Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Biol Chem ; 298(9): 102287, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35868560

RESUMEN

The tumor suppressor p53 is involved in the adaptation of hepatic metabolism to nutrient availability. Acute deletion of p53 in the mouse liver affects hepatic glucose and triglyceride metabolism. However, long-term adaptations upon the loss of hepatic p53 and its transcriptional regulators are unknown. Here we show that short-term, but not chronic, liver-specific deletion of p53 in mice reduces liver glycogen levels, and we implicate the transcription factor forkhead box O1 protein (FOXO1) in the regulation of p53 and its target genes. We demonstrate that acute p53 deletion prevents glycogen accumulation upon refeeding, whereas a chronic loss of p53 associates with a compensational activation of the glycogen synthesis pathway. Moreover, we identify fasting-activated FOXO1 as a repressor of p53 transcription in hepatocytes. We show that this repression is relieved by inactivation of FOXO1 by insulin, which likely mediates the upregulation of p53 expression upon refeeding. Strikingly, we find that high-fat diet-induced insulin resistance with persistent FOXO1 activation not only blunted the regulation of p53 but also the induction of p53 target genes like p21 during fasting, indicating overlapping effects of both FOXO1 and p53 on target gene expression in a context-dependent manner. Thus, we conclude that p53 acutely controls glycogen storage in the liver and is linked to insulin signaling via FOXO1, which has important implications for our understanding of the hepatic adaptation to nutrient availability.


Asunto(s)
Proteína Forkhead Box O1 , Homeostasis , Glucógeno Hepático , Hígado , Proteína p53 Supresora de Tumor , Animales , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Eliminación de Gen , Glucosa/metabolismo , Hepatocitos/metabolismo , Insulina/metabolismo , Hígado/metabolismo , Glucógeno Hepático/metabolismo , Ratones , Triglicéridos/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
2.
Diabetologia ; 65(3): 528-540, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34846543

RESUMEN

AIMS/HYPOTHESIS: Despite a similar fat storing function, visceral (intra-abdominal) white adipose tissue (WAT) is detrimental, whereas subcutaneous WAT is considered to protect against metabolic disease. Recent findings indicate that thermogenic genes, expressed in brown adipose tissue (BAT), can be induced primarily in subcutaneous WAT. Here, we investigate the hypothesis that the Wilms tumour gene product (WT1), which is expressed in intra-abdominal WAT but not in subcutaneous WAT and BAT, suppresses a thermogenic program in white fat cells. METHODS: Heterozygous Wt1 knockout mice and their wild-type littermates were examined in terms of thermogenic and adipocyte-selective gene expression. Glucose tolerance and hepatic lipid accumulation in these mice were assessed under normal chow and high-fat diet conditions. Pre-adipocytes isolated from the stromal vascular fraction of BAT were transduced with Wt1-expressing retrovirus, induced to differentiate and analysed for the expression of thermogenic and adipocyte-selective genes. RESULTS: Expression of the thermogenic genes Cpt1b and Tmem26 was enhanced and transcript levels of Ucp1 were on average more than tenfold higher in epididymal WAT of heterozygous Wt1 knockout mice compared with wild-type mice. Wt1 heterozygosity reduced epididymal WAT mass, improved whole-body glucose tolerance and alleviated severe hepatic steatosis upon diet-induced obesity in mice. Retroviral expression of WT1 in brown pre-adipocytes, which lack endogenous WT1, reduced mRNA levels of Ucp1, Ppargc1a, Cidea, Prdm16 and Cpt1b upon in vitro differentiation by 60-90%. WT1 knockdown in epididymal pre-adipocytes significantly lowered Aldh1a1 and Zfp423 transcripts, two key suppressors of the thermogenic program. Conversely, Aldh1a1 and Zfp423 mRNA levels were increased approximately five- and threefold, respectively, by retroviral expression of WT1 in brown pre-adipocytes. CONCLUSION/INTERPRETATION: WT1 functions as a white adipocyte determination factor in epididymal WAT by suppressing thermogenic genes. Reducing Wt1 expression in this and other intra-abdominal fat depots may represent a novel treatment strategy in metabolic disease.


Asunto(s)
Dieta Alta en Grasa , Haploinsuficiencia , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Ratones , Ratones Endogámicos C57BL , Termogénesis/genética , Proteínas WT1/genética , Proteínas WT1/metabolismo
3.
Biochim Biophys Acta Bioenerg ; 1859(9): 975-983, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29580805

RESUMEN

Succinate is known to act as an inflammatory signal in classically activated macrophages through stabilization of HIF-1α leading to IL-1ß production. Relevant to this, hypoxia is known to drive succinate accumulation and release into the extracellular milieu. The metabolic alterations associated with succinate release during inflammation and under hypoxia are poorly understood. Data are presented showing that Mycoplasma arginini infection of VM-M3 cancer cells enhances the Warburg effect associated with succinate production in mitochondria and eventual release into the extracellular milieu. We investigated how succinate production and release was related to the changes of other soluble metabolites, including itaconate and 2-HG. Furthermore, we found that hypoxia alone could induce succinate release from the VM-M3 cells and that this could occur in the absence of glucose-driven lactate production. Our results elucidate metabolic pathways responsible for succinate accumulation and release in cancer cells, thus identifying potential targets involved in both inflammation and hypoxia. This article is part of a Special Issue entitled 20th European Bioenergetics Conference, edited by László Zimányi and László Tretter.


Asunto(s)
Neoplasias Encefálicas/patología , Glioblastoma/patología , Hipoxia/complicaciones , Inflamación/complicaciones , Infecciones por Mycoplasma/complicaciones , Mycoplasma/patogenicidad , Succinatos/metabolismo , Animales , Neoplasias Encefálicas/etiología , Neoplasias Encefálicas/metabolismo , Metabolismo Energético , Glioblastoma/etiología , Glioblastoma/metabolismo , Metaboloma , Ratones , Células Tumorales Cultivadas
4.
Cancer Lett ; 405: 56-62, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28729049

RESUMEN

Bioluminescence imaging (BLI) is an established method for evaluating metastatic load in preclinical cancer models; however, BLI can produce observational error due to differences in substrate concentration and signal depth. In our syngeneic murine model of metastasis (VM-M3), we used a quantitative polymerase chain reaction (qPCR) method of DNA quantification to bypass these limitations. Liver, spleen, and brain from VM/Dk (VM) mice bearing VM-M3 tumor cells were first imaged ex vivo with BLI. qPCR quantification of tumor cell DNA was then performed on DNA extracted from these organs. Linear regression indicated that qPCR data predicted BLI data in solid tissue. Furthermore, the tumor cell detection limit was lower for qPCR analysis than for BLI analysis. In order to validate qPCR for use in detecting blood metastases, qPCR quantification was performed on whole blood collected from mice whose global organ metastatic load (summation of liver, spleen, kidneys, lungs, and brain) was quantified through BLI. Linear regression indicated that qPCR data in blood predicted BLI data in solid tissue. The results demonstrate that qPCR is an accurate and sensitive method of metastatic quantification in syngeneic murine models.


Asunto(s)
Glioblastoma/patología , Glioblastoma/secundario , Mediciones Luminiscentes/métodos , Metástasis de la Neoplasia/diagnóstico , Reacción en Cadena de la Polimerasa/métodos , Animales , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/secundario , Línea Celular Tumoral , Modelos Animales de Enfermedad , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/secundario , Ratones , Células Neoplásicas Circulantes/patología , Análisis de Regresión , Neoplasias del Bazo/diagnóstico , Neoplasias del Bazo/secundario
5.
Carcinogenesis ; 35(3): 515-27, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24343361

RESUMEN

Emerging evidence indicates that cancer is primarily a metabolic disease involving disturbances in energy production through respiration and fermentation. The genomic instability observed in tumor cells and all other recognized hallmarks of cancer are considered downstream epiphenomena of the initial disturbance of cellular energy metabolism. The disturbances in tumor cell energy metabolism can be linked to abnormalities in the structure and function of the mitochondria. When viewed as a mitochondrial metabolic disease, the evolutionary theory of Lamarck can better explain cancer progression than can the evolutionary theory of Darwin. Cancer growth and progression can be managed following a whole body transition from fermentable metabolites, primarily glucose and glutamine, to respiratory metabolites, primarily ketone bodies. As each individual is a unique metabolic entity, personalization of metabolic therapy as a broad-based cancer treatment strategy will require fine-tuning to match the therapy to an individual's unique physiology.


Asunto(s)
Neoplasias/metabolismo , Neoplasias/terapia , Metabolismo Energético , Genes p53 , Genes ras , Humanos , Mitocondrias/metabolismo , Mutación , Neoplasias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA