Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mater Sci Eng C Mater Biol Appl ; 126: 111865, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34082926

RESUMEN

Horseradish peroxidase (HRP)/H2O2-mediated crosslinking of polypeptides in inverse miniemulsion is a promising approach for the development of next-generation biocompatible and biodegradable nanogels. Herein, we present a fundamental investigation of the effects of three surfactants and their different concentrations on the (HRP)/H2O2-mediated nanogelation of poly[N5-(2-hydroxyethyl)-l-glutamine-ran-N5-propargyl-l-glutamine-ran-N5-(6-aminohexyl)-l-glutamine]-ran-N5-[2-(4-hydroxyphenyl)ethyl)-l-glutamine] (PHEG-Tyr) in inverse miniemulsion. The surfactants sorbitan monooleate (SPAN 80), polyoxyethylenesorbitan trioleate (TWEEN 85), and dioctyl sulfosuccinate sodium salt (AOT) were selected and their influence on the nanogel size, size distribution, and morphology was evaluated. The most effective nanogelation stabilization was achieved with 20 wt% nonionic surfactant SPAN 80. The diameter of the hydrogel nanoparticles was 230 nm (dynamic light scattering, DLS) and was confirmed also by nanoparticle tracking analysis (NTA) which showed the diameters ranging from 200 to 300 nm. Microscopy and image analyses showed that the nanogel in the dry state was spherical in shape and had number-average diameter Dn = 26 nm and dispersity Р= 1.91. In the frozen-hydrated state, the nanogel appeared porous and was larger in size with Dn = 182 nm and Р= 1.52. Our results indicated that the nanogelation of the polymer precursor required a higher concentration of surfactant than classical inverse miniemulsion polymerization to ensure effective stabilization. The developed polypeptide nanogel was radiolabeled with 125I, and in vivo biodistribution and blood clearance evaluations were performed. We found that the 125I-labeled nanogel was well-biodistributed in the bloodstream, cleared from mouse blood during 48 h by renal and hepatic pathways and did not provoke any sign of toxic effects.


Asunto(s)
Peróxido de Hidrógeno , Tensoactivos , Animales , Ratones , Nanogeles , Péptidos , Polietilenglicoles , Polietileneimina , Distribución Tisular
2.
Sci Rep ; 9(1): 10765, 2019 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-31341232

RESUMEN

Magnetite (Fe3O4) nanoparticles with uniform sizes of 10, 20, and 31 nm were prepared by thermal decomposition of Fe(III) oleate or mandelate in a high-boiling point solvent (>320 °C). To render the particles with hydrophilic and antifouling properties, their surface was coated with a PEG-containing bisphosphonate anchoring group. The PEGylated particles were characterized by a range of physicochemical methods, including dynamic light scattering, transmission electron microscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy, and magnetization measurements. As the particle size increased from 10 to 31 nm, the amount of PEG coating decreased from 28.5 to 9 wt.%. The PEG formed a dense brush-like shell on the particle surface, which prevented particles from aggregating in water and PBS (pH 7.4) and maximized the circulation time in vivo. Magnetic resonance relaxometry confirmed that the PEG-modified Fe3O4 nanoparticles had high relaxivity, which increased with increasing particle size. In the in vivo experiments in a mouse model, the particles provided visible contrast enhancement in the magnetic resonance images. Almost 70% of administrated 20-nm magnetic nanoparticles still circulated in the blood stream after four hours; however, their retention in the tumor was rather low, which was likely due to the antifouling properties of PEG.


Asunto(s)
Difosfonatos/química , Nanopartículas de Magnetita/química , Animales , Compuestos Férricos , Imagen por Resonancia Magnética , Nanopartículas de Magnetita/ultraestructura , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Tamaño de la Partícula , Polietilenglicoles/química , Distribución Tisular
3.
Nanoscale ; 9(43): 16680-16688, 2017 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-29067394

RESUMEN

In this report, monodisperse upconversion NaYF4:Yb3+/Er3+ nanoparticles with superior optical properties were synthesized by the oleic acid-stabilized high-temperature co-precipitation of lanthanide chlorides in octadec-1-ene as a high-boiling organic solvent. To render the particles with biocompatibility and colloidal stability in bioanalytically relevant phosphate buffered saline (PBS), they were modified by using in-house synthesized poly(ethylene glycol)-neridronate (PEG-Ner), a bisphosponate. The NaYF4:Yb3+/Er3+@PEG nanoparticles showed excellent long-term stability in PBS and/or albumin without any aggregation or morphology transformation. The in vitro cytotoxicity of the nanoparticles was evaluated using primary fibroblasts (HF) and a cell line derived from human cervical carcinoma (HeLa). The particles were subsequently modified by using Bolton-Hunter-hydroxybisphosphonate to enable radiolabeling with 125I for single-photon emission computed tomography/computed tomography (SPECT/CT) bimodal imaging to monitor the biodistribution of the nanoparticles in non-tumor mice. The bimodal upconversion 125I-radiolabeled NaYF4:Yb3+/Er3+@PEG nanoparticles are prospective for near-infrared (NIR) photothermal/photodynamic and SPECT/CT cancer theranostics.


Asunto(s)
Difosfonatos/química , Nanopartículas/química , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único , Animales , Femenino , Fluoruros , Células HeLa , Humanos , Radioisótopos de Yodo , Ratones , Ratones Endogámicos BALB C , Distribución Tisular , Itrio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA