Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Comput Biol Med ; 174: 108398, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608322

RESUMEN

The recurrence of low-stage lung cancer poses a challenge due to its unpredictable nature and diverse patient responses to treatments. Personalized care and patient outcomes heavily rely on early relapse identification, yet current predictive models, despite their potential, lack comprehensive genetic data. This inadequacy fuels our research focus-integrating specific genetic information, such as pathway scores, into clinical data. Our aim is to refine machine learning models for more precise relapse prediction in early-stage non-small cell lung cancer. To address the scarcity of genetic data, we employ imputation techniques, leveraging publicly available datasets such as The Cancer Genome Atlas (TCGA), integrating pathway scores into our patient cohort from the Cancer Long Survivor Artificial Intelligence Follow-up (CLARIFY) project. Through the integration of imputed pathway scores from the TCGA dataset with clinical data, our approach achieves notable strides in predicting relapse among a held-out test set of 200 patients. By training machine learning models on enriched knowledge graph data, inclusive of triples derived from pathway score imputation, we achieve a promising precision of 82% and specificity of 91%. These outcomes highlight the potential of our models as supplementary tools within tumour, node, and metastasis (TNM) classification systems, offering improved prognostic capabilities for lung cancer patients. In summary, our research underscores the significance of refining machine learning models for relapse prediction in early-stage non-small cell lung cancer. Our approach, centered on imputing pathway scores and integrating them with clinical data, not only enhances predictive performance but also demonstrates the promising role of machine learning in anticipating relapse and ultimately elevating patient outcomes.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Genómica , Neoplasias Pulmonares , Aprendizaje Automático , Humanos , Neoplasias Pulmonares/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Genómica/métodos , Recurrencia Local de Neoplasia/genética , Femenino , Masculino , Bases de Datos Genéticas
2.
Cancer Res Commun ; 4(1): 103-117, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38051091

RESUMEN

Racial disparities between Black/African Americans (AA) and White patients in colorectal cancer are an ever-growing area of concern. Black/AA show the highest incidence and have the highest mortality among major U.S. racial groups. There is no definite cause other than possible sociodemographic, socioeconomic, education, nutrition, delivery of healthcare, screening, and cultural factors. A primary limitation in this field is the lack of and small sample size of Black/AA studies. Thus, this study aimed to investigate whether differences in gene expression contribute to this ongoing unanswered racial disparity issue. In this study, we examined transcriptomic data of Black/AA and White patient cohorts using a bioinformatic and systems biology approach. We performed a Kaplan-Meier overall survival analysis between both patient cohorts across critical colorectal cancer signal transduction networks (STN), to determine the differences in significant genes across each cohort. Other bioinformatic analyses performed included PROGENy (pathway responsive genes for activity inference), RNA sequencing differential expression using DESeq2, multivariable-adjusted regression, and other associated Kaplan-Meier analyses. These analyses identified novel prognostic genes independent from each cohort, 176 differentially expressed genes, and specific patient cohort STN survival associations. Despite the overarching limitation, the results revealed several novel differences in gene expression between the colorectal cancer Black/AA and White patient cohorts, which allows one to dive deeper into and understand the behavior on a systems level of what could be driving this racial difference across colorectal cancer. Concretely, this information can guide precision medicine approaches tailored specifically for colorectal cancer racial disparities. SIGNIFICANCE: The purpose of this work is to investigate the racial disparities in colorectal cancer between Black/AA and White patient cohorts using a systems biology and bioinformatic approach. Our study investigates the underlying biology of each patient cohort. Concretely, the findings of this study include disparity-associated genes and pathways, which provide a tangible starting point to guide precision medicine approaches tailored specifically for colorectal cancer racial disparities.


Asunto(s)
Neoplasias Colorrectales , Disparidades en el Estado de Salud , Grupos Raciales , Humanos , Negro o Afroamericano/genética , Neoplasias Colorrectales/epidemiología , Neoplasias Colorrectales/genética , Atención a la Salud , Grupos Raciales/genética , Biología de Sistemas , Blanco
3.
J Biomed Inform ; 144: 104424, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37352900

RESUMEN

OBJECTIVE: Lung cancer exhibits unpredictable recurrence in low-stage tumors and variable responses to different therapeutic interventions. Predicting relapse in early-stage lung cancer can facilitate precision medicine and improve patient survivability. While existing machine learning models rely on clinical data, incorporating genomic information could enhance their efficiency. This study aims to impute and integrate specific types of genomic data with clinical data to improve the accuracy of machine learning models for predicting relapse in early-stage, non-small cell lung cancer patients. METHODS: The study utilized a publicly available TCGA lung cancer cohort and imputed genetic pathway scores into the Spanish Lung Cancer Group (SLCG) data, specifically in 1348 early-stage patients. Initially, tumor recurrence was predicted without imputed pathway scores. Subsequently, the SLCG data were augmented with pathway scores imputed from TCGA. The integrative approach aimed to enhance relapse risk prediction performance. RESULTS: The integrative approach achieved improved relapse risk prediction with the following evaluation metrics: an area under the precision-recall curve (PR-AUC) score of 0.75, an area under the ROC (ROC-AUC) score of 0.80, an F1 score of 0.61, and a Precision of 0.80. The prediction explanation model SHAP (SHapley Additive exPlanations) was employed to explain the machine learning model's predictions. CONCLUSION: We conclude that our explainable predictive model is a promising tool for oncologists that addresses an unmet clinical need of post-treatment patient stratification based on the relapse risk while also improving the predictive power by incorporating proxy genomic data not available for specific patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Recurrencia Local de Neoplasia/genética , Pulmón
4.
Sci Adv ; 9(9): eabp8314, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36867694

RESUMEN

Gene expression noise is known to promote stochastic drug resistance through the elevated expression of individual genes in rare cancer cells. However, we now demonstrate that chemoresistant neuroblastoma cells emerge at a much higher frequency when the influence of noise is integrated across multiple components of an apoptotic signaling network. Using a JNK activity biosensor with longitudinal high-content and in vivo intravital imaging, we identify a population of stochastic, JNK-impaired, chemoresistant cells that exist because of noise within this signaling network. Furthermore, we reveal that the memory of this initially random state is retained following chemotherapy treatment across a series of in vitro, in vivo, and patient models. Using matched PDX models established at diagnosis and relapse from individual patients, we show that HDAC inhibitor priming cannot erase the memory of this resistant state within relapsed neuroblastomas but improves response in the first-line setting by restoring drug-induced JNK activity within the chemoresistant population of treatment-naïve tumors.


Asunto(s)
Resistencia a Antineoplásicos , Neuroblastoma , Humanos , Apoptosis , Transducción de Señal , Inhibidores de Histona Desacetilasas
5.
J Pers Med ; 12(8)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-36013226

RESUMEN

Triple negative breast cancer (TNBC) remains a therapeutic challenge due to the lack of targetable genetic alterations and the frequent development of resistance to the standard cisplatin-based chemotherapies. Here, we have taken a systems biology approach to investigate kinase signal transduction networks that are involved in TNBC resistance to cisplatin. Treating a panel of cisplatin-sensitive and cisplatin-resistant TNBC cell lines with a panel of kinase inhibitors allowed us to reconstruct two kinase signalling networks that characterise sensitive and resistant cells. The analysis of these networks suggested that the activation of the PI3K/AKT signalling pathway is critical for cisplatin resistance. Experimental validation of the computational model predictions confirmed that TNBC cell lines with activated PI3K/AKT signalling are sensitive to combinations of cisplatin and PI3K/AKT pathway inhibitors. Thus, our results reveal a new therapeutic approach that is based on identifying targeted therapies that synergise with conventional chemotherapies.

6.
AMIA Annu Symp Proc ; 2022: 1062-1071, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37128408

RESUMEN

Early-stage lung cancer is crucial clinically due to its insidious nature and rapid progression. Most of the prediction models designed to predict tumour recurrence in the early stage of lung cancer rely on the clinical or medical history of the patient. However, their performance could likely be improved if the input patient data contained genomic information. Unfortunately, such data is not always collected. This is the main motivation of our work, in which we have imputed and integrated specific type of genomic data with clinical data to increase the accuracy of machine learning models for prediction of relapse in early-stage, non-small cell lung cancer patients. Using a publicly available TCGA lung adenocarcinoma cohort of 501 patients, their aneuploidy scores were imputed into similar records in the Spanish Lung Cancer Group (SLCG) data, more specifically a cohort of 1348 early-stage patients. First, the tumor recurrence in those patients was predicted without the imputed aneuploidy scores. Then, the SLCG data were enriched with the aneuploidy scores imputed from TCGA. This integrative approach improved the prediction of the relapse risk, achieving area under the precision-recall curve (PR-AUC) score of 0.74, and area under the ROC (ROC-AUC) score of 0.79. Using the prediction explanation model SHAP (SHapley Additive exPlanations), we further explained the predictions performed by the machine learning model. We conclude that our explainable predictive model is a promising tool for oncologists that addresses an unmet clinical need of post-treatment patient stratification based on the relapse risk, while also improving the predictive power by incorporating proxy genomic data not available for the actual specific patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Recurrencia Local de Neoplasia , Genómica
7.
Int J Mol Sci ; 22(18)2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34576133

RESUMEN

Gaining insight into the mechanisms of signal transduction networks (STNs) by using critical features from patient-specific mathematical models can improve patient stratification and help to identify potential drug targets. To achieve this, these models should focus on the critical STNs for each cancer, include prognostic genes and proteins, and correctly predict patient-specific differences in STN activity. Focussing on colorectal cancer and the WNT STN, we used mechanism-based machine learning models to identify genes and proteins with significant associations to event-free patient survival and predictive power for explaining patient-specific differences of STN activity. First, we identified the WNT pathway as the most significant pathway associated with event-free survival. Second, we built linear-regression models that incorporated both genes and proteins from established mechanistic models in the literature and novel genes with significant associations to event-free patient survival. Data from The Cancer Genome Atlas and Clinical Proteomic Tumour Analysis Consortium were used, and patient-specific STN activity scores were computed using PROGENy. Three linear regression models were built, based on; (1) the gene-set of a state-of-the-art mechanistic model in the literature, (2) novel genes identified, and (3) novel proteins identified. The novel genes and proteins were genes and proteins of the extant WNT pathway whose expression was significantly associated with event-free survival. The results show that the predictive power of a model that incorporated novel event-free associated genes is better compared to a model focussing on the genes of a current state-of-the-art mechanistic model. Several significant genes that should be integrated into future mechanistic models of the WNT pathway are DVL3, FZD5, RAC1, ROCK2, GSK3B, CTB2, CBT1, and PRKCA. Thus, the study demonstrates that using mechanistic information in combination with machine learning can identify novel features (genes and proteins) that are important for explaining the STN heterogeneity between patients and their association to clinical outcomes.


Asunto(s)
Neoplasias Colorrectales/terapia , Aprendizaje Automático , Modelos Biológicos , Medicina de Precisión , Neoplasias Colorrectales/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Modelos Lineales , Proteínas de Neoplasias/metabolismo , Supervivencia sin Progresión , Proteómica , Vía de Señalización Wnt/genética
8.
J Pers Med ; 11(5)2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064704

RESUMEN

High-risk neuroblastoma is an aggressive childhood cancer that is characterized by high rates of chemoresistance and frequent metastatic relapse. A number of studies have characterized the genetic and epigenetic landscape of neuroblastoma, but due to a generally low mutational burden and paucity of actionable mutations, there are few options for applying a comprehensive personalized medicine approach through the use of targeted therapies. Therefore, the use of multi-agent chemotherapy remains the current standard of care for neuroblastoma, which also conceptually limits the opportunities for developing an effective and widely applicable personalized medicine approach for this disease. However, in this review we outline potential approaches for tailoring the use of chemotherapy agents to the specific molecular characteristics of individual tumours by performing patient-specific simulations of drug-induced apoptotic signalling. By incorporating multiple layers of information about tumour-specific aberrations, including expression as well as mutation data, these models have the potential to rationalize the selection of chemotherapeutics contained within multi-agent treatment regimens and ensure the optimum response is achieved for each individual patient.

9.
Sci Rep ; 11(1): 3272, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33558564

RESUMEN

The initiation of apoptosis is a core mechanism in cellular biology by which organisms control the removal of damaged or unnecessary cells. The irreversible activation of caspases is essential for apoptosis, and mathematical models have demonstrated that the process is tightly regulated by positive feedback and a bistable switch. BAX and SMAC are often dysregulated in diseases such as cancer or neurodegeneration and are two key regulators that interact with the caspase system generating the apoptotic switch. Here we present a mathematical model of how BAX and SMAC control the apoptotic switch. Formulated as a system of ordinary differential equations, the model summarises experimental and computational evidence from the literature and incorporates the biochemical mechanisms of how BAX and SMAC interact with the components of the caspase system. Using simulations and bifurcation analysis, we find that both BAX and SMAC regulate the time-delay and activation threshold of the apoptotic switch. Interestingly, the model predicted that BAX (not SMAC) controls the amplitude of the apoptotic switch. Cell culture experiments using siRNA mediated BAX and SMAC knockdowns validated this model prediction. We further validated the model using data of the NCI-60 cell line panel using BAX protein expression as a cell-line specific parameter and show that model simulations correlated with the cellular response to DNA damaging drugs and established a defined threshold for caspase activation that could distinguish between sensitive and resistant melanoma cells. In summary, we present an experimentally validated dynamic model that summarises our current knowledge of how BAX and SMAC regulate the bistable properties of irreversible caspase activation during apoptosis.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis , Caspasas/metabolismo , Melanoma/metabolismo , Proteínas Mitocondriales/metabolismo , Modelos Biológicos , Proteína X Asociada a bcl-2/metabolismo , Antineoplásicos , Células HeLa , Humanos , Melanoma/tratamiento farmacológico
10.
Pharmacol Ther ; 212: 107555, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32320730

RESUMEN

As our ability to provide in-depth, patient-specific characterisation of the molecular alterations within tumours rapidly improves, it is becoming apparent that new approaches will be required to leverage the power of this data and derive the full benefit for each individual patient. Systems biology approaches are beginning to emerge within this field as a potential method of incorporating large volumes of network level data and distilling a coherent, clinically-relevant prediction of drug response. However, the initial promise of this developing field is yet to be realised. Here we argue that in order to develop these precise models of individual drug response and tailor treatment accordingly, we will need to develop mathematical models capable of capturing both the dynamic nature of drug-response signalling networks and key patient-specific information such as mutation status or expression profiles. We also review the modelling approaches commonly utilised within this field, and outline recent examples of their use in furthering the application of systems biology for a precision medicine approach to cancer treatment.


Asunto(s)
Neoplasias/tratamiento farmacológico , Medicina de Precisión , Humanos , Modelos Logísticos , Modelos Estadísticos , Neoplasias/patología , Transducción de Señal , Biología de Sistemas
11.
Br J Pharmacol ; 176(1): 82-92, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29510460

RESUMEN

The extracellular matrix (ECM) is a salient feature of all solid tissues within the body. This complex, acellular entity is composed of hundreds of individual molecules whose assembly, architecture and biomechanical properties are critical to controlling the behaviour and phenotype of the different cell types residing within tissues. Cells are the basic unit of life and the core building block of tissues and organs. At their simplest, they follow a set of rules, governed by their genetic code and effected through the complex protein signalling networks that these genes encode. These signalling networks assimilate and process the information received by the cell to control cellular decisions that govern cell fate. The ECM is the biggest provider of external stimuli to cells and as such is responsible for influencing intracellular signalling dynamics. In this review, we discuss the inclusion of ECM as a central regulatory signalling sub-network in computational models of cellular decision making, with a focus on its role in diseases such as cancer. LINKED ARTICLES: This article is part of a themed section on Translating the Matrix. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.1/issuetoc.


Asunto(s)
Matriz Extracelular/metabolismo , Transducción de Señal , Animales , Humanos
12.
Sci Rep ; 8(1): 16217, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30385767

RESUMEN

Modular Response Analysis (MRA) is a method to reconstruct signalling networks from steady-state perturbation data which has frequently been used in different settings. Since these data are usually noisy due to multi-step measurement procedures and biological variability, it is important to investigate the effect of this noise onto network reconstruction. Here we present a systematic study to investigate propagation of noise from concentration measurements to network structures. Therefore, we design an in silico study of the MAPK and the p53 signalling pathways with realistic noise settings. We make use of statistical concepts and measures to evaluate accuracy and precision of individual inferred interactions and resulting network structures. Our results allow to derive clear recommendations to optimize the performance of MRA based network reconstruction: First, large perturbations are favorable in terms of accuracy even for models with non-linear steady-state response curves. Second, a single control measurement for different perturbation experiments seems to be sufficient for network reconstruction, and third, we recommend to execute the MRA workflow with the mean of different replicates for concentration measurements rather than using computationally more involved regression strategies.


Asunto(s)
Modelos Biológicos , Proyectos de Investigación , Transducción de Señal , Algoritmos , Simulación por Computador , Humanos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Modelos Estadísticos , Redes Neurales de la Computación , Reproducibilidad de los Resultados , Proteína p53 Supresora de Tumor/metabolismo
13.
Oncogene ; 37(33): 4518-4533, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29743597

RESUMEN

MASTL kinase is essential for correct progression through mitosis, with loss of MASTL causing chromosome segregation errors, mitotic collapse and failure of cytokinesis. However, in cancer MASTL is most commonly amplified and overexpressed. This correlates with increased chromosome instability in breast cancer and poor patient survival in breast, ovarian and lung cancer. Global phosphoproteomic analysis of immortalised breast MCF10A cells engineered to overexpressed MASTL revealed disruption to desmosomes, actin cytoskeleton, PI3K/AKT/mTOR and p38 stress kinase signalling pathways. Notably, these pathways were also disrupted in patient samples that overexpress MASTL. In MCF10A cells, these alterations corresponded with a loss of contact inhibition and partial epithelial-mesenchymal transition, which disrupted migration and allowed cells to proliferate uncontrollably in 3D culture. Furthermore, MASTL overexpression increased aberrant mitotic divisions resulting in increased micronuclei formation. Mathematical modelling indicated that this delay was due to continued inhibition of PP2A-B55, which delayed timely mitotic exit. This corresponded with an increase in DNA damage and delayed transit through interphase. There were no significant alterations to replication kinetics upon MASTL overexpression, however, inhibition of p38 kinase rescued the interphase delay, suggesting the delay was a G2 DNA damage checkpoint response. Importantly, knockdown of MASTL, reduced cell proliferation, prevented invasion and metastasis of MDA-MB-231 breast cancer cells both in vitro and in vivo, indicating the potential of future therapies that target MASTL. Taken together, these results suggest that MASTL overexpression contributes to chromosome instability and metastasis, thereby decreasing breast cancer patient survival.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Inestabilidad Cromosómica/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas Serina-Treonina Quinasas/genética , Citoesqueleto de Actina/genética , Animales , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Daño del ADN/genética , Transición Epitelial-Mesenquimal/genética , Femenino , Humanos , Sistema de Señalización de MAP Quinasas/genética , Ratones , Ratones Endogámicos NOD , Ratones SCID , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/genética
14.
J Pers Med ; 7(3)2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28862657

RESUMEN

Biomarkers are cornerstones of clinical medicine, and personalized medicine, in particular, is highly dependent on reliable and highly accurate biomarkers for individualized diagnosis and treatment choice. Modern omics technologies, such as genome sequencing, allow molecular profiling of individual patients with unprecedented resolution, but biomarkers based on these technologies often lack the dynamic element to follow the progression of a disease or response to therapy. Here, we discuss computational models as a new conceptual approach to biomarker discovery and design. Being able to integrate a large amount of information, including dynamic information, computational models can simulate disease evolution and response to therapy with high sensitivity and specificity. By populating these models with personal data, they can be highly individualized and will provide a powerful new tool in the armory of personalized medicine.

15.
Methods Mol Biol ; 1636: 417-453, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28730495

RESUMEN

The advent of systems biology has convincingly demonstrated that the integration of experiments and dynamic modelling is a powerful approach to understand the cellular network biology. Here we present experimental and computational protocols that are necessary for applying this integrative approach to the quantitative studies of receptor tyrosine kinase (RTK) signaling networks. Signaling by RTKs controls multiple cellular processes, including the regulation of cell survival, motility, proliferation, differentiation, glucose metabolism, and apoptosis. We describe methods of model building and training on experimentally obtained quantitative datasets, as well as experimental methods of obtaining quantitative dose-response and temporal dependencies of protein phosphorylation and activities. The presented methods make possible (1) both the fine-grained modeling of complex signaling dynamics and identification of salient, course-grained network structures (such as feedback loops) that bring about intricate dynamics, and (2) experimental validation of dynamic models.


Asunto(s)
Modelos Biológicos , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Algoritmos , Biología Computacional/métodos , Simulación por Computador , Receptores ErbB , Humanos , Inmunoprecipitación , Cinética , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Tirosina Quinasas Receptoras/química , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/aislamiento & purificación , Reproducibilidad de los Resultados , Biología de Sistemas/métodos
16.
Oncotarget ; 7(37): 60310-60331, 2016 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-27531891

RESUMEN

Wnt signalling is involved in the formation, metastasis and relapse of a wide array of cancers. However, there is ongoing debate as to whether activation or inhibition of the pathway holds the most promise as a therapeutic treatment for cancer, with conflicting evidence from a variety of tumour types. We show that Wnt/ß-catenin signalling is a bi-directional vulnerability of neuroblastoma, malignant melanoma and colorectal cancer, with hyper-activation or repression of the pathway both representing a promising therapeutic strategy, even within the same cancer type. Hyper-activation directs cancer cells to undergo apoptosis, even in cells oncogenically driven by ß-catenin. Wnt inhibition blocks proliferation of cancer cells and promotes neuroblastoma differentiation. Wnt and retinoic acid co-treatments synergise, representing a promising combination treatment for MYCN-amplified neuroblastoma. Additionally, we report novel cross-talks between MYCN and ß-catenin signalling, which repress normal ß-catenin mediated transcriptional regulation. A ß-catenin target gene signature could predict patient outcome, as could the expression level of its DNA binding partners, the TCF/LEFs. This ß-catenin signature provides a tool to identify neuroblastoma patients likely to benefit from Wnt-directed therapy. Taken together, we show that Wnt/ß-catenin signalling is a bi-directional vulnerability of a number of cancer entities, and potentially a more broadly conserved feature of malignant cells.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/genética , Vía de Señalización Wnt/genética , beta Catenina/genética , Antineoplásicos/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Perfilación de la Expresión Génica/métodos , Humanos , Proteína Proto-Oncogénica N-Myc/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patología , Proteómica/métodos , Pirimidinonas/farmacología , Interferencia de ARN , Análisis de Supervivencia , Tretinoina/farmacología , Proteínas Wnt/antagonistas & inhibidores , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
17.
Semin Cell Dev Biol ; 58: 96-107, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27350026

RESUMEN

The intricate dynamic control and plasticity of RAS to ERK mitogenic, survival and apoptotic signalling has mystified researches for more than 30 years. Therapeutics targeting the oncogenic aberrations within this pathway often yield unsatisfactory, even undesired results, as in the case of paradoxical ERK activation in response to RAF inhibition. A direct approach of inhibiting single oncogenic proteins misses the dynamic network context governing the network signal processing. In this review, we discuss the signalling behaviour of RAS and RAF proteins in normal and in cancer cells, and the emerging systems-level properties of the RAS-to-ERK signalling network. We argue that to understand the dynamic complexities of this control system, mathematical models including mechanistic detail are required. Looking into the future, these dynamic models will build the foundation upon which more effective, rational approaches to cancer therapy will be developed.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Neoplasias/metabolismo , Proteínas ras/metabolismo , Animales , Linaje de la Célula , Retroalimentación Fisiológica , Humanos , Neoplasias/patología
18.
J Cell Sci ; 129(7): 1340-54, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26872783

RESUMEN

Entry into mitosis is driven by the phosphorylation of thousands of substrates, under the master control of Cdk1. During entry into mitosis, Cdk1, in collaboration with MASTL kinase, represses the activity of the major mitotic protein phosphatases, PP1 and PP2A, thereby ensuring mitotic substrates remain phosphorylated. For cells to complete and exit mitosis, these phosphorylation events must be removed, and hence, phosphatase activity must be reactivated. This reactivation of phosphatase activity presumably requires the inhibition of MASTL; however, it is not currently understood what deactivates MASTL and how this is achieved. In this study, we identified that PP1 is associated with, and capable of partially dephosphorylating and deactivating, MASTL during mitotic exit. Using mathematical modelling, we were able to confirm that deactivation of MASTL is essential for mitotic exit. Furthermore, small decreases in Cdk1 activity during metaphase are sufficient to initiate the reactivation of PP1, which in turn partially deactivates MASTL to release inhibition of PP2A and, hence, create a feedback loop. This feedback loop drives complete deactivation of MASTL, ensuring a strong switch-like activation of phosphatase activity during mitotic exit.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis/fisiología , Proteína Fosfatasa 1/metabolismo , Proteína Fosfatasa 2/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína Quinasa CDC2 , Línea Celular Tumoral , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Modelos Teóricos , Fosforilación , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Interferencia de ARN , ARN Interferente Pequeño/genética
19.
Sci Signal ; 8(408): ra130, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26696630

RESUMEN

Signaling pathways control cell fate decisions that ultimately determine the behavior of cancer cells. Therefore, the dynamics of pathway activity may contain prognostically relevant information different from that contained in the static nature of other types of biomarkers. To investigate this hypothesis, we characterized the network that regulated stress signaling by the c-Jun N-terminal kinase (JNK) pathway in neuroblastoma cells. We generated an experimentally calibrated and validated computational model of this network and used the model to extract prognostic information from neuroblastoma patient-specific simulations of JNK activation. Switch-like JNK activation mediates cell death by apoptosis. An inability to initiate switch-like JNK activation in the simulations was significantly associated with poor overall survival for patients with neuroblastoma with or without MYCN amplification, indicating that patient-specific simulations of JNK activation could stratify patients. Furthermore, our analysis demonstrated that extracting information about a signaling pathway to develop a prognostically useful model requires understanding of not only components and disease-associated changes in the abundance or activity of the components but also how those changes affect pathway dynamics.


Asunto(s)
Biomarcadores de Tumor/metabolismo , MAP Quinasa Quinasa 4/metabolismo , Modelos Biológicos , Neuroblastoma/metabolismo , Neuroblastoma/mortalidad , Proteínas Nucleares/metabolismo , Proteínas Oncogénicas/metabolismo , Transducción de Señal , Adolescente , Animales , Línea Celular Tumoral , Niño , Preescolar , Supervivencia sin Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Lactante , Masculino , Proteína Proto-Oncogénica N-Myc , Neoplasias Experimentales/metabolismo , Valor Predictivo de las Pruebas , Tasa de Supervivencia , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
20.
Oncotarget ; 6(41): 43182-201, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26673823

RESUMEN

Despite intensive study, many mysteries remain about the MYCN oncogene's functions. Here we focus on MYCN's role in neuroblastoma, the most common extracranial childhood cancer. MYCN gene amplification occurs in 20% of cases, but other recurrent somatic mutations are rare. This scarcity of tractable targets has hampered efforts to develop new therapeutic options. We employed a multi-level omics approach to examine MYCN functioning and identify novel therapeutic targets for this largely un-druggable oncogene. We used systems medicine based computational network reconstruction and analysis to integrate a range of omic techniques: sequencing-based transcriptomics, genome-wide chromatin immunoprecipitation, siRNA screening and interaction proteomics, revealing that MYCN controls highly connected networks, with MYCN primarily supressing the activity of network components. MYCN's oncogenic functions are likely independent of its classical heterodimerisation partner, MAX. In particular, MYCN controls its own protein interaction network by transcriptionally regulating its binding partners.Our network-based approach identified vulnerable therapeutically targetable nodes that function as critical regulators or effectors of MYCN in neuroblastoma. These were validated by siRNA knockdown screens, functional studies and patient data. We identified ß-estradiol and MAPK/ERK as having functional cross-talk with MYCN and being novel targetable vulnerabilities of MYCN-amplified neuroblastoma. These results reveal surprising differences between the functioning of endogenous, overexpressed and amplified MYCN, and rationalise how different MYCN dosages can orchestrate cell fate decisions and cancerous outcomes. Importantly, this work describes a systems-level approach to systematically uncovering network based vulnerabilities and therapeutic targets for multifactorial diseases by integrating disparate omic data types.


Asunto(s)
Genes myc/fisiología , Neuroblastoma/genética , Proteínas Nucleares/fisiología , Proteínas Oncogénicas/fisiología , Mapas de Interacción de Proteínas/fisiología , Western Blotting , Inmunoprecipitación de Cromatina , Biología Computacional/métodos , Regulación Neoplásica de la Expresión Génica/fisiología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Proteína Proto-Oncogénica N-Myc , Neuroblastoma/metabolismo , Neuroblastoma/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa , Proteómica/métodos , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA