Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Allergy ; 77(9): 2594-2617, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35152450

RESUMEN

The immune system interacts with many nominal 'danger' signals, endogenous danger-associated (DAMP), exogenous pathogen (PAMP) and allergen (AAMP)-associated molecular patterns. The immune context under which these are received can promote or prevent immune activating or inflammatory mechanisms and may orchestrate diverse immune responses in allergy and cancer. Each can act either by favouring a respective pathology or by supporting the immune response to confer protective effects, depending on acuity or chronicity. In this Position Paper under the collective term danger signals or DAMPs, PAMPs and AAMPs, we consider their diverse roles in allergy and cancer and the connection between these in AllergoOncology. We focus on their interactions with different immune cells of the innate and adaptive immune system and how these promote immune responses with juxtaposing clinical outcomes in allergy and cancer. While danger signals present potential targets to overcome inflammatory responses in allergy, these may be reconsidered in relation to a history of allergy, chronic inflammation and autoimmunity linked to the risk of developing cancer, and with regard to clinical responses to anti-cancer immune and targeted therapies. Cross-disciplinary insights in AllergoOncology derived from dissecting clinical phenotypes of common danger signal pathways may improve allergy and cancer clinical outcomes.


Asunto(s)
Hipersensibilidad , Neoplasias , Humanos , Hipersensibilidad/diagnóstico , Hipersensibilidad/etiología , Hipersensibilidad/terapia , Inmunidad , Inflamación , Neoplasias/etiología , Neoplasias/terapia , Transducción de Señal
3.
Cell Mol Gastroenterol Hepatol ; 6(3): 356-369.e1, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30182049

RESUMEN

Immunoglobulin E-mediated food allergy is rapidly developing into a global health problem. Publicly available therapeutic intervention strategies are currently restricted to allergen avoidance and emergency treatments. To gain a better understanding of the disease pathophysiology so that new therapies can be developed, major research efforts have been put into studying food allergy in mice. Animal models should reflect the human pathology as closely as possible to allow for a rapid translation of basic science observations to the bedside. In this regard, experimental models of food allergy provide significant challenges for research because of discrepancies between the presentation of disease in humans and mice. The goal of this review is to give a summary of commonly used murine disease models and to discuss how they relate to the human condition. We will focus on epicutaneous sensitization models, on mouse strains that sensitize spontaneously to food as seen in humans, and on models in humanized animals. In summary, expanding the research toolbox of experimental food allergy provides an important step toward closing gaps in our understanding of the derailing immune mechanism that underlies the human disease. The availability of additional experimental models will provide exciting opportunities to discover new intervention points for the treatment of food allergies. (Cell Mol Gastroenterol Hepatol 2018;x:x).


Asunto(s)
Modelos Animales de Enfermedad , Hipersensibilidad a los Alimentos/metabolismo , Alimentos/efectos adversos , Alérgenos/inmunología , Alérgenos/metabolismo , Animales , Hipersensibilidad a los Alimentos/inmunología , Humanos , Inmunización , Inmunoglobulina E/inmunología , Inmunoglobulina E/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/inmunología , Receptores de IgE/genética , Receptores de IgE/inmunología
4.
J Allergy Clin Immunol ; 138(5): 1367-1380.e5, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27233150

RESUMEN

BACKGROUND: Eosinophilic esophagitis (EoE) is an allergic inflammatory disorder characterized by accumulation of eosinophils in the esophagus. EoE often coexists with atopic dermatitis, a chronic inflammatory skin disease. The impaired skin barrier in patients with atopic dermatitis has been suggested as an entry point for allergic sensitization that triggers development of EoE. OBJECTIVE: We sought to define the mechanisms whereby epicutaneous sensitization through a disrupted skin barrier induces development of EoE. METHODS: To elicit experimental EoE, mice were epicutaneously sensitized with ovalbumin (OVA), followed by intranasal OVA challenge. Levels of esophageal mRNA for TH2 cytokines and the IL-33 receptor Il1rl1 (St2) were measured by using quantitative PCR. Esophageal eosinophil accumulation was assessed by using flow cytometry and hematoxylin and eosin staining. In vivo basophil depletion was achieved with diphtheria toxin treatment of Mcpt8DTR mice, and animals were repopulated with bone marrow basophils. mRNA analysis of esophageal biopsy specimens from patients with EoE was used to validate our findings in human subjects. RESULTS: Epicutaneous sensitization and intranasal challenge of wild-type mice resulted in accumulation of eosinophils and upregulation of TH2 cytokines and St2 in the esophagus. Disruption of the IL-33-ST2 axis or depletion of basophils reduced these features. Expression of ST2 on basophils was required to accumulate in the esophagus and transfer experimental EoE. Expression of IL1RL1/ST2 mRNA was increased in esophageal biopsy specimens from patients with EoE. Topical OVA application on unstripped skin induced experimental EoE in filaggrin-deficient flaky tail (ft/ft) mice but not in wild-type control or ft/ft.St2-/- mice. CONCLUSION: Epicutaneous allergic sensitization promotes EoE, and this is critically mediated through the IL-33-ST2-basophil axis.


Asunto(s)
Basófilos/inmunología , Dermatitis Atópica/inmunología , Esofagitis Eosinofílica/inmunología , Interleucina-33/inmunología , Adolescente , Alérgenos/inmunología , Animales , Niño , Preescolar , Esófago/inmunología , Femenino , Proteínas Filagrina , Humanos , Masculino , Ratones Endogámicos BALB C , Ratones Transgénicos , Ovalbúmina/inmunología , ARN Mensajero/metabolismo , Receptores Tipo I de Interleucina-1/genética , Receptores Tipo I de Interleucina-1/inmunología
5.
Blood ; 125(25): 3886-95, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-25833964

RESUMEN

Mice reconstituted with a human immune system provide a tractable in vivo model to assess human immune cell function. To date, reconstitution of murine strains with human hematopoietic stem cells (HSCs) from patients with monogenic immune disorders have not been reported. One obstacle precluding the development of immune-disease specific "humanized" mice is that optimal adaptive immune responses in current strains have required implantation of autologous human thymic tissue. To address this issue, we developed a mouse strain that lacks murine major histocompatibility complex class II (MHC II) and instead expresses human leukocyte antigen DR1 (HLA-DR1). These mice displayed improved adaptive immune responses when reconstituted with human HSCs including enhanced T-cell reconstitution, delayed-type hypersensitivity responses, and class-switch recombination. Following immune reconstitution of this novel strain with HSCs from a patient with immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome, associated with aberrant FOXP3 function, mice developed a lethal inflammatory disorder with multiorgan involvement and autoantibody production mimicking the pathology seen in affected humans. This humanized mouse model permits in vivo evaluation of immune responses associated with genetically altered HSCs, including primary immunodeficiencies, and should facilitate the study of human immune pathobiology and the development of targeted therapeutics.


Asunto(s)
Autoinmunidad/inmunología , Modelos Animales de Enfermedad , Factores de Transcripción Forkhead/inmunología , Síndromes de Inmunodeficiencia/inmunología , Animales , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Factores de Transcripción Forkhead/deficiencia , Factores de Transcripción Forkhead/genética , Trasplante de Células Madre Hematopoyéticas , Humanos , Inmunohistoquímica , Inmunofenotipificación , Ratones , Ratones Noqueados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Trasplante Heterólogo
6.
Clin Exp Allergy ; 45(8): 1317-1327, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25728460

RESUMEN

BACKGROUND: Quantification of tissue eosinophils remains the golden standard in diagnosing eosinophilic oesophagitis (EoE), but this approach suffers from poor specificity. It has been recognized that histopathological changes that occur in patients with EoE are associated with a disease-specific tissue transcriptome. OBJECTIVE: We hypothesized that digital mRNA profiling targeted at a set of EoE-specific and Th2 inflammatory genes in oesophageal biopsies could help differentiate patients with EoE from those with reflux oesophagitis (RE) or normal tissue histology (NH). METHODS: The mRNA expression levels of 79 target genes were defined in both proximal and distal biopsies of 196 patients with nCounter® (Nanostring) technology. According to clinicopathological diagnosis, these patients were grouped in a training set (35 EoE, 30 RE, 30 NH) for building of a three-class prediction model using the random forest method, and a blinded predictive set (n = 47) for model validation. RESULTS: A diagnostic model built on ten differentially expressed genes was able to differentiate with 100% sensitivity and specificity between conditions in the training set. In a blinded predictive set, this model was able to correctly predict EoE in 14 of 18 patients in distal (sensitivity 78%, 95% CI 52-93%) and 16 of 18 patients in proximal biopsies (sensitivity 89%, 95% CI 64-98%), without false-positive diagnosis of EoE in RE or NH patients (specificity 100%, 95% CI 85-100%). Sensitivity was increased to 94% (95% CI 71-100%) when either the best predictive distal or proximal biopsy was used. CONCLUSION AND CLINICAL RELEVANCE: We conclude that mRNA profiling of oesophageal tissue is an accurate diagnostic strategy in detecting EoE.


Asunto(s)
Esofagitis Eosinofílica/diagnóstico , Esofagitis Eosinofílica/metabolismo , Esófago/metabolismo , Perfilación de la Expresión Génica , ARN Mensajero/biosíntesis , Adolescente , Niño , Preescolar , Esofagitis Eosinofílica/patología , Esófago/patología , Femenino , Humanos , Lactante , Masculino , Sensibilidad y Especificidad
7.
Cell Rep ; 10(9): 1487-1495, 2015 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-25753415

RESUMEN

Epidemiologic studies discovered an inverse association between immunoglobulin E (IgE)-mediated allergies and cancer, implying tumor-protective properties of IgE. However, the underlying immunologic mechanisms remain poorly understood. Antigen cross-presentation by dendritic cells (DCs) is of key importance for anti-tumor immunity because it induces the generation of cytotoxic CD8+ T lymphocytes (CTLs) with specificity for tumor antigens. We demonstrate that DCs use IgE and FcεRI, the high-affinity IgE receptor, for cross-presentation and priming of CTLs in response to free soluble antigen at low doses. Importantly, IgE/FcεRI-mediated cross-presentation is a distinct receptor-mediated pathway because it does not require MyD88 signals or IL-12 induction in DCs. Using passive immunization with tumor antigen-specific IgE and DC-based vaccination experiments, we demonstrate that IgE-mediated cross-presentation significantly improves anti-tumor immunity and induces memory responses in vivo. Our findings suggest a cellular mechanism for the tumor-protective features of IgE and expand the known physiological functions of this immunoglobulin.

8.
Front Immunol ; 5: 140, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24744762

RESUMEN

The ability of dendritic cells (DCs) to cross-present tumor antigens has long been a focus of interest to physicians, as well as basic scientists, that aim to establish efficient cell-based cancer immune therapy. A prerequisite for exploiting this pathway for therapeutic purposes is a better understanding of the mechanisms that underlie the induction of tumor-specific cytotoxic T-lymphocyte (CTL) responses when initiated by DCs via cross-presentation. The ability of humans DC to perform cross-presentation is of utmost interest, as this cell type is a main target for cell-based immunotherapy in humans. The outcome of a cross-presentation event is guided by the nature of the antigen, the form of antigen uptake, and the subpopulation of DCs that performs presentation. Generally, CD8α(+) DCs are considered to be the most potent cross-presenting DCs. This paradigm, however, only applies to soluble antigens. During adaptive immune responses, immune complexes form when antibodies interact with their specific epitopes on soluble antigens. Immunoglobulin G (IgG) immune complexes target Fc-gamma receptors on DCs to shuttle exogenous antigens efficiently into the cross-presentation pathway. This receptor-mediated cross-presentation pathway is a well-described route for the induction of strong CD8(+) T cell responses. IgG-mediated cross-presentation is intriguing because it permits the CD8(-) DCs, which are commonly considered to be weak cross-presenters, to efficiently cross-present. Engaging multiple DC subtypes for cross-presentation might be a superior strategy to boost CTL responses in vivo. We here summarize our current understanding of how DCs use IgG-complexed antigens for the efficient induction of CTL responses. Because of its importance for human cell therapy, we also review the recent advances in the characterization of cross-presentation properties of human DC subsets.

9.
Am J Gastroenterol ; 109(5): 646-57, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24513807

RESUMEN

OBJECTIVES: Recent experimental evidence suggests that environmental microbial factors early in life determine susceptibility to allergic diseases through inappropriate chemotaxis and local activation of CD1d-restricted, invariant chain natural killer T (iNKT) cells. In this study, we analyzed the involvement of these pathways in pediatric patients with eosinophilic esophagitis (EoE) before and after dietary allergen elimination. METHODS: mRNA expression levels of components of the C-X-C motif chemokine ligand 16 (CXCL16)-iNKT-CD1d axis were compared in esophageal biopsies from EoE patients vs. normal or inflammatory controls and before and after treatment. RESULTS: CXCL16, iNKT cell-associated cell marker Vα24, and CD1d were significantly upregulated in esophageal biopsies from EoE patients and correlated with the expression of inflammatory mediators associated with allergy. Upregulation of each of these factors was significantly more pronounced in patients aged <6 years at diagnosis, and this early-onset EoE subpopulation was characterized by a more prominent food allergic disease phenotype in a cohort-wide analysis. Successful, but not unsuccessful, treatment of early-onset EoE patients with dietary elimination of instigating allergens led to reduction in infiltrating iNKT cells and complete normalization of mRNA expression levels of CXCL16 and CD1d. CONCLUSIONS: Our observations place iNKT cells at the center of allergic inflammation associated with EoE, which could have profound implications for our understanding, treatment and prevention of this and other human allergic diseases.


Asunto(s)
Antígenos CD1d/metabolismo , Quimiocinas CXC/metabolismo , Dietoterapia , Esofagitis Eosinofílica/inmunología , Esófago/inmunología , Hipersensibilidad a los Alimentos/inmunología , Células T Asesinas Naturales/metabolismo , Receptores Depuradores/metabolismo , Adolescente , Edad de Inicio , Biomarcadores/metabolismo , Biopsia , Quimiocina CXCL16 , Quimiotaxis , Niño , Preescolar , Esofagitis Eosinofílica/dietoterapia , Esofagitis Eosinofílica/patología , Esófago/patología , Femenino , Hipersensibilidad a los Alimentos/dietoterapia , Hipersensibilidad a los Alimentos/patología , Humanos , Lactante , Modelos Logísticos , Estudios Longitudinales , Masculino , Análisis Multivariante , Fenotipo , Estudios Prospectivos , Resultado del Tratamiento , Regulación hacia Arriba
10.
Cell Host Microbe ; 13(5): 558-569, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23684307

RESUMEN

The plasma membrane and all membrane-bound organelles except for the Golgi and endoplasmic reticulum (ER) are equipped with pattern-recognition molecules to sense microbes or their products and induce innate immunity for host defense. Here, we report that inositol-requiring-1α (IRE1α), an ER protein that signals in the unfolded protein response (UPR), is activated to induce inflammation by binding a portion of cholera toxin as it co-opts the ER to cause disease. Other known UPR transducers, including the IRE1α-dependent transcription factor XBP1, are dispensable for this signaling. The inflammatory response depends instead on the RNase activity of IRE1α to degrade endogenous mRNA, a process termed regulated IRE1α-dependent decay (RIDD) of mRNA. The mRNA fragments produced engage retinoic-acid inducible gene 1 (RIG-I), a cytosolic sensor of RNA viruses, to activate NF-κB and interferon pathways. We propose IRE1α provides for a generalized mechanism of innate immune surveillance originating within the ER lumen.


Asunto(s)
Toxina del Cólera/inmunología , Toxina del Cólera/metabolismo , ARN Helicasas DEAD-box/inmunología , Endorribonucleasas/inmunología , Endorribonucleasas/metabolismo , Inmunidad Innata , Proteínas Serina-Treonina Quinasas/inmunología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Línea Celular , Proteína 58 DEAD Box , ARN Helicasas DEAD-box/metabolismo , Humanos , Unión Proteica , Receptores Inmunológicos
11.
J Clin Immunol ; 33 Suppl 1: S9-17, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22948741

RESUMEN

Careful regulation of the body's immunoglobulin G (IgG) and albumin concentrations is necessitated by the importance of their respective functions. As such, the neonatal Fc receptor (FcRn), as a single receptor, is capable of regulating both of these molecules and has become an important focus of investigation. In addition to these essential protection functions, FcRn possesses a number of other functions that are equally as critical and are increasingly coming to attention. During the very first stages of life, FcRn mediates the passive transfer of IgG from mother to offspring both before and after birth. In the adult, FcRn regulates the persistence of both IgG and albumin in the serum as well as the movement of IgG, and any bound cargo, between different compartments of the body via transcytosis across polarized cells. FcRn is also expressed by hematopoietic cells; consistent with this, FcRn regulates MHC class II presentation and MHC class I cross-presentation by dendritic cells. As such, FcRn plays an important role in immune surveillance throughout adult life. The increasing appreciation for FcRn in both homeostatic and pathological conditions is generating an intense interest in the potential for therapeutic modulation of FcRn binding to IgG and albumin.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/metabolismo , Inmunoglobulina G/inmunología , Inmunoglobulina G/metabolismo , Receptores Fc/metabolismo , Receptores de IgG/metabolismo , Albúminas/metabolismo , Animales , Presentación de Antígeno/inmunología , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Antígenos/inmunología , Antígenos/metabolismo , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Mutación , Unión Proteica , Ingeniería de Proteínas , Transporte de Proteínas/inmunología , Receptores Fc/genética , Receptores Fc/inmunología , Receptores de IgG/genética , Receptores de IgG/inmunología
12.
Am J Clin Exp Immunol ; 1(2): 113-123, 2012 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-23243629

RESUMEN

Indoleamine 2,3-dioxygenase (IDO) is the rate-limiting enzyme in the tryptophan-catabolizing pathway and a key regulator of peripheral immune tolerance. As the suppressive effects of IDO are predominantly mediated by dendritic cells (DCs) and IDO-competent DCs promote long-term immunologic tolerance, a detailed understanding of how IDO expression and activity is regulated in these cells is central to the rational design of therapies to induce robust immune tolerance. We previously reported that the cystine/glutamate antiporter modulates the functional expression of IDO in human monocyte-derived DCs. Specifically, we showed that blocking antiporter uptake of cystine significantly increased both IDO mRNA and IDO enzymatic activity and that this correlated with impaired DC presentation of exogenous antigen to T cells via MHC class II and the cross-presentation pathway. The antiporter regulates intracellular and extracellular redox by transporting cystine into the cell in exchange for glutamate. Intracellular cystine is reduced to cysteine to support biosynthesis of the major cellular antioxidant glutathione and cysteine is exported from the cell where it functions as an extracellular antioxidant. Here we show that antiporter control of IDO expression in DCs is reversible, independent of interferon-γ, regulated by redox, and requires active protein synthesis. These findings highlight a role for antiporter regulation of cellular redox as a critical control point for modulating IDO expression and activity in DCs. Thus, systemic disease and aging, processes that perturb redox homeostasis, may adversely affect immunity by promoting the generation of IDO-competent DCs.

13.
Gastroenterology ; 143(3): 719-729.e2, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22710191

RESUMEN

BACKGROUND & AIMS: Immunodeficiency and autoimmune sequelae, including colitis, develop in patients and mice deficient in Wiskott-Aldrich syndrome protein (WASP), a hematopoietic cell-specific intracellular signaling molecule that regulates the actin cytoskeleton. Development of colitis in WASP-deficient mice requires lymphocytes; transfer of T cells is sufficient to induce colitis in immunodeficient mice. We investigated the interactions between innate and adaptive immune cells in mucosal regulation during development of T cell-mediated colitis in mice with WASP-deficient cells of the innate immune system. METHODS: Naïve and/or regulatory CD4(+) T cells were transferred from 129 SvEv mice into RAG-2-deficient (RAG-2 KO) mice or mice lacking WASP and RAG-2 (WRDKO). Animals were observed for the development of colitis; effector and regulatory functions of innate immune and T cells were analyzed with in vivo and in vitro assays. RESULTS: Transfer of unfractionated CD4(+) T cells induced severe colitis in WRDKO, but not RAG-2 KO, mice. Naïve wild-type T cells had higher levels of effector activity and regulatory T cells had reduced suppressive function when transferred into WRDKO mice compared with RAG-2 KO mice. Regulatory T-cell proliferation, generation, and maintenance of FoxP3 expression were reduced in WRDKO recipients and associated with reduced numbers of CD103(+) tolerogenic dendritic cells and levels of interleukin-10. Administration of interleukin-10 prevented induction of colitis following transfer of T cells into WRDKO mice. CONCLUSIONS: Defective interactions between WASP-deficient innate immune cells and normal T cells disrupt mucosal regulation, potentially by altering the functions of tolerogenic dendritic cells, production of interleukin-10, and homeostasis of regulatory T cells.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Colitis/inmunología , Colon/inmunología , Inmunidad Innata , Inmunidad Mucosa , Mucosa Intestinal/inmunología , Proteína del Síndrome de Wiskott-Aldrich/deficiencia , Traslado Adoptivo , Animales , Antígenos CD/metabolismo , Antígeno CD11b/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/trasplante , Proliferación Celular , Células Cultivadas , Colitis/genética , Colitis/metabolismo , Colitis/patología , Colon/metabolismo , Colon/patología , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Modelos Animales de Enfermedad , Factores de Transcripción Forkhead/metabolismo , Tolerancia Inmunológica , Cadenas alfa de Integrinas/metabolismo , Interleucina-10/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Activación de Linfocitos , Ratones , Ratones de la Cepa 129 , Ratones Noqueados , Linfocitos T Reguladores/inmunología , Factores de Tiempo , Quimera por Trasplante , Proteína del Síndrome de Wiskott-Aldrich/genética
14.
Cancer Immunol Immunother ; 61(9): 1521-5, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22042251

RESUMEN

One of the goals of cell-based immune therapy in cancer is the induction of tumor-specific cytotoxic T-lymphocyte (CTL) responses. To achieve this objective, the ability of dendritic cells (DC) to cross-present tumor antigens can be exploited. One of the most efficient pathways for the induction of CTLs by cross-presentation is mediated by immunoglobulins of the IgG class, which are used by DCs to sample antigen in the form of immune complexes via Fc-gamma receptors. Could DCs use an IgE-mediated cross-presentation mechanism in a comparable manner to induce CTLs? We here discuss the potential of two human IgE Fc receptors, FcεRI and FcεRII, to serve as antigen uptake receptors for IgE-mediated cross-presentation. We conclude that the existence of an IgE-mediated cross-presentation pathway would provide a direct link between IgE-driven immune responses and CTL activity.


Asunto(s)
Células Dendríticas/inmunología , Inmunoglobulina E/inmunología , Receptores de IgG/inmunología , Linfocitos T Citotóxicos/inmunología , Animales , Presentación de Antígeno/inmunología , Reactividad Cruzada/inmunología , Células Dendríticas/metabolismo , Humanos , Inmunoglobulina E/metabolismo , Receptores de IgG/metabolismo , Linfocitos T Citotóxicos/metabolismo
15.
Proc Natl Acad Sci U S A ; 108(24): 9927-32, 2011 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-21628593

RESUMEN

Cross-presentation of IgG-containing immune complexes (ICs) is an important means by which dendritic cells (DCs) activate CD8(+) T cells, yet it proceeds by an incompletely understood mechanism. We show that monocyte-derived CD8(-)CD11b(+) DCs require the neonatal Fc receptor for IgG (FcRn) to conduct cross-presentation of IgG ICs. Consequently, in the absence of FcRn, Fcγ receptor (FcγR)-mediated antigen uptake fails to initiate cross-presentation. FcRn is shown to regulate the intracellular sorting of IgG ICs to the proper destination for such cross-presentation to occur. We demonstrate that FcRn traps antigen and protects it from degradation within an acidic loading compartment in association with the rapid recruitment of key components of the phagosome-to-cytosol cross-presentation machinery. This unique mechanism thus enables cross-presentation to evolve from an atypically acidic loading compartment. FcRn-driven cross-presentation is further shown to control cross-priming of CD8(+) T-cell responses in vivo such that during chronic inflammation, FcRn deficiency results in inadequate induction of CD8(+) T cells. These studies thus demonstrate that cross-presentation in CD8(-)CD11b(+) DCs requires a two-step mechanism that involves FcγR-mediated internalization and FcRn-directed intracellular sorting of IgG ICs. Given the centrality of FcRn in controlling cross-presentation, these studies lay the foundation for a unique means to therapeutically manipulate CD8(+) T-cell responses.


Asunto(s)
Reactividad Cruzada/inmunología , Células Dendríticas/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Inmunoglobulina G/inmunología , Receptores Fc/inmunología , Animales , Antígenos/inmunología , Western Blotting , Antígeno CD11b/inmunología , Antígeno CD11b/metabolismo , Antígenos CD8/inmunología , Antígenos CD8/metabolismo , Colitis/inducido químicamente , Colitis/inmunología , Colitis/metabolismo , Citosol/inmunología , Citosol/metabolismo , Células Dendríticas/metabolismo , Sulfato de Dextran , Citometría de Flujo , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Concentración de Iones de Hidrógeno , Inmunoglobulina G/genética , Inmunoglobulina G/metabolismo , Glicoproteínas de Membrana/inmunología , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mutación , NADPH Oxidasa 2 , NADPH Oxidasas/inmunología , NADPH Oxidasas/metabolismo , Fagosomas/inmunología , Fagosomas/metabolismo , Unión Proteica , Receptores Fc/genética , Receptores Fc/metabolismo , Receptores de IgG/inmunología , Receptores de IgG/metabolismo , ATPasas de Translocación de Protón Vacuolares/inmunología , ATPasas de Translocación de Protón Vacuolares/metabolismo , Proteínas de Unión al GTP rab/inmunología , Proteínas de Unión al GTP rab/metabolismo , Proteínas rab27 de Unión a GTP
16.
PLoS One ; 6(1): e16442, 2011 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-21283540

RESUMEN

BACKGROUND AIMS: CCL25/CCR9 is a non-promiscuous chemokine/receptor pair and a key regulator of leukocyte migration to the small intestine. We investigated here whether CCL25/CCR9 interactions also play a role in the regulation of inflammatory responses in the large intestine. METHODS: Acute inflammation and recovery in wild-type (WT) and CCR9(-/-) mice was studied in a model of dextran sulfate sodium (DSS)-induced colitis. Distribution studies and phenotypic characterization of dendritic cell subsets and macrophage were performed by flow cytometry. Inflammatory bowel disease (IBD) scores were assessed and expression of inflammatory cytokines was studied at the mRNA and the protein level. RESULTS: CCL25 and CCR9 are both expressed in the large intestine and are upregulated during DSS colitis. CCR9(-/-) mice are more susceptible to DSS colitis than WT littermate controls as shown by higher mortality, increased IBD score and delayed recovery. During recovery, the CCR9(-/-) colonic mucosa is characterized by the accumulation of activated macrophages and elevated levels of Th1/Th17 inflammatory cytokines. Activated plasmacytoid dendritic cells (DCs) accumulate in mesenteric lymph nodes (MLNs) of CCR9(-/-) animals, altering the local ratio of DC subsets. Upon re-stimulation, T cells isolated from these MLNs secrete significantly higher levels of TNFα, IFNγ, IL2, IL-6 and IL-17A while down modulating IL-10 production. CONCLUSIONS: Our results demonstrate that CCL25/CCR9 interactions regulate inflammatory immune responses in the large intestinal mucosa by balancing different subsets of dendritic cells. These findings have important implications for the use of CCR9-inhibitors in therapy of human IBD as they indicate a potential risk for patients with large intestinal inflammation.


Asunto(s)
Quimiocinas CC/inmunología , Colitis/inmunología , Células Dendríticas/inmunología , Receptores CCR/inmunología , Enfermedad Aguda , Animales , Quimiocinas CC/metabolismo , Colitis/inducido químicamente , Citocinas , Sulfato de Dextran , Mucosa Intestinal/inmunología , Macrófagos/inmunología , Ratones , Ratones Noqueados , Unión Proteica/inmunología , Receptores CCR/metabolismo , Subgrupos de Linfocitos T/inmunología
17.
J Immunol ; 185(6): 3227-38, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20729327

RESUMEN

The cAMP-dependent signaling pathways that orchestrate dendritic cell (DC) maturation remain to be defined in detail. Although cAMP was previously thought to signal exclusively through protein kinase A (PKA), it is now clear that cAMP also activates exchange protein activated by cAMP (Epac), a second major cAMP effector. Whether cAMP signaling via PKA is sufficient to drive DC maturation or whether Epac plays a role has not been examined. In this study, we used cAMP analogs to selectively activate PKA or Epac in human monocyte-derived DCs and examined the effect of these signaling pathways on several hallmarks of DC maturation. We show that PKA activation induces DC maturation as evidenced by the increased cell-surface expression of MHC class II, costimulatory molecules, and the maturation marker CD83. PKA activation also reduces DC endocytosis and stimulates chemotaxis to the lymph node-associated chemokines CXCL12 and CCL21. Although PKA signaling largely suppresses cytokine production, the net effect of PKA activation translates to enhanced DC activation of allogeneic T cells. In contrast to the stimulatory effects of PKA, Epac signaling has no effect on DC maturation or function. Rather, Epac suppresses the effects of PKA when both pathways are activated simultaneously. These data reveal a previously unrecognized crosstalk between the PKA and Epac signaling pathways in DCs and raise the possibility that therapeutics targeting PKA may generate immunogenic DCs, whereas those that activate Epac may produce tolerogenic DCs capable of attenuating allergic or autoimmune disease.


Asunto(s)
Diferenciación Celular/inmunología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Inmunofenotipificación , Animales , Comunicación Celular/inmunología , Células Cultivadas , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Células Dendríticas/enzimología , Activación Enzimática/inmunología , Factores de Intercambio de Guanina Nucleótido/fisiología , Humanos , Ratones , Unión Proteica/inmunología , Inhibidores de Proteínas Quinasas/metabolismo , Transducción de Señal/inmunología
18.
J Immunol ; 185(6): 3217-26, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20733204

RESUMEN

The major cellular antioxidant glutathione is depleted during HIV infection and in obesity. Although the consequence of glutathione depletion on immune function is starting to emerge, it is currently not known whether glutathione dysregulation influences the differentiation and maturation of dendritic cells (DCs). Moreover, the effect of glutathione depletion on DC effector functions, such as Ag presentation, is poorly understood. Glutathione synthesis depends on the cystine/glutamate antiporter, which transports the rate-limiting precursor cystine into the cell in exchange for glutamate. In this paper, we present a detailed study of antiporter function in DCs and demonstrate a role for the antiporter in DC differentiation and cross-presentation. We show that the antiporter is the major mechanism for transport of cystine and glutamate and modulates the intracellular glutathione content and glutathione efflux from DCs. Blocking antiporter-dependent cystine transport decreases intracellular glutathione levels, and these effects correlate with reduced transcription of the functional subunit of the antiporter. We further demonstrate that blocking antiporter activity interferes with DC differentiation from monocyte precursors, but antiporter activity is not required for LPS-induced phenotypic maturation. Finally, we show that inhibiting antiporter uptake of cystine interferes with presentation of exogenous Ag to class II MHC-restricted T cells and blocks cross-presentation on MHC class I. We conclude that aberrant antiporter function disrupts glutathione homeostasis in DCs and may contribute to impaired immunity in the diseased host.


Asunto(s)
Sistema de Transporte de Aminoácidos y+/fisiología , Presentación de Antígeno/inmunología , Diferenciación Celular/inmunología , Células Dendríticas/citología , Células Dendríticas/inmunología , Sistema de Transporte de Aminoácidos y+/antagonistas & inhibidores , Animales , Presentación de Antígeno/genética , Transporte Biológico/inmunología , Diferenciación Celular/genética , Células Cultivadas , Reactividad Cruzada/genética , Reactividad Cruzada/inmunología , Cistina/metabolismo , Células Dendríticas/metabolismo , Ácido Glutámico/metabolismo , Glutatión/antagonistas & inhibidores , Glutatión/metabolismo , Homeostasis/inmunología , Humanos , Líquido Intracelular/inmunología , Líquido Intracelular/metabolismo , Lipopolisacáridos/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Ovalbúmina/inmunología , Ovalbúmina/metabolismo
19.
J Invest Dermatol ; 130(6): 1668-79, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19956188

RESUMEN

Stilbenes comprise a group of polyphenolic compounds, which exert inhibitory effects on various malignancies. The aim of this study was to evaluate the antitumor effects of a previously unreported stilbene derivative-3,3',4,4',5,5'-hexahydroxystilbene, termed M8-on human melanoma cells. Cell-cycle analysis of the metastatic melanoma cell line M24met showed that M8 treatment induces G(2)/M arrest accompanied with a dose- and time-dependent upregulation of p21 and downregulation of CDK-2 and leads to apoptosis. M8 induces the expression of phosphorylated p53, proteins involved in the mismatch repair machinery (MSH6, MSH2, and MLH1) and a robust tail moment in a comet assay. In addition, M8 inhibited cell migration in Matrigel assays. Shotgun proteomics and western analysis showed the regulation among others of paxillin, integrin-linked protein kinase, p21-activated kinase, and ROCK-1 indicating that M8 inhibits mesenchymal and amoeboid cell migration. These in vitro data were confirmed in vivo in a metastatic human melanoma severe combined immunodeficient (SCID) mouse model. We showed that M8 significantly impairs tumor growth. M8 also interfered with the metastatic process, as M8 treatment prevented the metastatic spread of melanoma cells to distant lymph nodes in vivo. In summary, M8 exerts strong antitumor effects with the potential to become a new drug for the treatment of metastatic melanoma.


Asunto(s)
Antineoplásicos/uso terapéutico , Progresión de la Enfermedad , Melanoma/tratamiento farmacológico , Pirogalol/análogos & derivados , Neoplasias Cutáneas/tratamiento farmacológico , Estilbenos/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quinasa 2 Dependiente de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Daño del ADN/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Melanoma/metabolismo , Melanoma/patología , Ratones , Ratones SCID , Paxillin/metabolismo , Pirogalol/farmacología , Pirogalol/uso terapéutico , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Estilbenos/farmacología , Proteína p53 Supresora de Tumor/metabolismo
20.
Biochem J ; 418(2): 379-90, 2009 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-18954305

RESUMEN

OTUB (otubain) 1 is a human deubiquitinating enzyme that is implicated in mediating lymphocyte antigen responsiveness, but whose molecular function is generally not well defined. A structural analysis of OTUB1 shows differences in accessibility to the active site and in surface properties of the substrate-binding regions when compared with its close homologue, OTUB2, suggesting variations in regulatory mechanisms and substrate specificity. Biochemical analysis reveals that OTUB1 has a preference for cleaving Lys(48)-linked polyubiquitin chains over Lys(63)-linked polyubiquitin chains, and it is capable of cleaving NEDD8 (neural-precursor-cell-expressed developmentally down-regulated 8), but not SUMO (small ubiquitin-related modifier) 1/2/3 and ISG15 (interferon-stimulated gene 15) conjugates. A functional comparison of OTUB1 and OTUB2 indicated a differential reactivity towards ubiquitin-based active-site probes carrying a vinyl methyl ester, a 2-chloroethyl or a 2-bromoethyl group at the C-terminus. Mutational analysis suggested that a narrow P1' site, as observed in OTUB1, correlates with its ability to preferentially cleave Lys(48)-linked ubiquitin chains. Analysis of cellular interaction partners of OTUB1 by co-immunoprecipitation and MS/MS (tandem mass spectrometry) experiments demonstrated that FUS [fusion involved in t(12;6) in malignant liposarcoma; also known as TLS (translocation in liposarcoma) or CHOP (CCAAT/enhancer-binding protein homologous protein)] and RACK1 [receptor for activated kinase 1; also known as GNB2L1 (guanine-nucleotide-binding protein beta polypeptide 2-like 1)] are part of OTUB1-containing complexes, pointing towards a molecular function of this deubiquitinating enzyme in RNA processing and cell adhesion/morphology.


Asunto(s)
Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/metabolismo , Endopeptidasas/química , Endopeptidasas/metabolismo , Procesamiento Proteico-Postraduccional , Ubiquitinas/metabolismo , Células Cultivadas , Cisteína Endopeptidasas/fisiología , Enzimas Desubicuitinizantes , Endopeptidasas/fisiología , Humanos , Modelos Biológicos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad , Especificidad por Sustrato , Tioléster Hidrolasas/química , Levaduras/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA