to simulate cholestatic liver injury and ultimately assess the mechanisms of hepatic fibrogenesis.


Asunto(s)
Hígado/patología , Animales , Masculino , Ratones , Modelos Animales
9.
J Cyst Fibros ; 19(3): 449-454, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31303380

RESUMEN

BACKGROUND: Current diagnostic methods for the diagnosis of Cystic fibrosis (CF)-associated liver disease (CFLD) are non-specific and assessment of disease progression is difficult prior to the advent of advanced disease with portal hypertension. This study investigated the potential of Supersonic shear-wave elastography (SSWE) to non-invasively detect CFLD and assess hepatic fibrosis severity in children with CF. METHODS: 125 children were enrolled in this study including CFLD (n = 55), CF patients with no evidence of liver disease (CFnoLD = 41) and controls (n = 29). CFLD was diagnosed using clinical, biochemical and imaging best-practice guidelines. Advanced CFLD was established by the presence of portal hypertension and/or macronodular cirrhosis on ultrasound. Liver stiffness measurements (LSM) were acquired using SSWE and diagnostic performance for CFLD detection was evaluated alone or combined with aspartate aminotransferase-to-platelet ratio index (APRI). RESULTS: LSM was significantly higher in CFLD (8.1 kPa, IQR = 6.7-11.9) versus CFnoLD (6.2 kPa, IQR = 5.6-7.0; P < 0.0001) and Controls (5.3 kPa, IQR = 4.9-5.8; P < 0.0001). LSM was also increased in CFnoLD versus Controls (P = 0.0192). Receiver Operating Characteristic (ROC) curve analysis demonstrated good diagnostic accuracy for LSM in detecting CFLD using a cut-off = 6.85 kPa with an AUC = 0.79 (Sensitivity = 75%, Specificity = 71%, P < 0.0001). APRI also discriminated CFLD (AUC = 0.74, P = 0.004). Classification and regression tree modelling combining LSM + APRI showed 14.8 times greater odds of accurately predicting CFLD (AUC = 0.84). The diagnostic accuracy of SSWE for discriminating advanced disease was excellent with a cut-off = 9.05 kPa (AUC = 0.95; P < 0.0001). CONCLUSIONS: SSWE-determined LSM shows good diagnostic accuracy in detecting CFLD in children, which was improved when combined with APRI. SSWE alone discriminates advanced CFLD.


Asunto(s)
Aspartato Aminotransferasas/sangre , Fibrosis Quística , Diagnóstico por Imagen de Elasticidad/métodos , Cirrosis Hepática , Hígado , Recuento de Plaquetas/métodos , Biomarcadores/sangre , Niño , Fibrosis Quística/sangre , Fibrosis Quística/complicaciones , Fibrosis Quística/fisiopatología , Progresión de la Enfermedad , Femenino , Humanos , Hígado/diagnóstico por imagen , Hígado/fisiopatología , Cirrosis Hepática/sangre , Cirrosis Hepática/diagnóstico , Cirrosis Hepática/etiología , Masculino , Gravedad del Paciente , Pronóstico , Reproducibilidad de los Resultados , Índice de Severidad de la Enfermedad
10.
Sci Rep ; 8(1): 11519, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30068931

RESUMEN

Consistent with their diverse pharmacology, peptides derived from venomous animals have been developed as drugs to treat disorders as diverse as hypertension, diabetes and chronic pain. Melanoma has a poor prognosis due in part to its metastatic capacity, warranting further development of novel targeted therapies. This prompted us to examine the anti-melanoma activity of the spider peptides gomesin (AgGom) and a gomesin-like homolog (HiGom). AgGom and HiGom dose-dependently reduced the viability and proliferation of melanoma cells whereas it had no deleterious effects on non-transformed neonatal foreskin fibroblasts. Concordantly, gomesin-treated melanoma cells showed a reduced G0/G1 cell population. AgGom and HiGom compromised proliferation of melanoma cells via activation of the p53/p21 cell cycle check-point axis and the Hippo signaling cascade, together with attenuation of the MAP kinase pathway. We show that both gomesin peptides exhibit antitumoral activity in melanoma AVATAR-zebrafish xenograft tumors and that HiGom also reduces tumour progression in a melanoma xenograft mouse model. Taken together, our data highlight the potential of gomesin for development as a novel melanoma-targeted therapy.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Antineoplásicos/farmacología , Muerte Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Melanoma/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Xenoinjertos , Ratones , Trasplante de Neoplasias , Resultado del Tratamiento , Pez Cebra
11.
Hepatology ; 68(6): 2301-2316, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30014495

RESUMEN

Cystic fibrosis (CF)-associated liver disease (CFLD) is a hepatobiliary complication of CF. Current diagnostic modalities rely on nonspecific assessments, whereas liver biopsy is the gold standard to assess severity of fibrosis. MicroRNAs (miRNAs) regulate liver disease pathogenesis and are proposed as diagnostic biomarkers. We investigated the combined use of serum miRNAs and aspartate aminotransferase (AST) to platelet ratio (APRI) to diagnose and assess CFLD severity. This was a cross-sectional cohort study of the circulatory miRNA signature of 124 children grouped by clinical, biochemical, and imaging assessments as follows: CFLD (n = 44), CF patients with no evidence of liver disease (CFnoLD; n = 40), and healthy controls (n = 40). Serum miRNAs were analyzed using miRNA sequencing (miRNA-Seq). Selected differentially expressed serum miRNA candidates were further validated by qRT-PCR and statistical analysis performed to evaluate utility to predict CFLD and fibrosis severity validated by liver biopsy, alone or in combination with APRI. Serum miR-122-5p, miR-365a-3p, and miR-34a-5p levels were elevated in CFLD compared to CFnoLD, whereas miR-142-3p and let-7g-5p were down-regulated in CFLD compared to CFnoLD. Logistic regression analysis combining miR-365a-3p, miR-142-3p, and let-7g-5p with APRI showed 21 times greater odds of accurately predicting liver disease in CF with an area under the receiver operating characteristics curve (AUROC) = 0.91 (sensitivity = 83%, specificity = 92%; P < 0.0001). Expression levels of serum miR-18a-5p were correlated with increasing hepatic fibrosis (HF) stage in CFLD (rs  = 0.56; P < 0.0001), showing good diagnostic accuracy for distinguishing severe (F3-F4) from mild/moderate fibrosis (F0-F2). A unit increase of miR-18a-5p showed a 7-fold increased odds of having severe fibrosis with an AUROC = 0.82 (sensitivity = 93%, specificity = 73%; P = 0.004), indicating its potential to predict fibrosis severity. Conclusion: We identified a distinct circulatory miRNA profile in pediatric CFLD with potential to accurately discriminate liver disease and fibrosis severity in children with CF.


Asunto(s)
Aspartato Aminotransferasas/sangre , Fibrosis Quística/complicaciones , Hepatopatías/sangre , MicroARNs/sangre , Adolescente , Estudios de Casos y Controles , Niño , Fibrosis Quística/sangre , Femenino , Fibrosis , Humanos , Hígado/patología , Hepatopatías/diagnóstico , Hepatopatías/etiología , Masculino , Recuento de Plaquetas
12.
Cell Death Discov ; 4: 19, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29531816

RESUMEN

The Tasmanian devil faces extinction due to devil facial tumour disease (DFTD), a highly transmittable clonal form of cancer without available treatment. In this study, we report the cell-autonomous antiproliferative and cytotoxic activities exhibited by the spider peptide gomesin (AgGom) and gomesin-like homologue (HiGom) in DFTD cells. Mechanistically, both peptides caused a significant reduction at G0/G1 phase, in correlation with an augmented expression of the cell cycle inhibitory proteins p53, p27, p21, necrosis, exacerbated generation of reactive oxygen species and diminished mitochondrial membrane potential, all hallmarks of cellular stress. The screening of a novel panel of AgGom-analogues revealed that, unlike changes in the hydrophobicity and electrostatic surface, the cytotoxic potential of the gomesin analogues in DFTD cells lies on specific arginine substitutions in the eight and nine positions and alanine replacement in three, five and 12 positions. In conclusion, the evidence supports gomesin as a potential antiproliferative compound against DFTD disease.

13.
Am J Pathol ; 187(12): 2744-2757, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28935574

RESUMEN

Cystic fibrosis liver disease (CFLD) in children causes progressive fibrosis leading to biliary cirrhosis; however, its cause(s) and early pathogenesis are unclear. We hypothesized that a bile acid-induced ductular reaction (DR) drives fibrogenesis. The DR was evaluated by cytokeratin-7 immunohistochemistry in liver biopsies, staged for fibrosis, from 60 children with CFLD, and it demonstrated that the DR was significantly correlated with hepatic fibrosis stage and biliary taurocholate levels. To examine the mechanisms involved in DR induction, liver progenitor cells (LPCs) were treated with taurocholate, and key events in DR evolution were assessed: LPC proliferation, LPC biliary differentiation, and hepatic stellate cell (HSC) chemotaxis. Taurocholate induced a time-dependent increase in LPC proliferation and expression of genes associated with cholangiocyte differentiation (cytokeratin 19, connexin 43, integrin ß4, and γ-glutamyltranspeptidase), whereas the hepatocyte specification marker HNF4α was suppressed. Functional cholangiocyte differentiation was demonstrated via increased acetylated α-tubulin and SOX9 proteins, the number of primary cilia+ LPCs, and increased active γ-glutamyltranspeptidase enzyme secretion. Taurocholate induced LPCs to release MCP-1, MIP1α, and RANTES into conditioned medium causing HSC chemotaxis, which was inhibited by anti-MIP1α. Immunofluorescence confirmed chemokine expression localized to CK7+ DR and LPCs in CFLD liver biopsies. This study suggests that taurocholate is involved in initiating functional LPC biliary differentiation and the development of the DR, with subsequent induction of chemokines that drive HSC recruitment in CFLD.


Asunto(s)
Fibrosis Quística/complicaciones , Células Estrelladas Hepáticas/patología , Cirrosis Hepática Biliar/patología , Células Madre/patología , Ácido Taurocólico/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Quimiotaxis/efectos de los fármacos , Niño , Femenino , Células Estrelladas Hepáticas/efectos de los fármacos , Humanos , Cirrosis Hepática Biliar/etiología , Masculino , Ratones , Células Madre/efectos de los fármacos , Ácido Taurocólico/toxicidad
14.
Trends Mol Med ; 22(10): 889-904, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27633517

RESUMEN

Caveolin-1 (CAV1), the structural protein of caveolae in the plasma membrane, has emerged as a regulator of liver function. CAV1 modulates several molecular pathways leading to the regulation of hepatic lipid accumulation, lipid and glucose metabolism, mitochondrial biology, and hepatocyte proliferation. CAV1 thus plays a crucial role in maintaining hepatic physiology during metabolic adaptation to fasting, liver steatosis, and hepatocyte proliferation associated with liver regeneration. With failure of such processes, CAV1 has been implicated in the modulation of cholestasis, hepatitis, cirrhosis, and hepatocarcinogenesis. This review discusses the latest research in CAV1 biology and related proteins, aiming to guide future endeavors that explore their role in liver physiology and disease.


Asunto(s)
Caveolina 1/metabolismo , Hepatopatías/metabolismo , Hepatopatías/fisiopatología , Hígado/metabolismo , Hígado/fisiopatología , Animales , Ácidos y Sales Biliares/metabolismo , Caveolina 1/análisis , Proliferación Celular , Colestasis/metabolismo , Colestasis/patología , Colestasis/fisiopatología , Metabolismo Energético , Fibrosis/metabolismo , Fibrosis/patología , Fibrosis/fisiopatología , Hepatitis/metabolismo , Hepatitis/patología , Hepatitis/fisiopatología , Humanos , Hígado/patología , Hepatopatías/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/fisiopatología , Transducción de Señal
15.
Br J Pharmacol ; 173(4): 741-51, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26332942

RESUMEN

BACKGROUND AND PURPOSE: Monocyte-derived macrophages are critical in the development of atherosclerosis and can adopt a wide range of functional phenotypes depending on their surrounding milieu. High-density lipoproteins (HDLs) have many cardio-protective properties including potent anti-inflammatory effects. We investigated the effects of HDL on human macrophage phenotype and the mechanisms by which these occur. EXPERIMENTAL APPROACH: Human blood monocytes were differentiated into macrophages in the presence or absence of HDL and were then induced to either an inflammatory macrophage (M1) or anti-inflammatory macrophage (M2) phenotype using LPS and IFN-γ or IL-4, respectively. KEY RESULTS: HDL inhibited the induction of macrophages to an M1-phenotype, as evidenced by a decrease in the expression of M1-specific cell surface markers CD192 and CD64, as well as M1-associated inflammatory genes TNF-α, IL-6 and MCP-1 (CCL2). HDL also inhibited M1 function by reducing the production of ROS. In contrast, HDL had no effect on macrophage induction to the M2-phenotype. Similarly, methyl-ß-cyclodextrin, a non-specific cholesterol acceptor also suppressed the induction of M1 suggesting that cholesterol efflux is important in this process. Furthermore, HDL decreased membrane caveolin-1 in M1 macrophages. We confirmed that caveolin-1 is required for HDL to inhibit M1 induction as bone marrow-derived macrophages from caveolin-1 knockout mice continued to polarize into M1-phenotype despite the presence of HDL. Moreover, HDL decreased ERK1/2 and STAT3 phosphorylation in M1 macrophages. CONCLUSIONS AND IMPLICATIONS: We concluded that HDL reduces the induction of macrophages to the inflammatory M1-phenotype via redistribution of caveolin-1, preventing the activation of ERK1/2 and STAT3.


Asunto(s)
Caveolina 1/metabolismo , Lipoproteínas HDL/farmacología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Animales , Caveolina 1/deficiencia , Humanos , Lipoproteínas HDL/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Fenotipo , Especies Reactivas de Oxígeno/metabolismo
16.
Trends Cancer ; 2(12): 701-705, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-28741517

RESUMEN

Caveolin-1 (CAV1) has emerged as a promoter of proliferation, metastasis, and chemoresistance in hepatoma cells, as well as a marker of poor prognosis in liver cancer. We discuss here current knowledge and future approaches to elucidating the molecular mechanisms underlying CAV1 action during hepatocarcinogenesis and evaluate its potential use in clinical therapies.


Asunto(s)
Caveolina 1/metabolismo , Neoplasias Hepáticas/patología , Animales , Carcinogénesis , Hepatocitos/metabolismo , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo
17.
Cell Rep ; 4(2): 238-47, 2013 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-23850288

RESUMEN

Caveolae and caveolin-1 (CAV1) have been linked to several cellular functions. However, a model explaining their roles in mammalian tissues in vivo is lacking. Unbiased expression profiling in several tissues and cell types identified lipid metabolism as the main target affected by CAV1 deficiency. CAV1-/- mice exhibited impaired hepatic peroxisome proliferator-activated receptor α (PPARα)-dependent oxidative fatty acid metabolism and ketogenesis. Similar results were recapitulated in CAV1-deficient AML12 hepatocytes, suggesting at least a partial cell-autonomous role of hepatocyte CAV1 in metabolic adaptation to fasting. Finally, our experiments suggest that the hepatic phenotypes observed in CAV1-/- mice involve impaired PPARα ligand signaling and attenuated bile acid and FXRα signaling. These results demonstrate the significance of CAV1 in (1) hepatic lipid homeostasis and (2) nuclear hormone receptor (PPARα, FXRα, and SHP) and bile acid signaling.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Caveolina 1/metabolismo , Metabolismo de los Lípidos/fisiología , Hígado/metabolismo , Animales , Ratones , Oxidación-Reducción , Transducción de Señal
18.
PLoS One ; 7(9): e46242, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23049990

RESUMEN

Caveolin-1 (CAV1) is an important regulator of adipose tissue homeostasis. In the present study we examined the impact of CAV1 deficiency on the properties of mouse adipose tissue both in vivo and in explant cultures during conditions of metabolic stress. In CAV1(-/-) mice fasting caused loss of adipose tissue mass despite a lack of hormone-sensitive lipase (HSL) phosphorylation. In addition, fasting resulted in increased macrophage infiltration, enhanced deposition of collagen, and a reduction in the level of the lipid droplet protein perilipin A (PLIN1a). Explant cultures of CAV1(-/-) adipose tissue also showed a loss of PLIN1a during culture, enhanced secretion of IL-6, increased release of lactate dehydrogenase, and demonstrated increased susceptibility to cell death upon collagenase treatment. Attenuated PKA-mediated signaling to HSL, loss of PLIN1a and increased secretion of IL-6 were also observed in adipose tissue explants of CAV1(+/+) mice with diet-induced obesity. Together these results suggest that while alterations in adipocyte lipid droplet biology support adipose tissue metabolism in the absence of PKA-mediated pro-lipolytic signaling in CAV1(-/-) mice, the tissue is intrinsically unstable resulting in increased susceptibility to cell death, which we suggest underlies the development of fibrosis and inflammation during periods of metabolic stress.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Caveolina 1/metabolismo , Fibrosis/metabolismo , Absorciometría de Fotón , Tejido Adiposo Blanco/citología , Animales , Western Blotting , Peso Corporal/genética , Peso Corporal/fisiología , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Caveolina 1/deficiencia , Caveolina 1/genética , Muerte Celular/genética , Muerte Celular/fisiología , Fibrosis/genética , Inmunohistoquímica , Interleucina-6/metabolismo , Lipólisis/genética , Lipólisis/fisiología , Masculino , Ratones , Ratones Noqueados , Perilipina-1 , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilación
19.
Arterioscler Thromb Vasc Biol ; 32(9): e117-25, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22772753

RESUMEN

OBJECTIVE: Monocyte to macrophage differentiation is an essential step in atherogenesis. The structure protein of caveolae, caveolin-1, is increased in primary monocytes after its adhesion to endothelium. We explore the hypothesis that caveolin-1 plays a role in monocyte differentiation to macrophages. METHODS AND RESULTS: Both phorbol myristate acetate-induced THP-1 and colony-stimulating factor-induced primary monocyte differentiation was associated with an increase in cellular caveolin-1 expression. Overexpression of caveolin-1 by transfection increased macrophage surface markers and inflammatory genes, whereas caveolin-1 knockdown by small interfering RNA or knockout reduced these. Also, caveolin-1 knockdown inhibited the differentiation-induced nuclear translocation of early growth response 1 (EGR-1) through extracellular signal-regulated kinase phosphorylation, further decreased the binding of EGR-1 to CD115 promoter, thus decreasing EGR-1 transcriptional activity. In functional assays, caveolin-1 inhibited transmigration but promoted phagocytosis in the monocyte-macrophage lineage. Decreasing caveolin-1 inhibited the uptake of modified low-density lipoprotein and reduced cellular lipid content. Finally, we showed that caveolin-1 knockout mice displayed less monocyte differentiation than wild-type mice and that EGR-1 transcription activity was also decreased in these mice because of the inhibition of extracellular signal-regulated kinase phosphorylation. CONCLUSIONS: Caveolin-1 promotes monocyte to macrophage differentiation through the regulation of EGR-1 transcriptional activity, suggesting that phagocytic caveolin-1 may be critical for atherogenesis.


Asunto(s)
Aterosclerosis/metabolismo , Caveolina 1/metabolismo , Transdiferenciación Celular , Macrófagos/metabolismo , Monocitos/metabolismo , Animales , Aterosclerosis/genética , Aterosclerosis/patología , Sitios de Unión , Caveolina 1/deficiencia , Caveolina 1/genética , Línea Celular , Movimiento Celular , Transdiferenciación Celular/efectos de los fármacos , Técnicas de Cocultivo , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación de la Expresión Génica , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Humanos , Factor Estimulante de Colonias de Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/efectos de los fármacos , Monocitos/patología , Fagocitosis , Fosforilación , Regiones Promotoras Genéticas , Interferencia de ARN , Receptor de Factor Estimulante de Colonias de Macrófagos/genética , Acetato de Tetradecanoilforbol/farmacología , Transcripción Genética , Transfección
20.
J Biol Chem ; 284(46): 32097-107, 2009 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-19755426

RESUMEN

Hormone-sensitive lipase (HSL) is a key enzyme regulating the acute activation of lipolysis. HSL functionality is controlled by multiple phosphorylation events, which regulate its association with the surface of lipid droplets (LDs). We determined the progression and stability of HSL phosphorylation on individual serine residues both spatially and temporally in adipocytes using phospho-specific antibodies. Within seconds of beta-adrenergic receptor activation, HSL was phosphorylated on Ser-660, the phosphorylated form appearing in the peripheral cytosol prior to rapid translocation to, and stable association with, LDs. In contrast, phosphorylation of HSL on Ser-563 was delayed, the phosphorylated protein was predominantly detected on LDs, and mutation of the Ser-659/Ser-660 site to Ala significantly reduced subsequent phosphorylation on Ser-563. Phosphorylation of HSL on Ser-565 was observed in control cells; the phosphorylated protein was translocated to LDs with similar kinetics to total HSL, and the degree of phosphorylation was inversely related to phospho-HSL(Ser-563). These results describe the remarkably rapid, sequential phosphorylation of specific serine residues in HSL at spatially distinct intracellular locales, providing new insight into the complex regulation of lipolysis.


Asunto(s)
Adipocitos/metabolismo , Lipólisis/fisiología , Transducción de Señal , Esterol Esterasa/metabolismo , 1-Metil-3-Isobutilxantina/farmacología , Células 3T3-L1 , Agonistas de Receptores Adrenérgicos beta 3 , Agonistas Adrenérgicos beta/farmacología , Animales , Western Blotting , Células Cultivadas , Dioxoles/farmacología , Técnica del Anticuerpo Fluorescente , Técnicas para Inmunoenzimas , Isoproterenol/farmacología , Lipólisis/efectos de los fármacos , Ratones , Mutagénesis Sitio-Dirigida , Mutación/genética , Inhibidores de Fosfodiesterasa/farmacología , Fosforilación/efectos de los fármacos , Esterol Esterasa/genética , Fracciones Subcelulares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA