Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Molecules ; 29(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39274833

RESUMEN

l-Homocysteine, formed from S-adenosyl methionine following demethylation and adenosine release, accumulates when the methionine recycling pathway and other pathways become impaired, thus leading to hyperhomocysteinemia, a biomarker in cardiovascular diseases, neurological/psychiatric disorders, and cancer. The partial oxidation of the l-homocysteine thiol group and its decarboxylation on C-alpha lead to the formation of l-homocysteinesulfinic acid (l-HCSA) and homohypotaurine (HHT), respectively. Both compounds are not readily available from commercial suppliers, which hinders the investigation of their biological activities. Herein, the chemical synthesis of l-HCSA, from l-homocystine, was the starting point for establishing the bio-based synthesis of HHT using recombinant Escherichia coli glutamate decarboxylase (EcGadB), an enzyme already successfully employed for the bio-based synthesis of GABA and its phosphinic analog. Prior to HHT synthesis, kcat (33.92 ± 1.07) and KM (38.24 ± 3.45 mM) kinetic constants were determined for l-HCSA on EcGadB. The results of our study show that the EcGadB-mediated synthesis of HHT can be achieved with good yields (i.e., 40% following enzymatic synthesis and column chromatography). Purified HHT was tested in vitro on primary human umbilical vein endothelial cells and rat cardiomyoblasts and compared to the fully oxidized analog, homotaurine (OT, also known as tramiprosate), in widespread pharmaceutical use. The results show that both cell lines display statistically significant recovery from the cytotoxic effects induced by H2O2 in the presence of HHT.


Asunto(s)
Escherichia coli , Glutamato Descarboxilasa , Homocisteína , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Humanos , Homocisteína/análogos & derivados , Homocisteína/metabolismo , Glutamato Descarboxilasa/metabolismo , Glutamato Descarboxilasa/genética , Proteínas Recombinantes/metabolismo , Cinética
2.
Food Chem ; 463(Pt 2): 141296, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39305667

RESUMEN

Oleocanthal and oleacein are the two major secoiridoids exclusively present in extra virgin olive oil (EVOO). Both compounds exert important pharmacological activities, including anti-inflammatory, anti-tumoral, neuro- and cardiovascular protective effects. Due to their enormous potential as possible drugs the extraction of these two bioactive natural products from EVOO has been extensively investigated in the last years and is generally supported by the use of organic chemistry. It is quite difficult to produce large quantities of these two compounds, either by organic solvent extraction and purification or by chemical synthesis, and furthermore organic processes such as cleaning, defatting, and extraction of EVOO pose a threat to the environment and are potentially harmful to workers. In this work we set up a novel aqueous extraction and isolation method from EVOO by transforming oleocanthal and oleacein into two water-soluble sulfonated products. The two derived compounds, here named thiocanthal and thiocanthol, were isolated by a two-step organic free chromatographic strategy, chemically characterized, and evaluated for their inhibitory activity on cyclooxygenase (COX). The results demonstrate that thiocanthal and thiocanthol possess anti-inflammatory effect, which is comparable to their precursors and higher than the well-known non-steroidal anti-inflammatory drug ibuprofen. Computational docking studies were performed to obtain and analyse putative models of the interaction of thiocanthal and thiocanthol with COX-1 and COX-2 binding sites. Predicted binding energy values suggested that both compounds might preferentially bind COX-2, which may have a significant pharmacological impact. Therefore, thiocanthal and thiocanthol, obtained by this novel green process, are extremely interesting both as new bioactive compounds per se and as lead compounds for the development of novel non-steroidal anti-inflammatory drugs (NSAIDs).

3.
Amino Acids ; 53(10): 1559-1568, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34536129

RESUMEN

S-adenosyl-L-methionine (SAM), the main endogenous methyl donor, is the adenosyl derivative of the amino acid methionine, which displays many important roles in cellular metabolism. It is widely used as a food supplement and in some countries is also marketed as a drug. Its interesting nutraceutical and pharmacological properties prompted us to evaluate the pharmacokinetics of a new form of SAM, the phytate salt. The product was administered orally to rats and pharmacokinetic parameters were evaluated by comparing the results with that obtained by administering the SAM tosylated form (SAM PTS). It was found that phytate anion protects SAM from degradation, probably because of steric hindrance exerted by the counterion, and that the SAM phytate displayed significant better pharmacokinetic parameters compared to SAM PTS. These results open to the perspective of the use of new salts of SAM endowed with better pharmacokinetic properties.


Asunto(s)
S-Adenosilmetionina/química , S-Adenosilmetionina/farmacocinética , Administración Oral , Animales , Área Bajo la Curva , Disponibilidad Biológica , Estabilidad de Medicamentos , Femenino , Masculino , Ácido Fítico/química , Ratas Sprague-Dawley , S-Adenosilmetionina/administración & dosificación , S-Adenosilmetionina/sangre
4.
Front Med (Lausanne) ; 8: 743798, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35111770

RESUMEN

Neuromyelitis Optica spectrum disorder is an inflammatory demyelinating disease affecting the central nervous system (CNS), characterized by triad optic neuritis, transverse myelitis, and area postrema syndrome. Antibodies directed against aquaporin-4 (AQP-4), a water channel expressed on the astrocytic membrane, are supposed to play a pathogenic role and are detected in ~80% of cases. Clinical signs of Neuromyelitis Optica spectrum disorder (NMOSD) in elderly patients should arouse the suspicion of paraneoplastic etiology. In this article, we discussed a case of a 76-year-old woman with a 2-month history of confusion, dysarthria, and progressive bilateral leg weakness. A whole-body CT scan showed a neoformation of 5 cm in diameter in the median lobe infiltrating the mediastinal pleura. The tumor had already spread to both the upper and lower right lobes, parietal pleura, and multiple lymph nodes. Pleural cytology revealed adenocarcinoma cells. The brain MRI documented hyperintense alteration in fluid-attenuated inversion recovery (FLAIR) images, involving the anterior portion of the corpus callosum and the periependymal white matter surrounding the lateral ventricles, with mild contrast enhancement on the same areas and meningeal tissue. T2-weighted spinal cord MRI sequences showed extended signal hyperintensity from bulbo-cervical junction to D7 metamer, mainly interesting the central component and the gray matter. Cerebrospinal fluid analysis revealed no neoplastic cells. Serum AQP-4 immunoglobulin (IgG) antibodies were found. Meanwhile, the patient rapidly developed progressive paraparesis and decreased level of consciousness. High-dose intravenous methylprednisolone therapy was started but her conditions rapidly deteriorated. No other treatment was possible.

5.
Int J Mol Sci ; 23(1)2021 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-35008693

RESUMEN

Pheomelanin is a natural yellow-reddish sulfur-containing pigment derived from tyrosinase-catalyzed oxidation of tyrosine in presence of cysteine. Generally, the formation of melanin pigments is a protective response against the damaging effects of UV radiation in skin. However, pheomelanin, like other photosensitizing substances, can trigger, following exposure to UV radiation, photochemical reactions capable of modifying and damaging cellular components. The photoproperties of this natural pigment have been studied by analyzing pheomelanin effect on oxidation/nitration of tyrosine induced by UVB radiation at different pH values and in presence of iron ions. Photoproperties of pheomelanin can be modulated by various experimental conditions, ranging from the photoprotection to the triggering of potentially damaging photochemical reactions. The study of the photomodification of l-Tyrosine in the presence of the natural pigment pheomelanin has a special relevance, since this tyrosine oxidation/nitration pathway can potentially occur in vivo in tissues exposed to sunlight and play a role in the mechanisms of tissue damage induced by UV radiation.


Asunto(s)
Melaninas/metabolismo , Tirosina/metabolismo , Rayos Ultravioleta , Hierro/metabolismo , Melaninas/biosíntesis , Melaninas/química , Nitritos/metabolismo , Nitrosación/efectos de la radiación , Oxidación-Reducción/efectos de la radiación , Ácido Peroxinitroso/metabolismo , Oxígeno Singlete/metabolismo
6.
Int J Mol Sci ; 21(23)2020 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-33260451

RESUMEN

Biliverdin reductase A (BVR-A) is an enzyme involved in the regulation of insulin signalling. Knockout (KO) mice for hepatic BVR-A, on a high-fat diet, develop more severe glucose impairment and hepato-steatosis than the wild type, whereas loss of adipocyte BVR-A is associated with increased visceral adipose tissue (VAT) inflammation and adipocyte size. However, BVR-A expression in human VAT has not been investigated. We evaluated BVR-A mRNA expression levels by real-time PCR in the intra-operative omental biopsy of 38 obese subjects and investigated the association with metabolic impairment, VAT dysfunction, and biopsy-proven non-alcoholic fatty liver disease (NAFLD). Individuals with lower VAT BVR-A mRNA levels had significantly greater VAT IL-8 and Caspase 3 expression than those with higher BVR-A. Lower VAT BVR-A mRNA levels were associated with an increased adipocytes' size. An association between lower VAT BVR-A expression and higher plasma gamma-glutamyl transpeptidase was also observed. Reduced VAT BVR-A was associated with NAFLD with an odds ratio of 1.38 (95% confidence interval: 1.02-1.9; χ2 test) and with AUROC = 0.89 (p = 0.002, 95% CI = 0.76-1.0). In conclusion, reduced BVR-A expression in omental adipose tissue is associated with VAT dysfunction and NAFLD, suggesting a possible involvement of BVR-A in the regulation of VAT homeostasis in presence of obesity.


Asunto(s)
Adipocitos/enzimología , Adipocitos/patología , Grasa Intraabdominal/enzimología , Enfermedad del Hígado Graso no Alcohólico/enzimología , Obesidad/enzimología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Adulto , Caspasa 3/genética , Caspasa 3/metabolismo , Citocinas/genética , Citocinas/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Obesidad/genética , Obesidad/patología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Curva ROC
7.
Oxid Med Cell Longev ; 2020: 8294158, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33062147

RESUMEN

Sulfur contributes significantly to nature chemical diversity and thanks to its particular features allows fundamental biological reactions that no other element allows. Sulfur natural compounds are utilized by all living beings and depending on the function are distributed in the different kingdoms. It is no coincidence that marine organisms are one of the most important sources of sulfur natural products since most of the inorganic sulfur is metabolized in ocean environments where this element is abundant. Terrestrial organisms such as plants and microorganisms are also able to incorporate sulfur in organic molecules to produce primary metabolites (e.g., methionine, cysteine) and more complex unique chemical structures with diverse biological roles. Animals are not able to fix inorganic sulfur into biomolecules and are completely dependent on preformed organic sulfurous compounds to satisfy their sulfur needs. However, some higher species such as humans are able to build new sulfur-containing chemical entities starting especially from plants' organosulfur precursors. Sulfur metabolism in humans is very complicated and plays a central role in redox biochemistry. The chemical properties, the large number of oxidation states, and the versatile reactivity of the oxygen family chalcogens make sulfur ideal for redox biological reactions and electron transfer processes. This review will explore sulfur metabolism related to redox biochemistry and will describe the various classes of sulfur-containing compounds spread all over the natural kingdoms. We will describe the chemistry and the biochemistry of well-known metabolites and also of the unknown and poorly studied sulfur natural products which are still in search for a biological role.


Asunto(s)
Compuestos de Azufre/metabolismo , Animales , Cisteína/metabolismo , Glutatión/metabolismo , Glicósido Hidrolasas/metabolismo , Humanos , Metionina/metabolismo , Oxidación-Reducción , Plantas/química , Plantas/metabolismo , Compuestos de Azufre/química , Taurina/biosíntesis , Taurina/química
8.
Molecules ; 25(16)2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-32796621

RESUMEN

Extra virgin olive oil (EVOO) phenols represent a significant part of the intake of antioxidants and bioactive compounds in the Mediterranean diet. In particular, hydroxytyrosol (HTyr), tyrosol (Tyr), and the secoiridoids oleacein and oleocanthal play central roles as anti-inflammatory, neuro-protective and anti-cancer agents. These compounds cannot be easily obtained via chemical synthesis, and their isolation and purification from EVOO is cumbersome. Indeed, both processes involve the use of large volumes of organic solvents, hazardous reagents and several chromatographic steps. In this work we propose a novel optimized procedure for the green extraction, isolation and purification of HTyr, Tyr, oleacein and oleocanthal directly from EVOO, by using a Natural Deep Eutectic Solvent (NaDES) as an extracting phase, coupled with preparative high-performance liquid chromatography. This purification method allows the total recovery of the four components as single pure compounds directly from EVOO, in a rapid, economic and ecologically sustainable way, which utilizes biocompatible reagents and strongly limits the use or generation of hazardous substances.


Asunto(s)
Aldehídos/aislamiento & purificación , Fraccionamiento Químico/métodos , Cromatografía Líquida de Alta Presión/métodos , Monoterpenos Ciclopentánicos/aislamiento & purificación , Aceite de Oliva/química , Fenoles/aislamiento & purificación , Alcohol Feniletílico/análogos & derivados , Extractos Vegetales/aislamiento & purificación , Alcohol Feniletílico/aislamiento & purificación
9.
J Clin Med ; 9(4)2020 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-32290550

RESUMEN

Liquid fibrinogen is an injectable platelet concentrate rich in platelets, leukocytes, and fibrinogen obtained by blood centrifugation. The aim of this study was to analyze the release of different growth factors in the liquid fibrinogen at different times and to assess possible correlations between growth factors and cell counts. The concentration of transforming growth factor beta 1 (TGF-ß1), platelet-derived growth factor-AB (PDGF-AB), platelet-derived growth factor-BB (PDGF-BB), bone morphogenetic protein 2 (BMP-2), fibroblast growth factor 2 (FGF-2) and vascular endothelial growth factor (VEGF) released by liquid fibrinogen were examined with ELISA at three time points (T0, time of collection; T7, 7 days; T14, 14 days). The cellular content of the liquid fibrinogen and whole blood was also calculated for each volunteer. A mean accumulation of platelets of almost 1.5-fold in liquid fibrinogen compared to whole blood samples was found. An increase of TGF-ß1, PDGF-AB, FGF-2, and VEGF levels was detected at T7. At T14, the level of TGF-ß1 returned to T0 level; PDGF-AB amount remained high; the levels of FGF-2 and VEGF decreased with respect to T7, but remained higher than the T0 levels; PDGF-BB was high at all time points; BMP-2 level was low and remained constant at all time points. TGF-ß1, PDGF-AB, and PDGF-BB showed a correlation with platelet amount, whereas BMP-2, FGF-2, and VEGF showed a mild correlation with platelet amount. Due to the high concentration of platelets, liquid fibrinogen does contain important growth factors for the regeneration of both soft and hard tissue. The centrifugation protocol tested in this study provides a valid solution to stimulate wound healing in oral and periodontal surgery.

10.
Molecules ; 25(4)2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-32093407

RESUMEN

The ß-amyloid (Aß) peptide plays a key role in the pathogenesis of Alzheimer's disease. The methionine (Met) residue at position 35 in Aß C-terminal domain is critical for neurotoxicity, aggregation, and free radical formation initiated by the peptide. The role of Met in modulating toxicological properties of Aß most likely involves an oxidative event at the sulfur atom. We therefore investigated the one- or two-electron oxidation of the Met residue of Aß25-35 fragment and the effect of such oxidation on the behavior of the peptide. Bicarbonate promotes two-electron oxidations mediated by hydrogen peroxide after generation of peroxymonocarbonate (HCO4-, PMC). The bicarbonate/carbon dioxide pair stimulates one-electron oxidations mediated by carbonate radical anion (CO3•-). PMC efficiently oxidizes thioether sulfur of the Met residue to sulfoxide. Interestingly, such oxidation hampers the tendency of Aß to aggregate. Conversely, CO3•- causes the one-electron oxidation of methionine residue to sulfur radical cation (MetS•+). The formation of this transient reactive intermediate during Aß oxidation may play an important role in the process underlying amyloid neurotoxicity and free radical generation.


Asunto(s)
Péptidos beta-Amiloides/química , Carbonatos/química , Radicales Libres/química , Fragmentos de Péptidos/química , Agregado de Proteínas , Humanos , Oxidación-Reducción
11.
Adv Exp Med Biol ; 1155: 755-771, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31468446

RESUMEN

In the last decade thiotaurine, 2-aminoethane thiosulfonate, has been investigated as an inflammatory modulating agent as a result of its ability to release hydrogen sulfide (H2S) known to play regulatory roles in inflammation. Thiotaurine can be included in the "taurine family" due to structural similarity to taurine and hypotaurine, and is characterized by the presence of a sulfane sulfur moiety. Thiotaurine can be produced by different pathways, such as the spontaneous transsulfuration between thiocysteine - a persulfide analogue of cysteine - and hypotaurine as well as in vivo from cystine. Moreover, the enzymatic oxidation of cysteamine to hypotaurine and thiotaurine in the presence of inorganic sulfur can occur in animal tissues and last but not least thiotaurine can be generated by the transfer of sulfur from mercaptopyruvate to hypotaurine catalyzed by a sulfurtransferase. Thiotaurine is an effective antioxidant agent as demonstrated by its ability to counteract the damage caused by pro-oxidants in the rat. Recently, we observed the influence of thiotaurine on human neutrophils functional responses. In particular, thiotaurine has been found to prevent human neutrophil spontaneous apoptosis suggesting an alternative or additional role to its antioxidant activity. It is likely that the sulfane sulfur of thiotaurine may modulate neutrophil activation via persulfidation of target proteins. In conclusion, thiotaurine can represent a biologically relevant sulfur donor acting as a biological intermediate in the transport, storage and release of sulfide.


Asunto(s)
Sulfuro de Hidrógeno , Taurina/análogos & derivados , Animales , Antioxidantes/farmacología , Apoptosis , Humanos , Neutrófilos/citología , Neutrófilos/efectos de los fármacos , Ratas , Transducción de Señal , Sulfuros , Taurina/fisiología
12.
Biochim Biophys Acta Mol Basis Dis ; 1865(6): 1490-1501, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30826467

RESUMEN

Biliverdin reductase-A (BVR-A) is a serine/threonine/tyrosine kinase involved in the regulation of insulin signaling. In vitro studies have demonstrated that BVR-A is a substrate of the insulin receptor and regulates IRS1 by avoiding its aberrant activation, and in animal model of obesity the loss of hepatic BVR-A has been associated with glucose/insulin alterations and fatty liver disease. However, no studies exist in humans. Here, we evaluated BVR-A expression levels and activation in peripheral blood mononuclear cells (PBMC) from obese subjects and matched lean controls and we investigated the related molecular alterations of the insulin along with clinical correlates. We showed that BVR-A levels are significantly reduced in obese subjects and associated with a hyper-activation of the IR/IRS1/Akt/GSK-3ß/AS160/GLUT4 pathway. Low BVR-A levels also associate with the presence of obesity, metabolic syndrome, NASH and visceral adipose tissue inflammation. These data suggest that the reduction of BVR-A may be responsible for early alterations of the insulin signaling pathway in obesity and in this context may represent a novel molecular target to be investigated for the comprehension of the process of insulin resistance development in obesity.


Asunto(s)
Regulación de la Expresión Génica , Resistencia a la Insulina/genética , Insulina/sangre , Obesidad/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Transducción de Señal/genética , Adulto , Cirugía Bariátrica/métodos , Estudios de Casos y Controles , HDL-Colesterol/sangre , LDL-Colesterol/sangre , Femenino , Proteínas Activadoras de GTPasa/sangre , Proteínas Activadoras de GTPasa/genética , Transportador de Glucosa de Tipo 4/sangre , Transportador de Glucosa de Tipo 4/genética , Glucógeno Sintasa Quinasa 3 beta/sangre , Glucógeno Sintasa Quinasa 3 beta/genética , Humanos , Proteínas Sustrato del Receptor de Insulina/sangre , Proteínas Sustrato del Receptor de Insulina/genética , Grasa Intraabdominal/metabolismo , Grasa Intraabdominal/patología , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/patología , Masculino , Persona de Mediana Edad , Obesidad/sangre , Obesidad/patología , Obesidad/cirugía , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/sangre , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/deficiencia , Cultivo Primario de Células , Proteínas Proto-Oncogénicas c-akt/sangre , Proteínas Proto-Oncogénicas c-akt/genética , Serina-Treonina Quinasas TOR/sangre , Serina-Treonina Quinasas TOR/genética , Triglicéridos/sangre
13.
Adv Exp Med Biol ; 975 Pt 1: 535-549, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28849480

RESUMEN

There is an increasing interest for analytical methods aimed to detect biological sulfur-containing amines, because of their involvement in human diseases and metabolic disorders. This work describes an improved HPLC method for the determination of sulfur containing amino acids and amines from different biological matrices. We optimized a pre-column derivatization procedure using dabsyl chloride, in which dabsylated products can be monitored spectrophotometrically at 460 nm. This method allows the simultaneous analysis of biogenic amines, amino acids and sulfo-amino compounds including carnosine, dopamine, epinephrine, glutathione, cysteine, taurine, lanthionine, and cystathionine in brain specimens, urines, plasma, and cell lysates. Moreover, the method is suitable for the study of physiological and non-physiological derivatives of taurine and glutathione such as hypotaurine, homotaurine, homocysteic acid and S-acetylglutathione. The present method displays good efficiency of derivatization, having the advantage to give rise to stable products compared to other derivatizing agents such as o-phthalaldehyde and dansyl chloride.With this method, we provide a tool to study sulfur cycle from a metabolic point of view in relation to the pattern of biological amino-compounds, allowing researchers to get a complete scenario of organic sulfur and amino metabolism in tissues and cells.


Asunto(s)
Aminoácidos/análisis , Aminas Biogénicas/análisis , Cromatografía Líquida de Alta Presión/métodos , Compuestos de Azufre/análisis , Animales , Humanos , Ratones
14.
Adv Exp Med Biol ; 975 Pt 1: 551-561, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28849481

RESUMEN

Copper-zinc superoxide dismutase (SOD) is considered one of the most important mammalian antioxidant defenses and plays a relevant role due to its main function in catalyzing the dismutation of superoxide anion to oxygen and hydrogen peroxide. However, interaction between SOD and H2O2 produced a strong copper-bound oxidant (Cu(II)•OH) that seems able to contrast the self-inactivation of the enzyme or oxidize other molecules through its peroxidase activity. The bicarbonate presence enhances the peroxidase activity and produces the carbonate anion radical (CO3•-). CO3•- is a freely diffusible reactive species capable of oxidizing several molecules that are unwieldy to access into the reactive site of the enzyme. Cu(II)•OH oxidizes bicarbonate to the CO3•-, which spreads out of the binding site and oxidizes hypotaurine and cysteine sulfinic acid to the respective sulfonates through an efficient reaction. These findings suggest a defense role for sulfinates against the damage caused by CO3•- . The effect of hypotaurine and cysteine sulfinic acid on the CO3•--mediated oxidation of the peroxidase probe ABTS to ABTS cation radical (ABTS•+) has been studied. Both sulfinates are able to inhibit the oxidation of ABTS mediated by CO3•-. The effect of hypotaurine and cysteine sulfinic acid against SOD inactivation by H2O2 (~42% protection of enzyme activity) has also been investigated. Interestingly, hypotaurine and cysteine sulfinic acid partially avoid the H2O2-mediated SOD inactivation, suggesting that the two sulfinates may have access to the SOD reactive site and preserve it by reacting with the copper-bound oxidant. In this way hypotaurine and cysteine sulfinic acid not only intercept CO3•- which could move out from the reactive site and cause oxidative damage, but also prevents the inactivation of SOD.


Asunto(s)
Cisteína/análogos & derivados , Depuradores de Radicales Libres/farmacología , Radicales Libres/metabolismo , Superóxido Dismutasa-1/metabolismo , Taurina/análogos & derivados , Animales , Antioxidantes/farmacología , Carbonatos/metabolismo , Bovinos , Cisteína/farmacología , Oxidación-Reducción/efectos de los fármacos , Taurina/farmacología
15.
Adv Exp Med Biol ; 975 Pt 1: 563-571, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28849482

RESUMEN

Thiotaurine, a thiosulfonate related to taurine and hypotaurine, is formed by a metabolic process from cystine and generated by a transulfuration reaction between hypotaurine and thiocysteine. Thiotaurine can produce hydrogen sulfide (H2S) from its sulfane sulfur moiety. H2S is a gaseous signaling molecule which can have regulatory roles in inflammatory process. In addition, sulfane sulfur displays the capacity to reversibly bind to other sulfur atoms. Thiotaurine inhibits PMA-induced activation of human neutrophils, and hinders neutrophil spontaneous apoptosis. Here, we present the results of a proteomic approach to study the possible effects of thiotaurine at protein expression level. Proteome analysis of human neutrophils has been performed comparing protein extracts of resting or PMA-activated neutrophils in presence or in absence of thiotaurine. In particular, PMA-stimulated neutrophils showed high level of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) expression compared to the level of the same glycolytic enzyme in the resting neutrophils. Conversely, decreased expression of GAPDH has been observed when human neutrophils were incubated with 1 mM thiotaurine before activation with PMA. This result, confirmed by Western blot analysis, suggests again that thiotaurine shows a bioactive role in the mechanisms underlying the inflammatory process, influencing the energy metabolism of activated leukocytes and raises the possibility that thiotaurine, acting as a sulfur donor, could modulate neutrophil activation via persulfidation of target proteins, such as GAPDH.


Asunto(s)
Activación Neutrófila/efectos de los fármacos , Proteómica/métodos , Taurina/análogos & derivados , Humanos , Taurina/farmacología
16.
Adv Exp Med Biol ; 975 Pt 1: 573-583, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28849483

RESUMEN

Considerable strides have been made in understanding the oxidative mechanisms involved in the final steps of the cysteine pathway leading to taurine. The oxidation of sulfinates, hypotaurine and cysteine sulfinic acid, to the respective sulfonates, taurine and cysteic acid, has never been associated with any specific enzyme. Conversely, there is strong evidence that in vivo formation of taurine and cysteic acid is the result of sulfinate interaction with a variety of biologically relevant oxidants. In the last decade, many experiments have been performed to understand whether peroxynitrite, nitrogen dioxide and carbonate radical anion could be included in the biologically relevant reactive species capable of oxidizing sulfinates. Thanks to this work, it has been possible to highlight two possible reaction mechanisms (direct and indirect reaction) of sulfinates with reactive oxygen and nitrogen species.The sulfinates oxidation, mediated by peroxynitrite, is an example of both reaction mechanisms: through a two-electron-direct-reaction with peroxynitrite or through a one-electron-indirect-transfer reaction. In the indirect mechanism, the peroxynitrite homolysis releases hydroxyl and nitrogen dioxide radical and in addition the degradation of short-lived adduct formed by peroxynitrite and CO2 can generate carbonate radical anion. The reaction of hypotaurine and cysteine sulfinic acid with peroxynitrite-derived radicals is accompanied by extensive oxygen uptake with the generation of transient intermediates, which can begin a reaction by an oxygen-dependent mechanism with the sulfonates, taurine, and cysteic acid as final products. Due to pulse radiolysis studies, it has been shown that transient sulfonyl radicals (RSO2•) have been produced during the oxidation of both sulfinates by one-electron transfer reaction.The purpose is to analyze all the aspects of the reactive mechanism in the sulfinic group oxidation of hypotaurine and cysteine sulfinic acid through the results obtained from our laboratory in recent years.


Asunto(s)
Especies de Nitrógeno Reactivo/química , Especies Reactivas de Oxígeno/química , Ácidos Sulfínicos/química , Taurina/análogos & derivados , Animales , Humanos , Oxidación-Reducción , Taurina/química
17.
J Alzheimers Dis ; 54(1): 307-24, 2016 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-27567805

RESUMEN

Amyloid-beta peptide accumulation in the brain is one of the main hallmarks of Alzheimer's disease. The amyloid aggregation process is associated with the generation of free radical species responsible for mitochondrial impairment and DNA damage that in turn activates poly(ADP-ribose)polymerase 1 (PARP-1). PARP-1 catalyzes the poly(ADP-ribosylation), a post-translational modification of proteins, cleaving the substrate NAD+ and transferring the ADP-ribose moieties to the enzyme itself or to an acceptor protein to form branched polymers of ADP-ribose. In this paper, we demonstrate that a mitochondrial dysfunction occurs in Alzheimer's transgenic mice TgCRND8, in SH-SY5Y treated with amyloid-beta and in 7PA2 cells. Moreover, PARP-1 activation contributes to the functional energetic decline affecting cytochrome oxidase IV protein levels, oxygen consumption rates, and membrane potential, resulting in cellular bioenergetic deficit. We also observed, for the first time, an increase of pyruvate kinase 2 expression, suggesting a modulation of the glycolytic pathway by PARP-1. PARP-1 inhibitors are able to restore both mitochondrial impairment and pyruvate kinase 2 expression. The overall data here presented indicate a pivotal role for this enzyme in the bioenergetic network of neuronal cells and open new perspectives for investigating molecular mechanisms underlying energy charge decline in Alzheimer's disease. In this scenario, PARP-1 inhibitors might represent a novel therapeutic intervention to rescue cellular energetic metabolism.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Fármacos Neuroprotectores/farmacología , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Adenosina Trifosfato/metabolismo , Péptidos beta-Amiloides/toxicidad , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Células CHO , Línea Celular Tumoral , Citrato (si)-Sintasa/metabolismo , Cricetulus , Modelos Animales de Enfermedad , Complejo IV de Transporte de Electrones/metabolismo , Corteza Entorrinal/efectos de los fármacos , Corteza Entorrinal/metabolismo , Inhibidores Enzimáticos/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ácido Láctico/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/fisiología , Ratones Transgénicos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , NAD/metabolismo , Fragmentos de Péptidos/toxicidad , Poli(ADP-Ribosa) Polimerasa-1/metabolismo
19.
J Neurosci Res ; 92(3): 347-58, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24273027

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative disorder whose etiology is still unclear in spite of extensive investigations. It has been hypothesized that 5-S-cysteinyldopamine (CysDA), a catechol-thioether metabolite of dopamine (DA), could be an endogenous parkinsonian neurotoxin. To gain further insight into its role in the neurodegenerative process, both CD1 mice and SH-SY5Y neuroblastoma cells were treated with CysDA, and the data were compared with those obtained by the use of 6-hydroxydopamine, a well-known parkinsonian mimetic. Intrastriatal injection of CysDA in CD1 mice caused a long-lasting depletion of DA, providing evidence of in vivo neurotoxicity of CysDA. Both in mice and in SH-SY5Y cells, CysDA treatment induced extensive oxidative stress, as evidenced by protein carbonylation and glutathione depletion, and affected the expression of two proteins, α-synuclein (α-Syn) and ERp57, whose levels are modulated by oxidative insult. Real-time PCR experiments support these findings, indicating an upregulation of both ERp57 and α-Syn expression. α-Syn aggregation was also found to be modulated by CysDA treatment. The present work provides a solid background sustaining the hypothesis that CysDA is involved in parkinsonian neurodegeneration by inducing extensive oxidative stress and protein aggregation.


Asunto(s)
Encéfalo/metabolismo , Dopaminérgicos/toxicidad , Dopamina/análogos & derivados , Enfermedad de Parkinson/etiología , Proteína Disulfuro Isomerasas/metabolismo , alfa-Sinucleína/metabolismo , Animales , Monoaminas Biogénicas/metabolismo , Encéfalo/efectos de los fármacos , Línea Celular Tumoral , Modelos Animales de Enfermedad , Dopamina/toxicidad , Relación Dosis-Respuesta a Droga , Glutatión/metabolismo , Disulfuro de Glutatión/metabolismo , Humanos , Masculino , Ratones , Neuroblastoma/patología , Estrés Oxidativo/efectos de los fármacos , Oxidopamina/toxicidad , Carbonilación Proteica/efectos de los fármacos , Proteína Disulfuro Isomerasas/genética , alfa-Sinucleína/genética
20.
Ann Ist Super Sanita ; 49(2): 219-29, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23771266

RESUMEN

BACKGROUND: Fibromyalgia is characterized by chronic widespread pain, tenderness at muscle and tendon insertions point when digital pressure is applied, sleep disorders, chronic fatigue, depressive episodes, anxiety, and other functional somatic syndromes. OBJECTIVE: The aim of this study was to determine whether balneotherapy with mineral waters and mineral-water containing mud is effective in the management of fibromyalgia. METHODS: We conducted a systematic review of the literature regarding spa therapy in the treatment of the fibromyalgia. We searched many databases for articles published between 2000 and 2012 and we selected 7 studies among 65 articles retrieved. A total of 142 patients received balneotherapy and 129 were controls. CONCLUSION: Study data confirms that spa therapy could improve the symptoms of fibromyalgia including pain, depression and minor symptoms.


Asunto(s)
Balneología/métodos , Fibromialgia/terapia , Interpretación Estadística de Datos , Depresión/psicología , Fibromialgia/psicología , Humanos , Aguas Minerales , Peloterapia , Dimensión del Dolor , Escalas de Valoración Psiquiátrica , Encuestas y Cuestionarios , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA