Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nat Immunol ; 24(5): 757-766, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37012544

RESUMEN

Obesity-related metabolic organ inflammation contributes to cardiometabolic disorders. In obese individuals, changes in lipid fluxes and storage elicit immune responses in the adipose tissue (AT), including expansion of immune cell populations and qualitative changes in the function of these cells. Although traditional models of metabolic inflammation posit that these immune responses disturb metabolic organ function, studies now suggest that immune cells, especially AT macrophages (ATMs), also have important adaptive functions in lipid homeostasis in states in which the metabolic function of adipocytes is taxed. Adverse consequences of AT metabolic inflammation might result from failure to maintain local lipid homeostasis and long-term effects on immune cells beyond the AT. Here we review the complex function of ATMs in AT homeostasis and metabolic inflammation. Additionally, we hypothesize that trained immunity, which involves long-term functional adaptations of myeloid cells and their bone marrow progenitors, can provide a model by which metabolic perturbations trigger chronic systemic inflammation.


Asunto(s)
Tejido Adiposo , Macrófagos , Humanos , Homeostasis , Obesidad , Lípidos , Inflamación
2.
Cell ; 183(7): 1739-1741, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33357398

RESUMEN

In this issue of Cell, Ringel et al. reveal a link between lipid utilization in the tumor microenvironment and anti-tumor immunity in obese mice. These findings provide one explanation for how obesity worsens cancer outcomes and may point to a new metabolic approach to treating some cancers.


Asunto(s)
Neoplasias , Microambiente Tumoral , Animales , Ratones , Ratones Obesos , Obesidad , Linfocitos T
3.
Cell Stem Cell ; 24(4): 654-669.e6, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30930146

RESUMEN

Hair growth can be induced from resting mouse hair follicles by topical application of JAK inhibitors, suggesting that JAK-STAT signaling is required for maintaining hair follicle stem cells (HFSCs) in a quiescent state. Here, we show that Oncostatin M (OSM), an IL-6 family cytokine, negatively regulates hair growth by signaling through JAK-STAT5 to maintain HFSC quiescence. Genetic deletion of the OSM receptor or STAT5 can induce premature HFSC activation, suggesting that the resting telogen stage is actively maintained by the hair follicle niche. Single-cell RNA sequencing revealed that the OSM source is not intrinsic to the hair follicle itself and is instead a subset of TREM2+ macrophages that is enriched within the resting follicle and deceases immediately prior to HFSC activation. In vivo inhibition of macrophage function was sufficient to induce HFSC proliferation and hair cycle induction. Together these results clarify how JAK-STAT signaling actively inhibits hair growth.


Asunto(s)
Folículo Piloso/citología , Cabello/crecimiento & desarrollo , Macrófagos/metabolismo , Oncostatina M/metabolismo , Células Madre/citología , Animales , Ciclo Celular , Proliferación Celular , Dermis/citología , Dermis/metabolismo , Femenino , Folículo Piloso/metabolismo , Humanos , Janus Quinasa 2/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores Inmunológicos/metabolismo , Factor de Transcripción STAT5/metabolismo , Transducción de Señal , Células Madre/metabolismo
4.
Science ; 363(6430): 989-993, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30819964

RESUMEN

To meet systemic metabolic needs, adipocytes release fatty acids and glycerol through the action of neutral lipases. Here, we describe a secondary pathway of lipid release from adipocytes that is independent of canonical lipolysis. We found that adipocytes release exosome-sized, lipid-filled vesicles (AdExos) that become a source of lipid for local macrophages. Adipose tissue from lean mice released ~1% of its lipid content per day via exosomes ex vivo, a rate that more than doubles in obese animals. AdExos and associated factors were sufficient to induce in vitro differentiation of bone marrow precursors into adipose tissue macrophage-like cells. Thus, AdExos are both an alternative pathway of local lipid release and a mechanism by which parenchymal cells can modulate tissue macrophage differentiation and function.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo/inmunología , Exosomas/metabolismo , Metabolismo de los Lípidos , Macrófagos/metabolismo , Tejido Adiposo/citología , Animales , Células de la Médula Ósea/metabolismo , Diferenciación Celular , Células Cultivadas , Lipasa/metabolismo , Lipólisis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/metabolismo
5.
Cell Metab ; 28(2): 289-299.e5, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-29937378

RESUMEN

Weight is defended so that increases or decreases in body mass elicit responses that favor restoration of one's previous weight. While much is known about the signals that respond to weight loss and the central role that leptin plays, the lack of experimental systems studying the overfed state has meant little is known about pathways defending against weight gain. We developed a system to study this physiology and found that overfed mice defend against increased weight gain with graded anorexia but, unlike weight loss, this response is independent of circulating leptin concentration. In overfed mice that are unresponsive to orexigenic stimuli, adipose tissue is transcriptionally and immunologically distinct from fat of ad libitum-fed obese animals. These findings provide evidence that overfeeding-induced obesity alters adipose tissue and central responses in ways that are distinct from ad libitum obesity and activates a non-leptin system to defend against weight gain.


Asunto(s)
Tejido Adiposo/metabolismo , Leptina/fisiología , Obesidad/metabolismo , Aumento de Peso , Pérdida de Peso , Tejido Adiposo/inmunología , Animales , Anorexia , Hiperfagia , Ratones , Ratones Endogámicos C57BL , Ratones Obesos
6.
Diabetes ; 65(4): 967-80, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26868294

RESUMEN

Adipose tissue (AT) macrophages (ATMs) contribute to obesity-induced inflammation and metabolic dysfunction, but also play critical roles in maintaining tissue homeostasis. ATMs catabolize lipid in a lysosomal-dependent manner required for the maintenance of AT; deficiency in lysosomal acid lipase (Lipa), the enzyme required for lysosome lipid catabolism, leads to AT atrophy and severe hepatic steatosis, phenotypes rescued by macrophage-specific expression of Lipa Autophagy delivers cellular products, including lipid droplets, to lysosomes. Given that obesity increases autophagy in AT and contributes to lipid catabolism in other cells, it was proposed that autophagy delivers lipid to lysosomes in ATMs and is required for AT homeostasis. We found that obesity does increase autophagy in ATMs. However, genetic or pharmacological inhibition of autophagy does not alter the lipid balance of ATMs in vitro or in vivo. In contrast to the deficiency of lysosomal lipid hydrolysis, the ablation of autophagy in macrophages does not lead to AT atrophy or alter metabolic phenotypes in lean or obese animals. Although the lysosomal catabolism of lipid is necessary for normal ATM function and AT homeostasis, delivery of lipid to lysosomes is not autophagy dependent and strongly suggests the existence of another lipid delivery pathway critical to lysosome triglyceride hydrolysis in ATMs.


Asunto(s)
Tejido Adiposo/metabolismo , Autofagia/fisiología , Metabolismo de los Lípidos , Macrófagos/metabolismo , Tejido Adiposo/ultraestructura , Animales , Autofagia/genética , Proteína 7 Relacionada con la Autofagia/genética , Células Cultivadas , Homeostasis/fisiología , Leptina/deficiencia , Leptina/genética , Metabolismo de los Lípidos/genética , Lipólisis/genética , Lisosomas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Esterol Esterasa/genética , Esterol Esterasa/metabolismo
7.
Obesity (Silver Spring) ; 24(1): 172-83, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26663512

RESUMEN

OBJECTIVE: Insulin-like growth factor-1 (IGF1) regulates differentiation and growth of tissues and reduces stress and injury. IGF1 also in a tissue-specific manner modulates the differentiation and lipid storage capacity of adipocytes in vitro, but its roles in adipose tissue development and response to stress are not known. METHODS: To study IGF1 in vivo, the cellular sources of adipose tissue Igf1 expression were identified and mice were generated with targeted deletion in adipocytes and macrophages. The effects of adipocyte and macrophage deficiency of IGF1 on adipose tissue development and the response to chronic (high-fat feeding) and acute (cold challenge) stress were studied. RESULTS: The expression of Igf1 by adipose tissue was derived from multiple cell types including adipocytes and macrophages. In lean animals, adipocytes were the primary source of IGF1, but in obesity expression by adipocytes was reduced and by macrophages increased, so as to maintain overall adipose tissue Igf1 expression. Genetic deletion studies revealed that adipocyte-derived IGF1 regulated perigonadal but not subcutaneous adipose tissue mass during high-fat feeding and the development of obesity. Conversely, macrophage-derived IGF1 acutely modulated perigonadal adipose tissue mass during thermogenic challenges. CONCLUSIONS: Local IGF1 is not required in lean adipose tissue development but is required to maintain homeostasis during both chronic and acute metabolic stresses.


Asunto(s)
Adipocitos/metabolismo , Adipocitos/fisiología , Tejido Adiposo/metabolismo , Homeostasis/fisiología , Factor I del Crecimiento Similar a la Insulina/fisiología , Macrófagos/fisiología , Obesidad/fisiopatología , Estrés Fisiológico/fisiología , Adipogénesis/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Termogénesis/fisiología
8.
PLoS One ; 10(8): e0135842, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26317499

RESUMEN

Obesity-induced inflammation in visceral adipose tissue (VAT) is a major contributor to insulin resistance and type 2 diabetes. Whereas innate immune cells, notably macrophages, contribute to visceral adipose tissue (VAT) inflammation and insulin resistance, the role of adaptive immunity is less well defined. To address this critical gap, we used a model in which endogenous activation of T cells was suppressed in obese mice by blocking MyD88-mediated maturation of CD11c+ antigen-presenting cells. VAT CD11c+ cells from Cd11cCre+Myd88fl/fl vs. control Myd88fl/fl mice were defective in activating T cells in vitro, and VAT T and B cell activation was markedly reduced in Cd11cCre+Myd88fl/fl obese mice. However, neither macrophage-mediated VAT inflammation nor systemic inflammation were altered in Cd11cCre+Myd88fl/fl mice, thereby enabling a focused analysis on adaptive immunity. Unexpectedly, fasting blood glucose, plasma insulin, and the glucose response to glucose and insulin were completely unaltered in Cd11cCre+Myd88fl/fl vs. control obese mice. Thus, CD11c+ cells activate VAT T and B cells in obese mice, but suppression of this process does not have a discernible effect on macrophage-mediated VAT inflammation or systemic glucose homeostasis.


Asunto(s)
Inmunidad Innata , Resistencia a la Insulina , Grasa Intraabdominal/inmunología , Activación de Linfocitos , Macrófagos/inmunología , Obesidad/inmunología , Animales , Antígenos CD11/genética , Antígenos CD11/metabolismo , Grasa Intraabdominal/citología , Subgrupos Linfocitarios/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Obesidad/metabolismo
9.
Cell Metab ; 20(4): 593-602, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25264246

RESUMEN

Pancreatic ß cell failure in type 2 diabetes is associated with functional abnormalities of insulin secretion and deficits of ß cell mass. It's unclear how one begets the other. We have shown that loss of ß cell mass can be ascribed to impaired FoxO1 function in different models of diabetes. Here we show that ablation of the three FoxO genes (1, 3a, and 4) in mature ß cells results in early-onset, maturity-onset diabetes of the young (MODY)-like diabetes, with abnormalities of the MODY networks Hnf4α, Hnf1α, and Pdx1. FoxO-deficient ß cells are metabolically inflexible, i.e., they preferentially utilize lipids rather than carbohydrates as an energy source. This results in impaired ATP generation and reduced Ca(2+)-dependent insulin secretion. The present findings demonstrate a secretory defect caused by impaired FoxO activity that antedates dedifferentiation. We propose that defects in both pancreatic ß cell function and mass arise through FoxO-dependent mechanisms during diabetes progression.


Asunto(s)
Diabetes Mellitus Tipo 2/patología , Factores de Transcripción Forkhead/genética , Insulina/metabolismo , Animales , Glucemia/análisis , Calcio/metabolismo , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Proteínas de Ciclo Celular , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animales de Enfermedad , Proteína Forkhead Box O1 , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/deficiencia , Perfilación de la Expresión Génica , Prueba de Tolerancia a la Glucosa , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Factor Nuclear 4 del Hepatocito/metabolismo , Proteínas de Homeodominio/metabolismo , Células Secretoras de Insulina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Transactivadores/metabolismo
10.
Diabetes ; 63(6): 1948-65, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24520121

RESUMEN

In mammals, changes in the metabolic state, including obesity, fasting, cold challenge, and high-fat diets (HFDs), activate complex immune responses. In many strains of rodents, HFDs induce a rapid systemic inflammatory response and lead to obesity. Little is known about the molecular signals required for HFD-induced phenotypes. We studied the function of the receptor for advanced glycation end products (RAGE) in the development of phenotypes associated with high-fat feeding in mice. RAGE is highly expressed on immune cells, including macrophages. We found that high-fat feeding induced expression of RAGE ligand HMGB1 and carboxymethyllysine-advanced glycation end product epitopes in liver and adipose tissue. Genetic deficiency of RAGE prevented the effects of HFD on energy expenditure, weight gain, adipose tissue inflammation, and insulin resistance. RAGE deficiency had no effect on genetic forms of obesity caused by impaired melanocortin signaling. Hematopoietic deficiency of RAGE or treatment with soluble RAGE partially protected against peripheral HFD-induced inflammation and weight gain. These findings demonstrate that high-fat feeding induces peripheral inflammation and weight gain in a RAGE-dependent manner, providing a foothold in the pathways that regulate diet-induced obesity and offering the potential for therapeutic intervention.


Asunto(s)
Tejido Adiposo/metabolismo , Dieta Alta en Grasa , Inflamación/metabolismo , Resistencia a la Insulina , Hígado/metabolismo , Obesidad/metabolismo , Receptores Inmunológicos/metabolismo , Animales , Técnica de Clampeo de la Glucosa , Inflamación/genética , Resistencia a la Insulina/genética , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor para Productos Finales de Glicación Avanzada , Aumento de Peso/genética
11.
Gut ; 63(3): 385-94, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23729675

RESUMEN

OBJECTIVE: To investigate the role of obesity-associated inflammation and immune modulation in gastric carcinogenesis during Helicobacter-induced chronic gastric inflammation. DESIGN: C57BL/6 male mice were infected with H felis and placed on a high-fat diet (45% calories from fat). Study animals were analysed for gastric and adipose pathology, inflammatory markers in serum, stomach and adipose tissue, and immune responses in blood, spleen, stomach and adipose tissue. RESULTS: H felis-induced gastric carcinogenesis was accelerated in diet-induced obese mice compared with lean controls. Obesity increased bone marrow-derived immature myeloid cells in blood and gastric tissue of H felis-infected mice. Obesity also led to elevations in CD4 T cells, IL-17A, granulocyte macrophage colony-stimulating factor, phosphorylated STAT3 and prosurvival gene expression in gastric tissue of H felis-infected mice. Conversely, in adipose tissue of obese mice, H felis infection increased macrophage accumulation and expression of IL-6, C-C motif ligand 7 (CCL7) and leptin. Finally, the combination of obesity and gastric inflammation synergistically increased serum proinflammatory cytokines, including IL-6. CONCLUSIONS: Here, we have established a model to study the molecular mechanism by which obesity predisposes individuals to gastric cancer. In H felis-infected mice, obesity increased proinflammatory immune responses and accelerated gastric carcinogenesis. Interestingly, gastric inflammation augmented obesity-induced adipose inflammation and production of adipose-derived factors in obese, but not lean, mice. Our findings suggest that obesity accelerates Helicobacter-associated gastric cancer through cytokine-mediated cross-talk between inflamed gastric and adipose tissues, augmenting immune responses at both tissue sites, and thereby contributing to a protumorigenic gastric microenvironment.


Asunto(s)
Gastritis/complicaciones , Infecciones por Helicobacter/complicaciones , Helicobacter felis , Células Progenitoras Mieloides/fisiología , Obesidad/complicaciones , Neoplasias Gástricas/etiología , Células Th17/fisiología , Animales , Biomarcadores/metabolismo , Movimiento Celular , Citocinas/metabolismo , Dieta Alta en Grasa , Citometría de Flujo , Gastritis/diagnóstico , Gastritis/metabolismo , Gastritis/microbiología , Infecciones por Helicobacter/inmunología , Inflamación/complicaciones , Inflamación/metabolismo , Inflamación/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/inmunología , Factor de Transcripción STAT3/metabolismo , Neoplasias Gástricas/inmunología , Neoplasias Gástricas/microbiología
12.
Cell Metab ; 18(6): 816-30, 2013 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-24315368

RESUMEN

Obesity activates a complex systemic immune response that includes the recruitment of macrophages and other immune cells to key metabolic tissues. Current models postulate that obesity and excess lipids classically activate macrophages, polarizing them toward an M1 (inflammatory) state. Little is known about noninflammatory functions of adipose tissue macrophages (ATMs). Here, we show that the expansion of adipose tissue (AT) across models of obesity induces a program of lysosome biogenesis in ATMs and is associated with lipid catabolism but not a classic inflammatory phenotype. This program is induced by factors produced by AT and is tightly coupled to lipid accumulation by ATMs. Inhibition of ATM lysosome function impairs lipid metabolism and increases lipid content in ATMs and reduces whole AT lipolysis. These data argue that ATMs contribute quantitatively to the development of obesity-induced inflammation but also serve an important role in lipid trafficking independent of their inflammatory phenotype.


Asunto(s)
Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Metabolismo de los Lípidos/fisiología , Lisosomas/metabolismo , Macrófagos/metabolismo , Tejido Adiposo/inmunología , Animales , Resistencia a la Insulina , Leptina/deficiencia , Leptina/genética , Leptina/metabolismo , Lipólisis , Macrófagos/citología , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Ratones Transgénicos , Obesidad/inmunología , Obesidad/metabolismo , Obesidad/patología , Fenotipo
13.
J Clin Invest ; 123(12): 4992-3, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24292661

RESUMEN

Over the last century, our modern concepts and understanding of metabolism and immunology have evolved largely in parallel. Notably, during the last decade, there has been a sharpened focus on the convergence of metabolism and immune function. In part motivated by studies originally published in the JCI, we now recognize that the immune system monitors the metabolic state of tissues and organisms and responds in kind by modulating metabolic function. The complexity of these interactions, both adaptive and pathologic, continues to be studied and revealed, with the hope that harnessing the reins that control immune function may one day be used for metabolic benefit.


Asunto(s)
Tejido Adiposo/metabolismo , Metabolismo Energético/fisiología , Sistema Inmunológico/fisiología , Inflamación/inmunología , Inflamación/metabolismo , Macrófagos/fisiología , Adaptación Fisiológica , Adiposidad/genética , Adiposidad/inmunología , Animales , Frío , Diabetes Mellitus Tipo 2/inmunología , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético/inmunología , Regulación de la Expresión Génica , Homeostasis , Humanos , Mediadores de Inflamación/metabolismo , Resistencia a la Insulina/fisiología , Ratones , Obesidad/inmunología , Obesidad/metabolismo , Obesidad/fisiopatología , Factor de Necrosis Tumoral alfa/fisiología
14.
Circ Res ; 112(7): 992-1003, 2013 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-23420833

RESUMEN

RATIONALE: Increased neutrophil and monocyte counts are often associated with an increased risk of atherosclerosis, but their relationship to insulin sensitivity is unknown. OBJECTIVE: To investigate the contribution of forkhead transcription factors (FoxO) in myeloid cells to neutrophil and monocyte counts, atherosclerosis, and systemic insulin sensitivity. METHODS AND RESULTS: Genetic ablation of the 3 genes encoding FoxO isoforms 1, 3a, and 4, in myeloid cells resulted in an expansion of the granulocyte/monocyte progenitor compartment and was associated with increased atherosclerotic lesion formation in low-density lipoprotein receptor knockout mice. In vivo and ex vivo studies indicate that FoxO ablation in myeloid cells increased generation of reactive oxygen species. Accordingly, treatment with the antioxidant N-acetyl-l-cysteine reversed the phenotype, normalizing atherosclerosis. CONCLUSIONS: Our data indicate that myeloid cell proliferation and oxidative stress can be modulated via the FoxO branch of insulin receptor signaling, highlighting a heretofore-unknown link between insulin sensitivity and leukocytosis that can affect the predisposition to atherosclerosis.


Asunto(s)
Aterosclerosis/fisiopatología , Factores de Transcripción Forkhead/genética , Monocitos/metabolismo , Neutrófilos/metabolismo , Estrés Oxidativo/fisiología , Acetilcisteína/farmacología , Animales , Antioxidantes/farmacología , Apoptosis/fisiología , Aterosclerosis/metabolismo , Aterosclerosis/patología , Proteínas de Ciclo Celular , Cisteína/metabolismo , Femenino , Proteína Forkhead Box O1 , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/metabolismo , Depuradores de Radicales Libres/farmacología , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Insulina/metabolismo , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones , Ratones Noqueados , Monocitos/patología , Neutrófilos/patología , Nitrógeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Tirosina/metabolismo
17.
J Clin Invest ; 120(10): 3466-79, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20877011

RESUMEN

Obesity elicits an immune response characterized by myeloid cell recruitment to key metabolic organs, including adipose tissue. However, the response of immune cells to nonpathologic metabolic stimuli has been less well studied, and the factors that regulate the metabolic-dependent accumulation of immune cells are incompletely understood. Here we characterized the response of adipose tissue macrophages (ATMs) to weight loss and fasting in mice and identified a role for lipolysis in ATM recruitment and accumulation. We found that the immune response to weight loss was dynamic; caloric restriction of high-fat diet-fed mice led to an initial increase in ATM recruitment, whereas ATM content decreased following an extended period of weight loss. The peak in ATM number coincided with the peak in the circulating concentrations of FFA and adipose tissue lipolysis, suggesting that lipolysis drives ATM accumulation. Indeed, fasting or pharmacologically induced lipolysis rapidly increased ATM accumulation, adipose tissue chemoattractant activity, and lipid uptake by ATMs. Conversely, dietary and genetic manipulations that reduced lipolysis decreased ATM accumulation. Depletion of macrophages in adipose tissue cultures increased expression of adipose triglyceride lipase and genes regulated by FFA, and increased lipolysis. These data suggest that local lipid fluxes are central regulators of ATM recruitment and that once recruited, ATMs form lipid-laden macrophages that can buffer local increases in lipid concentration.


Asunto(s)
Tejido Adiposo/inmunología , Lipólisis/inmunología , Pérdida de Peso/inmunología , Tejido Adiposo/metabolismo , Animales , Hidrolasas de Éster Carboxílico/fisiología , Movimiento Celular , Ácidos Grasos no Esterificados/sangre , Lipasa , Macrófagos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL
18.
Diabetes ; 59(4): 916-25, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20103702

RESUMEN

OBJECTIVE: Obesity induces a program of systemic inflammation that is implicated in the development of many of its clinical sequelae. Hepatic inflammation is a feature of obesity-induced liver disease, and our previous studies demonstrated reduced hepatic steatosis in obese mice deficient in the C-C chemokine receptor 2 (CCR2) that regulates myeloid cell recruitment. This suggests that a myeloid cell population is recruited to the liver in obesity and contributes to nonalcoholic fatty liver disease. RESEARCH DESIGN AND METHODS: We used fluorescence-activated cell sorting to measure hepatic leukocyte populations in genetic and diet forms of murine obesity. We characterized in vivo models that increase and decrease an obesity-regulated CCR2-expressing population of hepatic leukocytes. Finally, using an in vitro co-culture system, we measured the ability of these cells to modulate a hepatocyte program of lipid metabolism. RESULTS: We demonstrate that obesity activates hepatocyte expression of C-C chemokine ligand 2 (CCL2/MCP-1) leading to hepatic recruitment of CCR2(+) myeloid cells that promote hepatosteatosis. The quantity of these cells correlates with body mass and in obese mice represents the second largest immune cell population in the liver. Hepatic expression of CCL2 increases their recruitment and in the presence of dietary fat induces hepatosteatosis. These cells activate hepatic transcription of genes responsible for fatty acid esterification and steatosis. CONCLUSIONS: Obesity induces hepatic recruitment of a myeloid cell population that promotes hepatocyte lipid storage. These findings demonstrate that recruitment of myeloid cells to metabolic tissues is a common feature of obesity, not limited to adipose tissue.


Asunto(s)
Hígado/fisiología , Receptores CCR2/fisiología , Alanina Transaminasa/sangre , Animales , Aspartato Aminotransferasas/sangre , Glucemia/análisis , Trasplante de Médula Ósea , Línea Celular , Quimiocina CCL2/genética , Grasas de la Dieta/farmacología , Hígado Graso/genética , Hígado Graso/fisiopatología , Femenino , Amplificación de Genes , Humanos , Insulina/sangre , Riñón/embriología , Hígado/efectos de los fármacos , Hígado/patología , Hígado/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Células Mieloides/fisiología , Obesidad/genética , Obesidad/patología , Obesidad/fisiopatología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
19.
Eur J Endocrinol ; 162(2): 275-80, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19934269

RESUMEN

OBJECTIVE: Energy expenditure (EE) and measures of inflammation increase with adiposity, and this obesity-induced chronic and subclinical inflammation was extensively reported to be a cause of insulin resistance. However, whether subclinical inflammation has a role in increasing EE, which may be at the cost of developing insulin resistance, is not clear. METHODS: We investigated the association between circulating white blood cell count (WBC) in a population of Native Americans (n=243) with measurement of EE in a respiratory chamber, and in a subset of the same population (n=34), with gene expression measures of inflammation in subcutaneous abdominal adipose tissue (SAAT). All subjects were healthy on oral glucose tolerance test. Statistically, nonnormally distributed variables were logarithmically transformed before analyses to approximate normal distributions. RESULTS: WBC was associated with 24-h EE adjusted for age, sex, fat-free mass, and fat mass (r=0.13, P=0.04). In SAAT, tumor necrosis factor-alpha (TNF-alpha), shown as log10-transformed TNF-alpha (r=0.36, P=0.05), and plasminogen activator inhibitor-1 (PAI-1), shown as log10-transformed PAI-1 (lPAI-1; r=0.41, P=0.02), expressions were also positively correlated with adjusted 24-h EE. lPAI-1 was also correlated with adjusted sleep EE (r=0.34, P=0.07). CONCLUSIONS: In conclusion, circulating markers of inflammation (WBC) and markers of inflammation within adipose tissue (TNF-alpha and PAI-1) are positively associated with EE, indicating a role of chronic subclinical inflammation in the regulation of metabolic rate.


Asunto(s)
Metabolismo Energético/inmunología , Inflamación/inmunología , Recuento de Leucocitos , Obesidad/inmunología , Grasa Subcutánea/inmunología , Adolescente , Adulto , Biomarcadores , Índice de Masa Corporal , Femenino , Expresión Génica/inmunología , Humanos , Indígenas Norteamericanos , Inflamación/metabolismo , Masculino , Persona de Mediana Edad , Obesidad/metabolismo , Inhibidor 1 de Activador Plasminogénico/genética , Grasa Subcutánea/metabolismo , Factor de Necrosis Tumoral alfa/genética , Adulto Joven
20.
Nestle Nutr Workshop Ser Pediatr Program ; 63: 151-9; discussion 159-62, 259-68, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19346774

RESUMEN

The World Health Organization estimates that since 1980 the prevalence of obesity has increased more than threefold throughout much of the world, and this increase is not limited to developed nations. Indeed, the incidence of obesity is increasing most rapidly among rapidly industrializing countries raising the spectre of a burgeoning epidemic in obesity-associated diseases, including diabetes, dyslipidemia, nonalcoholic fatty liver disease and atherosclerosis. Reducing the rates of obesity and its attendant complications will require both coordinated public health policy and a better understanding of the pathophysiology of obesity. Obesity is associated with low grade chronic inflammation, a common feature of many complications of obesity that appears to emanate in part from adipose tissue. In obese individuals and rodents adipose tissue macrophage accumulation is a critical component in the development of obesity-induced inflammation. The macrophages in adipose tissue are bone marrow-derived and their number is strongly correlated with bodyweight, body mass index and total body fat. The recruited macrophages in adipose tissue express high levels of inflammatory factors that contribute to systemic inflammation and insulin resistance. Interventions aimed at either reducing macrophage numbers or decreasing their inflammatory characteristics improves insulin sensitivity and decreases inflammation. Macrophage accumulation and adipose tissue inflammation are dynamic processes under the control of multiple mechanisms. Investigating the role of macrophages in adipose tissue biology and the mechanisms involved in their recruitment and activation in obesity will provide useful insights for developing therapeutic approaches to treating obesity-induced complications.


Asunto(s)
Inflamación/fisiopatología , Macrófagos/fisiología , Obesidad/fisiopatología , Tejido Adiposo/fisiología , Tejido Adiposo/fisiopatología , Citocinas/fisiología , Salud Global , Humanos , Inflamación/etiología , Monocitos/fisiología , Obesidad/epidemiología , Prevalencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA