Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mol Psychiatry ; 22(7): 1035-1043, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-27725661

RESUMEN

Developmental risk factors, such as the exposure to stress or high levels of glucocorticoids (GCs), may contribute to the pathogenesis of anxiety disorders. The immunomodulatory role of GCs and the immunological fingerprint found in animals prenatally exposed to GCs point towards an interplay between the immune and the nervous systems in the etiology of these disorders. Microglia are immune cells of the brain, responsive to GCs and morphologically altered in stress-related disorders. These cells are regulated by adenosine A2A receptors, which are also involved in the pathophysiology of anxiety. We now compare animal behavior and microglia morphology in males and females prenatally exposed to the GC dexamethasone. We report that prenatal exposure to dexamethasone is associated with a gender-specific remodeling of microglial cell processes in the prefrontal cortex: males show a hyper-ramification and increased length whereas females exhibit a decrease in the number and in the length of microglia processes. Microglial cells re-organization responded in a gender-specific manner to the chronic treatment with a selective adenosine A2A receptor antagonist, which was able to ameliorate microglial processes alterations and anxiety behavior in males, but not in females.


Asunto(s)
Ansiedad/metabolismo , Receptor de Adenosina A2A/fisiología , Animales , Trastornos de Ansiedad/patología , Células Cultivadas , Dexametasona/farmacología , Femenino , Glucocorticoides/metabolismo , Glucocorticoides/farmacología , Lipopolisacáridos/farmacología , Masculino , Microglía/efectos de los fármacos , Microglía/fisiología , Embarazo , Efectos Tardíos de la Exposición Prenatal , Ratas , Ratas Wistar , Sexismo
2.
J Colloid Interface Sci ; 456: 190-6, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26125515

RESUMEN

HYPOTHESIS: Liquid crystalline precursors, which are in situ gelling nanostructured surfactant systems, can undergo phase transition in aqueous solution and become more structured aggregates, controlling release of larvicides and acting as biotechnology alternatives for dengue control. Such systems can contain bioactive substances as Citrus sinensis essential oil (CSEO) which exhibits biological activity against Aedes aegypti (Ae. aegypti) larvae. EXPERIMENTS: The formulations were composed by fixed concentration of CSEO stabilized by Polyoxypropylene (5) Polyoxyethylene (20) Cetyl Ether (PPG-5 CETETH-20): oleic acid (OA) 2:1, increasing water content. The phase diagram was established and systems structure was evaluated by polarized light microscopy (PLM), small angle X-ray scattering (SAXS) and rheology. Median lethal concentration was determined against Ae. aegypti larvae. FINDINGS: The phase diagram exhibited four regions: liquid crystal (LC), emulsion, microemulsion (ME) and phase separation. The PLM and SAXS distinguished microemulsions, lamellar and hexagonal LC structures. Flow and oscillatory tests showed that increasing water content increases elasticity from Newtonian to non-newtonian behavior confirming the in situ gelation behavior. The larvicidal activity of formulations indicates that these nanostructured systems improved the oil solubility in aqueous medium and in addition are potential environmental larvicide against Ae. aegypti larvae.


Asunto(s)
Aedes/efectos de los fármacos , Dengue/prevención & control , Insecticidas/química , Aceites Volátiles/química , Tensoactivos/química , Animales , Citrus , Sistemas de Liberación de Medicamentos , Emulsiones , Geles , Humanos , Cristales Líquidos/química , Nanoestructuras/química , Dispersión de Radiación , Dispersión del Ángulo Pequeño , Viscosidad , Agua/química , Difracción de Rayos X , Rayos X
3.
Br J Pharmacol ; 172(4): 1074-86, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25296982

RESUMEN

BACKGROUND AND PURPOSE: Both cannabinoid CB1 and adenosine A2A receptors (CB1 receptors and A2A receptors) control synaptic transmission at corticostriatal synapses, with great therapeutic importance for neurological and psychiatric disorders. A postsynaptic CB1 -A2A receptor interaction has already been elucidated, but the presynaptic A2A receptor-mediated control of presynaptic neuromodulation by CB1 receptors remains to be defined. Because the corticostriatal terminals provide the major input to the basal ganglia, understanding the interactive nature of converging neuromodulation on them will provide us with novel powerful tools to understand the physiology of corticostriatal synaptic transmission and interpret changes associated with pathological conditions. EXPERIMENTAL APPROACH: Pharmacological manipulation of CB1 and A2A receptors was carried out in brain nerve terminals isolated from rats and mice, using flow synaptometry, immunoprecipitation, radioligand binding, ATP and glutamate release measurement. Whole-cell patch-clamp recordings were made in horizontal corticostriatal slices. KEY RESULTS: Flow synaptometry showed that A2A receptors were extensively co-localized with CB1 receptor-immunopositive corticostriatal terminals and A2A receptors co-immunoprecipitated CB1 receptors in these purified terminals. A2A receptor activation decreased CB1 receptor radioligand binding and decreased the CB1 receptor-mediated inhibition of high-K(+) -evoked glutamate release in corticostriatal terminals. Accordingly, A2A receptor activation prevented CB1 receptor-mediated paired-pulse facilitation and attenuated the CB1 receptor-mediated inhibition of synaptic transmission in glutamatergic synapses of corticostriatal slices. CONCLUSIONS AND IMPLICATIONS: Activation of presynaptic A2A receptors dampened CB1 receptor-mediated inhibition of corticostriatal terminals. This constitutes a thus far unrecognized mechanism to modulate the potent CB1 receptor-mediated presynaptic inhibition, allowing frequency-dependent enhancement of synaptic efficacy at corticostriatal synapses.


Asunto(s)
Ácido Glutámico/metabolismo , Receptor de Adenosina A2A/metabolismo , Receptor Cannabinoide CB1/metabolismo , Receptores Presinapticos/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/fisiología , Masculino , Ratones Noqueados , Ratas Wistar , Sinapsis/metabolismo , Transmisión Sináptica
4.
Braz J Med Biol Res ; 46(3): 278-86, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23471360

RESUMEN

The antioxidant and free radical scavenger properties of melatonin have been well described in the literature. In this study, our objective was to determine the protective effect of the pineal gland hormone against the DNA damage induced by cyclophosphamide (CP), an anti-tumor agent that is widely applied in clinical practice. DNA damage was induced in rats by a single intraperitoneal injection of CP (20 or 50 mg/kg). Animals received melatonin during the dark period for 15 days (1 mg/kg in the drinking water). Rat bone marrow cells were used for the determination of chromosomal aberrations and of formamidopyrimidine DNA glycosylase enzyme (Fpg)-sensitive sites by the comet technique and of Xpf mRNA expression by qRT-PCR. The number (mean ± SE) of chromosomal aberrations in pinealectomized (PINX) animals treated with melatonin and CP (2.50 ± 0.50/100 cells) was lower than that obtained for PINX animals injected with CP (12 ± 1.8/100 cells), thus showing a reduction of 85.8% in the number of chromosomal aberrations. This melatonin-mediated protection was also observed when oxidative lesions were analyzed by the Fpg-sensitive assay, both 24 and 48 h after CP administration. The expression of Xpf mRNA, which is involved in the DNA nucleotide excision repair machinery, was up-regulated by melatonin. The results indicate that melatonin is able to protect bone marrow cells by completely blocking CP-induced chromosome aberrations. Therefore, melatonin administration could be an alternative and effective treatment during chemotherapy.


Asunto(s)
Antioxidantes/administración & dosificación , Daño del ADN/efectos de los fármacos , Melatonina/administración & dosificación , Animales , Aberraciones Cromosómicas , Ciclofosfamida , Inyecciones Intraperitoneales , Masculino , Mutágenos , Oxidación-Reducción , Ratas Wistar
5.
Braz. j. med. biol. res ; 46(3): 278-286, 15/mar. 2013. tab, graf
Artículo en Inglés | LILACS | ID: lil-670894

RESUMEN

The antioxidant and free radical scavenger properties of melatonin have been well described in the literature. In this study, our objective was to determine the protective effect of the pineal gland hormone against the DNA damage induced by cyclophosphamide (CP), an anti-tumor agent that is widely applied in clinical practice. DNA damage was induced in rats by a single intraperitoneal injection of CP (20 or 50 mg/kg). Animals received melatonin during the dark period for 15 days (1 mg/kg in the drinking water). Rat bone marrow cells were used for the determination of chromosomal aberrations and of formamidopyrimidine DNA glycosylase enzyme (Fpg)-sensitive sites by the comet technique and of Xpf mRNA expression by qRT-PCR. The number (mean ± SE) of chromosomal aberrations in pinealectomized (PINX) animals treated with melatonin and CP (2.50 ± 0.50/100 cells) was lower than that obtained for PINX animals injected with CP (12 ± 1.8/100 cells), thus showing a reduction of 85.8% in the number of chromosomal aberrations. This melatonin-mediated protection was also observed when oxidative lesions were analyzed by the Fpg-sensitive assay, both 24 and 48 h after CP administration. The expression of Xpf mRNA, which is involved in the DNA nucleotide excision repair machinery, was up-regulated by melatonin. The results indicate that melatonin is able to protect bone marrow cells by completely blocking CP-induced chromosome aberrations. Therefore, melatonin administration could be an alternative and effective treatment during chemotherapy.


Asunto(s)
Animales , Masculino , Antioxidantes/administración & dosificación , Daño del ADN/efectos de los fármacos , Melatonina/administración & dosificación , Aberraciones Cromosómicas , Ciclofosfamida , Inyecciones Intraperitoneales , Mutágenos , Oxidación-Reducción , Ratas Wistar
6.
Transplant Proc ; 44(7): 2213-8, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22974957

RESUMEN

BACKGROUND: After brain death (BD) donors usually experience cardiac dysfunction, which is responsible for a considerable number of unused organs. Causes of this cardiac dysfunction are not fully understood. Some authors argue that autonomic storm with severe hemodynamic instability leads to inflammatory activation and myocardial dysfunction. OBJECTIVES: To investigate the hypothesis that thoracic epidural anesthesia blocks autonomic storm and improves graft condition by reducing the inflammatory response. METHODS: Twenty-eight male Wistar rats (250-350 g) allocated to four groups received saline or bupivacaine via an epidural catheter at various times in relation to brain-death induction. Brain death was induced by a sudden increase in intracranial pressure by rapid inflation of a ballon catheter in the extradural space. Blood gases, electrolytes, and lactate analyses were performed at time zero, and 3 and 6 hours. Blood leukocytes were counted at 0 and 6 hours. After 6 hours of BD, we performed euthanasia to measure vascular adhesion molecule (VCAM)-1, intracellular adhesion molecule (ICAM)-1, interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, Bcl-2 and caspase-3 on cardiac tissue. RESULTS: Thoracic epidural anesthesia was effective to block the autonomic storm with a significant difference in mean arterial pressure between the untreated (saline) and the bupivacaine group before BD (P < .05). However, no significant difference was observed for the expressions of VCAM-1, ICAM-1, TNF-α, IL-1ß, Bcl-2, and caspase-3 (P > .05). CONCLUSION: Autonomic storm did not seem to be responsible for the inflammatory changes associated with BD; thoracic epidural anesthesia did not modify the expression of inflammatory mediators although it effectively blocked the autonomic storm.


Asunto(s)
Anestesia Epidural , Sistema Nervioso Autónomo/fisiopatología , Muerte Encefálica , Miocarditis/fisiopatología , Animales , Masculino , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA